Citation: | Mauclair C, Najih B, Comte V et al. Dynamic spatial beam shaping for ultrafast laser processing: a review. Opto-Electron Sci x, 250002 (2025). doi: 10.29026/oes.2025.250002 |
[1] | Itoh K, Watanabe W, Nolte S et al. Ultrafast processes for bulk modification of transparent materials. MRS Bull 31, 620–625 (2006). doi: 10.1557/mrs2006.159 |
[2] | Vorobyev AY, Guo CL. Direct femtosecond laser surface nano/microstructuring and its applications. Laser Photonics Rev 7, 385–407 (2013). doi: 10.1002/lpor.201200017 |
[3] | Sibbett W, Lagatsky AA, Brown CTA. The development and application of femtosecond laser systems. Opt Express 20, 6989–7001 (2012). doi: 10.1364/OE.20.006989 |
[4] | Brauch U, Röcker C, Graf T et al. High-power, high-brightness solid-state laser architectures and their characteristics. Appl Phys B 128, 58 (2022). doi: 10.1007/s00340-021-07736-0 |
[5] | Pouysegur J, Gruson V, Ferachou D et al. Kilowatt femtosecond lasers for high productivity. In Proceedings of the Conference on Lasers and Electro-Optics ATh4P. 2 (Optica Publishing Group, 2021).http://doi.org/10.1364/CLEO_AT.2021.ATh4P.2. |
[6] | Dominik J, Scharun M, Dannecker B et al. Multi-kilowatt ultrafast laser with thin-disk technology. In Proceedings of the Laser Congress 2021 AM2A. 6 (Optica Publishing Group, 2021). http://doi.org/10.1364/ASSL.2021.AM2A.6. |
[7] | Buldt J, Stark H, Müeller M et al. Broadband ytterbium fiber CPA-system delivering 120fs, 10 mJ pulses at 1 kW average power. In Proceedings of 2021 Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference 61 (Optica Publishing Group, 2021). http://doi.org/10.1109/CLEO/Europe-EQEC52157.2021.9542142. |
[8] | Juhasz T, Loesel FH, Kurtz RM et al. Corneal refractive surgery with femtosecond lasers. IEEE J Sel Top Quantum Electron 5, 902–910 (1999). doi: 10.1109/2944.796309 |
[9] | Bernard A, Gain P, Mauclair C et al. Device and method for cutting a cornea or crystalline lens. (2017).https://eureka-patsnap-com.libproxy1.nus.edu.sg/patent-US20170304118A1. |
[10] | Taylor R, Hnatovsky C, Simova E. Applications of femtosecond laser induced self-organized planar nanocracks inside fused silica glass. Laser Photonics Rev 2, 26–46 (2008). doi: 10.1002/lpor.200710031 |
[11] | Bonse J, Krüger J, Höhm S et al. Femtosecond laser-induced periodic surface structures. J Laser Appl 24, 042006 (2012). doi: 10.2351/1.4712658 |
[12] | Nolte S, Momma C, Jacobs H et al. Ablation of metals by ultrashort laser pulses. J Opt Soc Am B 14, 2716–2722 (1997). doi: 10.1364/JOSAB.14.002716 |
[13] | Neuenschwander B, Jaeggi B, Schmid M et al. Surface structuring with ultra-short laser pulses: basics, limitations and needs for high throughput. Phys Procedia 56, 1047–1058 (2014). doi: 10.1016/j.phpro.2014.08.017 |
[14] | Bellouard Y, Said A, Dugan M et al. Fabrication of high-aspect ratio, micro-fluidic channels and tunnels using femtosecond laser pulses and chemical etching. Opt Express 12, 2120–2129 (2004). doi: 10.1364/OPEX.12.002120 |
[15] | Mishchik K, Cheng G, Huo G et al. Nanosize structural modifications with polarization functions in ultrafast laser irradiated bulk fused silica. Opt Express 18, 24809–24824 (2010). doi: 10.1364/OE.18.024809 |
[16] | Wu D, Wu SZ, Xu J et al. Hybrid femtosecond laser microfabrication to achieve true 3D glass/polymer composite biochips with multiscale features and high performance: the concept of ship-in-a-bottle biochip. Laser Photonics Rev 8, 458–467 (2014). doi: 10.1002/lpor.201400005 |
[17] | Colombier JP, Combis P, Bonneau F et al. Hydrodynamic simulations of metal ablation by femtosecond laser irradiation. Phys Rev B 71, 165406 (2005). doi: 10.1103/PhysRevB.71.165406 |
[18] | Ahmmed KMT, Ling EJY, Servio P et al. Introducing a new optimization tool for femtosecond laser-induced surface texturing on titanium, stainless steel, aluminum and copper. Opt Lasers Eng 66, 258–268 (2015). doi: 10.1016/j.optlaseng.2014.09.017 |
[19] | Sedao X, Lenci M, Rudenko A et al. Influence of pulse repetition rate on morphology and material removal rate of ultrafast laser ablated metallic surfaces. Opt Lasers Eng 116, 68–74 (2019). doi: 10.1016/j.optlaseng.2018.12.009 |
[20] | Shin H, Kim D. Cutting thin glass by femtosecond laser ablation. Opt Laser Technol 102, 1–11 (2018). doi: 10.1016/j.optlastec.2017.12.020 |
[21] | Pietroy D, Baubeau E, Faure N et al. Intensity profile distortion at the processing image plane of a focused femtosecond laser below the critical power: analysis and counteraction. Opt Lasers Eng 66, 138–143 (2015). doi: 10.1016/j.optlaseng.2014.08.018 |
[22] | Mauclair C, Mermillod-Blondin A, Landon S et al. Single-pulse ultrafast laser imprinting of axial dot arrays in bulk glasses. Opt Lett 36, 325–327 (2011). doi: 10.1364/OL.36.000325 |
[23] | Le Harzic R, Huot N, Audouard E et al. Comparison of heat-affected zones due to nanosecond and femtosecond laser pulses using transmission electronic microscopy. Appl Phys Lett 80, 3886–3888 (2002). doi: 10.1063/1.1481195 |
[24] | Bauer F, Michalowski A, Kiedrowski T et al. Heat accumulation in ultra-short pulsed scanning laser ablation of metals. Opt Express 23, 1035–1043 (2015). doi: 10.1364/OE.23.001035 |
[25] | Eaton SM, Zhang HB, Herman PR et al. Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate. Opt Express 13, 4708–4716 (2005). doi: 10.1364/OPEX.13.004708 |
[26] | Emelyanenko AM, Shagieva FM, Domantovsky AG et al. Nanosecond laser micro- and nanotexturing for the design of a superhydrophobic coating robust against long-term contact with water, cavitation, and abrasion. Appl Surf Sci 332, 513–517 (2015). doi: 10.1016/j.apsusc.2015.01.202 |
[27] | Ancona A, Röser F, Rademaker K et al. High speed laser drilling of metals using a high repetition rate, high average power ultrafast fiber CPA system. Opt Express 16, 8958–8968 (2008). doi: 10.1364/OE.16.008958 |
[28] | Neuenschwander B, Jaeggi B, Zimmermannn M et al. Laser surface structuring with 100 W of average power and sub-ps pulses. J Laser Appl 28, 022506 (2016). doi: 10.2351/1.4944104 |
[29] | Loeschner U, Schille J, Streek A et al. High-rate laser microprocessing using a polygon scanner system. J Laser Appl 27, S29303 (2015). doi: 10.2351/1.4906473 |
[30] | Römer GRBE, Bechtold P. Electro-optic and acousto-optic laser beam scanners. Phys Procedia 56, 29–39 (2014). doi: 10.1016/j.phpro.2014.08.092 |
[31] | Kerse C, Kalaycıoğlu H, Elahi P et al. Ablation-cooled material removal with ultrafast bursts of pulses. Nature 537, 84–88 (2016). doi: 10.1038/nature18619 |
[32] | Audouard E, Mottay E. High efficiency GHz laser processing with long bursts. Int J Extrem Manuf 5, 015003 (2023). doi: 10.1088/2631-7990/aca79f |
[33] | Nyenhuis F, Michalowski A, L’huillier J. Surface treatment with GHz bursts. Proc SPIE 11268, 112680B (2020). doi: 10.1117/12.2544337 |
[34] | Dahmen M, Güdükkurt O, Kaierle S. The ecological footprint of laser beam welding. Phys Procedia 5, 19–28 (2010). doi: 10.1016/j.phpro.2010.08.025 |
[35] | Sanner N, Huot N, Audouard E et al. Programmable focal spot shaping of amplified femtosecond laser pulses. Opt Lett 30, 1479–1481 (2005). doi: 10.1364/OL.30.001479 |
[36] | Hasegawa S, Hayasaki Y, Nishida N. Holographic femtosecond laser processing with multiplexed phase Fresnel lenses. Opt Lett 31, 1705–1707 (2006). doi: 10.1364/OL.31.001705 |
[37] | Kuang Z, Perrie W, Leach J et al. High throughput diffractive multi-beam femtosecond laser processing using a spatial light modulator. Appl Surf Sci 255, 2284–2289 (2008). doi: 10.1016/j.apsusc.2008.07.091 |
[38] | Massachusetts Institute of Technology. Archimedes Death Ray: Idea Feasibility Testing. [2025-01-15] https://web.mit.edu/2.009_gallery/www/2005_other/archimedes/10_ArchimedesResult.html |
[39] | Strobel V. Pold87/academic-keyword-occurrence: first release (Zenodo, 2018). doi: 10.5281/zenodo.1218409. |
[40] | Siegman AE. Lasers 2nd ed (University Science Books, 1990). |
[41] | Diels JC, Rudolph W. Ultrashort Laser Pulse Phenomena: Fundamentals, Techniques, and Applications on a Femtosecond Time Scale 2nd ed (Academic Press Inc., Burlington, 2006). |
[42] | Goodman JW. Introduction to Fourier Optics 3rd ed (Roberts & Company Publishers, Englewood, 2005). |
[43] | Ams M, Marshall GD, Spence DJ et al. Slit beam shaping method for femtosecond laser direct-write fabrication of symmetric waveguides in bulk glasses. Opt Express 13, 5676–5681 (2005). doi: 10.1364/OPEX.13.005676 |
[44] | Kuang Z, Li JN, Edwardson S et al. Ultrafast laser beam shaping for material processing at imaging plane by geometric masks using a spatial light modulator. Opt Lasers Eng 70, 1–5 (2015). doi: 10.1016/j.optlaseng.2015.02.004 |
[45] | Malitson IH. Interspecimen comparison of the refractive index of fused silica. J Opt Soc Am 55, 1205–1209 (1965). doi: 10.1364/JOSA.55.001205 |
[46] | Torres-Peiró S, González-Ausejo J, Mendoza-Yero O et al. Parallel laser micromachining based on diffractive optical elements with dispersion compensated femtosecond pulses. Opt Express 21, 31830–31836 (2013). doi: 10.1364/OE.21.031830 |
[47] | Amako J, Nagasaka K, Kazuhiro N. Chromatic-distortion compensation in splitting and focusing of femtosecond pulses by use of a pair of diffractive optical elements. Opt Lett 27, 969–971 (2002). doi: 10.1364/OL.27.000969 |
[48] | Hasegawa S, Ito H, Toyoda H et al. Massively parallel femtosecond laser processing. Opt Express 24, 18513–18524 (2016). doi: 10.1364/OE.24.018513 |
[49] | Yang YQ, Forbes A, Cao LC. A review of liquid crystal spatial light modulators: devices and applications. Opto-Electron Sci 2, 230026 (2023). doi: 10.29026/oes.2023.230026 |
[50] | Salter PS, Booth MJ. Adaptive optics in laser processing. Light Sci Appl 8, 110 (2019). doi: 10.1038/s41377-019-0215-1 |
[51] | Malinauskas M, Žukauskas A, Hasegawa S et al. Ultrafast laser processing of materials: from science to industry. Light Sci Appl 5, e16133 (2016). doi: 10.1038/lsa.2016.133 |
[52] | Aubourg P, Huignard JP, Hareng M et al. Liquid crystal light valve using bulk monocrystalline Bi12SiO20 as the photoconductive material. Appl Opt 21, 3706–3712 (1982). doi: 10.1364/AO.21.003706 |
[53] | Zhu G, Whitehead D, Perrie W et al. Investigation of the thermal and optical performance of a spatial light modulator with high average power picosecond laser exposure for materials processing applications. J Phys D: Appl Phys 51, 095603 (2018). doi: 10.1088/1361-6463/aaa948 |
[54] | Hasegawa S, Nozaki K, Tanabe A et al. Holographic femtosecond laser processing using 6.3 kHz pulse-to-pulse spatial light modulation with binary phase masks. Opt Laser Technol 176, 111014 (2024). doi: 10.1016/j.optlastec.2024.111014 |
[55] | Smarra M, Gurevich EL, Ostendorf A. Theoretical simulation and experimental verification of dynamic caustic manipulation using a deformable mirror for laser material processing. Opt Laser Technol 149, 107814 (2022). doi: 10.1016/j.optlastec.2021.107814 |
[56] | El-Agmy R, Bulte H, Greenaway AH et al. Adaptive beam profile control using a simulated annealing algorithm. Opt Express 13, 6085–6091 (2005). doi: 10.1364/OPEX.13.006085 |
[57] | Scholes S, Mohapi L, Leach J et al. Experimentally simulating the beam shaping capabilities of piston-type deformable mirrors using a liquid crystal spatial light modulator. Appl Phys B 129, 45 (2023). doi: 10.1007/s00340-023-07991-3 |
[58] | Ren YX, Lu RD, Gong L. Tailoring light with a digital micromirror device. Ann Phys 527, 447–470 (2015). doi: 10.1002/andp.201500111 |
[59] | Trypogeorgos D, Harte T, Bonnin A et al. Precise shaping of laser light by an acousto-optic deflector. Opt Express 21, 24837–24846 (2013). doi: 10.1364/OE.21.024837 |
[60] | Häfner T, Strauß J, Roider C et al. Tailored laser beam shaping for efficient and accurate microstructuring. Appl Phys A 124, 111 (2018). doi: 10.1007/s00339-017-1530-0 |
[61] | Fontaine NK, Ryf R, Chen HS et al. Laguerre-gaussian mode sorter. Nat Commun 10, 1865 (2019). doi: 10.1038/s41467-019-09840-4 |
[62] | Labroille G, Denolle B, Jian P et al. Efficient and mode selective spatial mode multiplexer based on multi-plane light conversion. Opt Express 22, 15599–15607 (2014). doi: 10.1364/OE.22.015599 |
[63] | Meunier M, Kumar A, Lucas A et al. Stainless steel laser beam welding with a dynamic tailored beam shaping laser-head based on multi-plane light conversion. Proc SPIE PC12414, PC1241407 (2023). doi: 10.1117/12.2655458 |
[64] | Jacquard C, Placzek K, Holder D et al. Microprocessing with a multi-plane light conversion beam shaper and a femtosecond laser at 515nm. Proc SPIE 12409, 1240910 (2023). doi: 10.1117/12.2655447 |
[65] | Palima D, Glückstad J. Gaussian to uniform intensity shaper based on generalized phase contrast. Opt Express 16, 1507–1516 (2008). doi: 10.1364/OE.16.001507 |
[66] | Tauro S, Bañas A, Palima D et al. Experimental demonstration of Generalized Phase Contrast based Gaussian beam-shaper. Opt Express 19, 7106–7111 (2011). doi: 10.1364/OE.19.007106 |
[67] | Zernike VF. Beugungstheorie des schneidenver-fahrens und seiner verbesserten form, der phasenkontrastmethode. Physica 1, 689–704 (1934). doi: 10.1016/S0031-8914(34)80259-5 |
[68] | Bañas A, Kopylov O, Villangca M et al. GPC light shaper: static and dynamic experimental demonstrations. Opt Express 22, 23759–23769 (2014). doi: 10.1364/OE.22.023759 |
[69] | Eriksen RL, Mogensen PC, Glückstad J. Multiple-beam optical tweezers generated by the generalized phase-contrast method. Opt Lett 27, 267–269 (2002). doi: 10.1364/OL.27.000267 |
[70] | Lasagni A, Roch T, Bieda M et al. High speed surface functionalization using direct laser interference patterning, towards 1 m2/min fabrication speed with sub-micrometric resolution. Proc SPIE 8968, 89680A (2014). doi: 10.1117/12.2041215 |
[71] | Zhou Q, Yang WZ, He FT et al. Femtosecond multi-beam interference lithography based on dynamic wavefront engineering. Opt Express 21, 9851–9861 (2013). doi: 10.1364/OE.21.009851 |
[72] | Li BH, Jiang L, Li XW et al. Flexible gray-scale surface patterning through spatiotemporal-interference-based femtosecond laser shaping. Adv Opt Mater 6, 1801021 (2018). doi: 10.1002/adom.201801021 |
[73] | Wu H, Jiao YL, Zhang CC et al. Large area metal micro-/nano-groove arrays with both structural color and anisotropic wetting fabricated by one-step focused laser interference lithography. Nanoscale 11, 4803–4810 (2019). doi: 10.1039/C8NR09747J |
[74] | Madelung A, Alamri S, Steege T et al. Scanner-based direct laser interference patterning on stainless steel. Adv Eng Mater 23, 2001414 (2021). doi: 10.1002/adem.202001414 |
[75] | Rank A, Lang V, Lasagni AF. High-speed roll-to-roll hot embossing of micrometer and sub micrometer structures using seamless direct laser interference patterning treated sleeves. Adv Eng Mater 19, 1700201 (2017). doi: 10.1002/adem.201700201 |
[76] | McLeod E, Hopkins AB, Arnold CB. Multiscale Bessel beams generated by a tunable acoustic gradient index of refraction lens. Opt Lett 31, 3155–3157 (2006). doi: 10.1364/OL.31.003155 |
[77] | Duocastella M, Arnold CB. Enhanced depth of field laser processing using an ultra-high-speed axial scanner. Appl Phys Lett 102, 061113 (2013). doi: 10.1063/1.4791593 |
[78] | Du XH, Florian C, Arnold CB. Single-lens dynamic z-scanning for simultaneous in situ position detection and laser processing focus control. Light Sci Appl 12, 274 (2023). doi: 10.1038/s41377-023-01303-2 |
[79] | Toporovsky V, Samarkin V, Sheldakova J et al. Water-cooled stacked-actuator flexible mirror for high-power laser beam correction. Opt Laser Technol 144, 107427 (2021). doi: 10.1016/j.optlastec.2021.107427 |
[80] | Chorel M, Lanternier T, Lavastre É et al. Robust optimization of the laser induced damage threshold of dielectric mirrors for high power lasers. Opt Express 26, 11764–11774 (2018). doi: 10.1364/OE.26.011764 |
[81] | Ramousse L, Chériaux G, Claudet C et al. Femtosecond laser-induced damage threshold of nematic liquid crystals at 1030 nm. Appl Opt 60, 8050–8056 (2021). doi: 10.1364/AO.436236 |
[82] | Xing ZB, Fan W, Huang DJ et al. High laser damage threshold liquid crystal optical switch based on a gallium nitride transparent electrode. Opt Lett 45, 3537–3540 (2020). doi: 10.1364/OL.390440 |
[83] | LCOS-Slm Applications and Features Cat. No. LLAP3012E05 Hamamatsu Photonics. 2025.https://lcos-slm.hamamatsu.com/eu/en/related-contents.html. |
[84] | Tang Y, Li QL, Fang Z et al. Extending the operational limit of a cooled spatial light modulator exposed to 200W average power for holographic picosecond laser materials processing. Opt Laser Technol 181, 111589 (2025). doi: 10.1016/j.optlastec.2024.111589 |
[85] | Maingot B, Neradovskaia E, Claudet C et al. Measurement of nonlinear refractive indices of bulk and liquid crystals by nonlinear chirped interferometry. Opt Lett 48, 3243–3246 (2023). doi: 10.1364/OL.487261 |
[86] | Duclère JR, Hayakawa T, Roginskii EM et al. Third order nonlinear optical properties of a paratellurite single crystal. J Appl Phys 123, 183105 (2018). doi: 10.1063/1.5020646 |
[87] | Gerchberg RW, Saxton WO. A practical algorithm for the determination of phase from image and diffraction plane pictures. Optik 35, 237–246 (1972). |
[88] | Sinclair G, Leach J, Jordan P et al. Interactive application in holographic optical tweezers of a multi-plane Gerchberg-saxton algorithm for three-dimensional light shaping. Opt Express 12, 1665–1670 (2004). doi: 10.1364/OPEX.12.001665 |
[89] | Di Leonardo R, Ianni F, Ruocco G. Computer generation of optimal holograms for optical trap arrays. Opt Express 15, 1913–1922 (2007). doi: 10.1364/OE.15.001913 |
[90] | Silvennoinen M, Kaakkunen J, Paivasaari K et al. Parallel femtosecond laser ablation with individually controlled intensity. Opt Express 22, 2603–2608 (2014). doi: 10.1364/OE.22.002603 |
[91] | Gaunt AL, Hadzibabic Z. Robust digital holography for ultracold atom trapping. Sci Rep 2, 721 (2012). doi: 10.1038/srep00721 |
[92] | van Bijnen RMW, Ravensbergen C, Bakker DJ et al. Patterned Rydberg excitation and ionization with a spatial light modulator. New J Phys 17, 023045 (2015). doi: 10.1088/1367-2630/17/2/023045 |
[93] | Liesener J, Reicherter M, Haist T et al. Multi-functional optical tweezers using computer-generated holograms. Opt Commun 185, 77–82 (2000). doi: 10.1016/S0030-4018(00)00990-1 |
[94] | Leach J, Wulff K, Sinclair G et al. Interactive approach to optical tweezers control. Appl Opt 45, 897–903 (2006). doi: 10.1364/AO.45.000897 |
[95] | Jesacher A, Booth MJ. Parallel direct laser writing in three dimensions with spatially dependent aberration correction. Opt Express 18, 21090–21099 (2010). doi: 10.1364/OE.18.021090 |
[96] | Bengtsson J. Kinoform design with an optimal-rotation-angle method. Appl Opt 33, 6879–6884 (1994). doi: 10.1364/AO.33.006879 |
[97] | Dammann H, Klotz E. Coherent optical generation and inspection of two-dimensional periodic structures. Opt Acta: Int J Opt 24, 505–515 (1977). doi: 10.1080/713819570 |
[98] | Yu JJ, Zhou CH, Jia W et al. Three-dimensional Dammann array. Appl Opt 51, 1619–1630 (2012). doi: 10.1364/AO.51.001619 |
[99] | Zhu LW, Yu JJ, Zhang DW et al. Multifocal spot array generated by fractional talbot effect phase-only modulation. Opt Express 22, 9798–9808 (2014). doi: 10.1364/OE.22.009798 |
[100] | Wright AJ, Burns D, Patterson BA et al. Exploration of the optimisation algorithms used in the implementation of adaptive optics in confocal and multiphoton microscopy. Micros Res Tech 67, 36–44 (2005). doi: 10.1002/jemt.20178 |
[101] | Mauclair C, Mermillod-Blondin A, Huot N et al. Ultrafast laser writing of homogeneous longitudinal waveguides in glasses using dynamic wavefront correction. Opt Express 16, 5481–5492 (2008). doi: 10.1364/OE.16.005481 |
[102] | Hauschwitz P, Brajer J, Rostohar D et al. Anti-reflection nanostructures on tempered glass by dynamic beam shaping. Micromachines 12, 289 (2021). doi: 10.3390/mi12030289 |
[103] | Saint-Pierre D, Granier J, Egaud G et al. Fast uniform micro structuring of DLC surfaces using multiple ultrashort laser spots through spatial beam shaping. Phys Procedia 83, 1178–1183 (2016). doi: 10.1016/j.phpro.2016.08.124 |
[104] | Parry JP, Beck RJ, Shephard JD et al. Application of a liquid crystal spatial light modulator to laser marking. Appl Opt 50, 1779–1785 (2011). doi: 10.1364/AO.50.001779 |
[105] | Wang ZP, Jiang L, Li XW et al. High efficiency and scalable fabrication of fresnel zone plates using holographic femtosecond pulses. Nanophotonics 11, 3081–3091 (2022). doi: 10.1515/nanoph-2022-0112 |
[106] | Kato J, Takeyasu N, Adachi Y et al. Multiple-spot parallel processing for laser micronanofabrication. Appl Phys Lett 86, 044102 (2005). doi: 10.1063/1.1855404 |
[107] | Sipe JE, Young JF, Preston JS et al. Laser-induced periodic surface structure. I. theory. Phys Rev B 27, 1141–1154 (1983). doi: 10.1103/PhysRevB.27.1141 |
[108] | Han RZ, Zhang YC, Jiang QL et al. Ultrafast dynamics of femtosecond laser-induced high spatial frequency periodic structures on silicon surfaces. Opto-Electron Sci 3, 230013 (2024). doi: 10.29026/oes.2024.230013 |
[109] | Dusser B, Sagan Z, Soder H et al. Controlled nanostructrures formation by ultra fast laser pulses for color marking. Opt Express 18, 2913–2924 (2010). doi: 10.1364/OE.18.002913 |
[110] | Hendriks A, Naidoo D, Roux FS et al. The generation of flat-top beams by complex amplitude modulation with a phase-only spatial light modulator. Proc SPIE 8490, 849006 (2012). doi: 10.1117/12.932224 |
[111] | Mauclair C, Saint-Pierre D, Desrus H. Advances in spatial beam shaping for ultrafast laser surface functionalization. In Proceedings of the Lasers in Manufacturing Conference 2017 (2017). |
[112] | Mourier L, Mazuyer D, Lubrecht AA et al. Action of a femtosecond laser generated micro-cavity passing through a circular EHL contact. Wear 264, 450–456 (2008). doi: 10.1016/j.wear.2006.08.037 |
[113] | Dong ZL, Sun XY, Kong DJ et al. Spatial light modulated femtosecond laser ablated durable superhydrophobic copper mesh for oil-water separation and self-cleaning. Surf Coat Technol 402, 126254 (2020). doi: 10.1016/j.surfcoat.2020.126254 |
[114] | Mauclair C, Pietroy D, Di Maïo Y et al. Ultrafast laser micro-cutting of stainless steel and PZT using a modulated line of multiple foci formed by spatial beam shaping. Opt Lasers Eng 67, 212–217 (2015). doi: 10.1016/j.optlaseng.2014.11.018 |
[115] | Laskin A, Laskin V. Refractive beam shapers for material processing with high power single mode and multimode lasers. Proc SPIE 8600, 860010 (2013). doi: 10.1117/12.2001390 |
[116] | Schlutow H, Fuchs U, Müller FA et al. Squared focal intensity distributions for applications in laser material processing. Materials 14, 4981 (2021). doi: 10.3390/ma14174981 |
[117] | Sanner N. Mise en forme programmable de faisceau laser femtoseconde pour le micro-usinage et la photoinscription de guides d’ondes (Université Jean Monnet, Saint-Etienne, 2005). |
[118] | Guillon M, Forget BC, Foust AJ et al. Vortex-free phase profiles for uniform patterning with computer-generated holography. Opt Express 25, 12640–12652 (2017). doi: 10.1364/OE.25.012640 |
[119] | Yuan YJ, Jiang L, Li X et al. Laser photonic-reduction stamping for graphene-based micro-supercapacitors ultrafast fabrication. Nat Commun 11, 6185 (2020). doi: 10.1038/s41467-020-19985-2 |
[120] | Hasegawa S, Shiono K, Hayasaki Y. Femtosecond laser processing with a holographic line-shaped beam. Opt Express 23, 23185–23194 (2015). doi: 10.1364/OE.23.023185 |
[121] | Hasegawa S, Ito H, Toyoda H et al. Diffraction-limited ring beam generated by radial grating. OSA Continuum 1, 283–294 (2018). doi: 10.1364/OSAC.1.000283 |
[122] | Wang J, Hayasaki Y, Zhang FY et al. Three-dimensional holographic femtosecond laser parallel processing method with the fractional Fourier transform for glass substrates. Ceram Int 48, 16364–16373 (2022). doi: 10.1016/j.ceramint.2022.02.187 |
[123] | de Saint Jean A, Dufournel D, Stodulka P et al. Comparison of ultrasound phacoemulsification and FemtoMatrix® PhotoEmulsification® cataract surgery. Front Med 10, 1157486 (2023). doi: 10.3389/fmed.2023.1157486 |
[124] | Mauclair C, Cheng G, Huot N et al. Dynamic ultrafast laser spatial tailoring for parallel micromachining of photonic devices in transparent materials. Opt Express 17, 3531–3542 (2009). doi: 10.1364/OE.17.003531 |
[125] | Cumming BP, Turner MD, Schröder-Turk GE et al. Adaptive optics enhanced direct laser writing of high refractive index gyroid photonic crystals in chalcogenide glass. Opt Express 22, 689–698 (2014). doi: 10.1364/OE.22.000689 |
[126] | Cumming BP, Jesacher A, Booth MJ et al. Adaptive aberration compensation for three-dimensional micro-fabrication of photonic crystals in lithium niobate. Opt Express 19, 9419–9425 (2011). doi: 10.1364/OE.19.009419 |
[127] | Sun BS, Salter PS, Booth MJ. High conductivity micro-wires in diamond following arbitrary paths. Appl Phys Lett 105, 231105 (2014). doi: 10.1063/1.4902998 |
[128] | Xu K, Huang PL, Huang LY et al. High-precision multi-focus laser sculpting of microstructured glass. Opto-Electron Adv 7, 240082 (2024). doi: 10.29026/oea.2024.240082 |
[129] | Vellekoop IM, Mosk AP. Focusing coherent light through opaque strongly scattering media. Opt Lett 32, 2309–2311 (2007). doi: 10.1364/OL.32.002309 |
[130] | Galaktionov I, Nikitin A, Sheldakova J et al. Focusing of a laser beam passed through a moderately scattering medium using phase-only spatial light modulator. Photonics 9, 296 (2022). doi: 10.3390/photonics9050296 |
[131] | Jayasinghe AK, Rohner J, Hutson MS. Holographic UV laser microsurgery. Biomed Opt Express 2, 2590–2599 (2011). doi: 10.1364/BOE.2.002590 |
[132] | Vargas-Martín F, Prieto PM, Artal P. Correction of the aberrations in the human eye with a liquid-crystal spatial light modulator: limits to performance. J Opt Soc Am A 15, 2552–2562 (1998). doi: 10.1364/JOSAA.15.002552 |
[133] | Sinjab F, Liao ZY, Notingher I. Applications of spatial light modulators in Raman spectroscopy. Appl Spectrosc 73, 727–746 (2019). doi: 10.1177/0003702819834575 |
[134] | Carnegie DJ, Čižmár T, Baumgartl J et al. Automated laser guidance of neuronal growth cones using a spatial light modulator. J Biophotonics 2, 682–692 (2009). doi: 10.1002/jbio.200910043 |
[135] | Ocier CR, Richards CA, Bacon-Brown DA et al. Direct laser writing of volumetric gradient index lenses and waveguides. Light Sci Appl 9, 196 (2020). doi: 10.1038/s41377-020-00431-3 |
[136] | Ochiai Y, Kumagai K, Hoshi T et al. Fairy lights in femtoseconds: aerial and volumetric graphics rendered by focused femtosecond laser combined with computational holographic fields. ACM Trans Graph 35, 17 (2016). doi: 10.1145/2850414 |
[137] | Bhuyan MK, Courvoisier F, Lacourt PA et al. High aspect ratio nanochannel machining using single shot femtosecond Bessel beams. Appl Phys Lett 97, 081102 (2010). doi: 10.1063/1.3479419 |
[138] | Belloni VV, Hassan M, Furfaro L et al. Single shot generation of high-aspect-ratio nano-rods from sapphire by ultrafast first order Bessel beam. Laser Photonics Rev 18, 2300687 (2024). doi: 10.1002/lpor.202300687 |
[139] | Mathis A, Courvoisier F, Froehly L et al. Micromachining along a curve: femtosecond laser micromachining of curved profiles in diamond and silicon using accelerating beams. Appl Phys Lett 101, 071110 (2012). doi: 10.1063/1.4745925 |
[140] | Xie C, Jukna V, Milián C et al. Tubular filamentation for laser material processing. Sci Rep 5, 8914 (2015). doi: 10.1038/srep08914 |
[141] | Flamm D, Grossmann DG, Sailer M et al. Structured light for ultrafast laser micro- and nanoprocessing. Opt Eng 60, 025105 (2021). doi: 10.1117/1.OE.60.2.025105 |
[142] | Dat Nguyen H, Moreno E, Rudenko A et al. Super-efficient drilling of metals with ultrafast non diffractive laser beams. Sci Rep 12, 2074 (2022). doi: 10.1038/s41598-022-05967-5 |
[143] | Yu XM, Trallero-Herrero CT, Lei ST. Materials processing with superposed Bessel beams. Appl Surf Sci 360, 833–839 (2016). doi: 10.1016/j.apsusc.2015.11.074 |
[144] | Courvoisier F, Lacourt PA, Jacquot M et al. Surface nanoprocessing with nondiffracting femtosecond Bessel beams. Opt Lett 34, 3163–3165 (2009). doi: 10.1364/OL.34.003163 |
[145] | Fahrbach FO, Simon P, Rohrbach A. Microscopy with self-reconstructing beams. Nat Photonics 4, 780–785 (2010). doi: 10.1038/nphoton.2010.204 |
[146] | Simon DS. Bessel beams, self-healing, and diffraction-free propagation. In Simon DS. A Guided Tour of Light Beams: From Lasers to Optical Knots (Morgan & Claypool Publishers, San Rafael, 2016);http://doi.org/10.1088/978-1-6817-4437-7ch5. |
[147] | Mishchik K, Beuton R, Caulier OD et al. Improved laser glass cutting by spatio-temporal control of energy deposition using bursts of femtosecond pulses. Opt Express 25, 33271–33282 (2017). doi: 10.1364/OE.25.033271 |
[148] | Osbild M, Gerhorst EA, Sivankutty S et al. Submicrometer surface structuring with a Bessel beam generated by a reflective axicon. J Laser Appl 33, 042013 (2021). doi: 10.2351/7.0000532 |
[149] | D’Amico C, Martin G, Troles J et al. Multiscale laser written photonic structures in bulk chalcogenide glasses for infrared light transport and extraction. Photonics 8, 211 (2021). doi: 10.3390/photonics8060211 |
[150] | Tamaki T, Watanabe W, Nishii J et al. Welding of transparent materials using femtosecond laser pulses. Jpn J Appl Phys 44, L687 (2005). doi: 10.1143/JJAP.44.L687 |
[151] | Tan DZ, Zhang B, Qiu JR. Ultrafast laser direct writing in glass: thermal accumulation engineering and applications. Laser Photonics Rev 15, 2000455 (2021). doi: 10.1002/lpor.202000455 |
[152] | Zhang GD, Stoian R, Zhao W et al. Femtosecond laser Bessel beam welding of transparent to non-transparent materials with large focal-position tolerant zone. Opt Express 26, 917–926 (2018). doi: 10.1364/OE.26.000917 |
[153] | Zhang GD, Pan Y, Wu PF et al. Glass micro welding in thermal accumulation regime with using spatially shaped ultrafast laser. Opt Laser Technol 168, 109845 (2024). doi: 10.1016/j.optlastec.2023.109845 |
[154] | Baltrukonis J, Ulčinas O, Orlov S et al. High-order vector Bessel-gauss beams for laser micromachining of transparent materials. Phys Rev Appl 16, 034001 (2021). doi: 10.1103/PhysRevApplied.16.034001 |
[155] | Alimohammadian E, Ertorer E, Uzeda EM et al. Inhibition and enhancement of linear and nonlinear optical effects by conical phase front shaping for femtosecond laser material processing. Sci Rep 10, 21528 (2020). doi: 10.1038/s41598-020-78373-4 |
[156] | Ganguly N, Dwivedi R, D’Amico C et al. Asymmetric shaping for ultrafast elliptical bessel-like beams. Photonics 10, 651 (2023). doi: 10.3390/photonics10060651 |
[157] | Ouyang J, Perrie W, Allegre OJ et al. Tailored optical vector fields for ultrashort-pulse laser induced complex surface plasmon structuring. Opt Express 23, 12562–12572 (2015). doi: 10.1364/OE.23.012562 |
[158] | Hasegawa S, Hayasaki Y. Polarization distribution control of parallel femtosecond pulses with spatial light modulators. Opt Express 21, 12987–12995 (2013). doi: 10.1364/OE.21.012987 |
[159] | Hong JT, Li J, Chu DP. Efficient dynamic control method of light polarization using single phase-only liquid crystal on silicon spatial light modulators for optical data storage. Appl Opt 61, B34–B42 (2022). doi: 10.1364/AO.443205 |
[160] | Li ZQ, Allegre O, Li L. Realising high aspect ratio 10 nm feature size in laser materials processing in air at 800 nm wavelength in the far-field by creating a high purity longitudinal light field at focus. Light Sci Appl 11, 339 (2022). doi: 10.1038/s41377-022-00962-x |
[161] | Zeng TT, Chang CL, Chen ZZ et al. Three-dimensional vectorial multifocal arrays created by pseudo-period encoding. J Opt 20, 065605 (2018). doi: 10.1088/2040-8986/aac1de |
[162] | Li P, Fan XH, Wu DJ et al. Shaping vector fields in three dimensions by random Fourier phase-only encoding. Opt Express 27, 30009–30019 (2019). doi: 10.1364/OE.27.030009 |
[163] | Freidank S, Vogel A, Linz N. Optical vortex beam for gentle and ultraprecise intrastromal corneal dissection in refractive surgery. Trans Vis Sci Technol 9, 22 (2020). doi: 10.1167/tvst.9.10.22 |
[164] | Yao AM, Padgett MJ. Orbital angular momentum: origins, behavior and applications. Adv Opt Photonics 3, 161–204 (2011). doi: 10.1364/AOP.3.000161 |
[165] | Allegre OJ, Jin Y, Perrie W et al. Complete wavefront and polarization control for ultrashort-pulse laser microprocessing. Opt Express 21, 21198–21207 (2013). doi: 10.1364/OE.21.021198 |
[166] | Jin Y, Allegre OJ, Perrie W et al. Dynamic modulation of spatially structured polarization fields for real-time control of ultrafast laser-material interactions. Opt Express 21, 25333–25343 (2013). doi: 10.1364/OE.21.025333 |
[167] | Ghosal A, Allegre OJ, Liu Z et al. Surface engineering with structured femtosecond laser vector fields. Results Opt 5, 100179 (2021). doi: 10.1016/j.rio.2021.100179 |
[168] | Skoulas E, Manousaki A, Fotakis C et al. Biomimetic surface structuring using cylindrical vector femtosecond laser beams. Sci Rep 7, 45114 (2017). doi: 10.1038/srep45114 |
[169] | Gu M, Li XP, Cao YY. Optical storage arrays: a perspective for future big data storage. Light Sci Appl 3, e177 (2014). doi: 10.1038/lsa.2014.58 |
[170] | Lu JF, Hassan M, Courvoisier F et al. 3D structured Bessel beam polarization and its application to imprint chiral optical properties in silica. APL Photonics 8, 060801 (2023). doi: 10.1063/5.0140843 |
[171] | Freidank S, Vogel A, Linz N. Mechanisms of corneal intrastromal laser dissection for refractive surgery: ultra-high-speed photographic investigation at up to 50 million frames per second. Biomed Opt Express 13, 3056–3079 (2022). doi: 10.1364/BOE.455926 |
[172] | Yang L, Li JW, Hu YL et al. Projection two-photon polymerization using a spatial light modulator. Opt Commun 331, 82–86 (2014). doi: 10.1016/j.optcom.2014.05.051 |
[173] | Yang L, El-Tamer A, Hinze U et al. Parallel direct laser writing of micro-optical and photonic structures using spatial light modulator. Opt Lasers Eng 70, 26–32 (2015). doi: 10.1016/j.optlaseng.2015.02.006 |
[174] | Somers P, Liang ZH, Johnson JE et al. Rapid, continuous projection multi-photon 3D printing enabled by spatiotemporal focusing of femtosecond pulses. Light Sci Appl 10, 199 (2021). doi: 10.1038/s41377-021-00645-z |
[175] | Heath DJ, Feinaeugle M, Grant-Jacob JA et al. Dynamic spatial pulse shaping via a digital micromirror device for patterned laser-induced forward transfer of solid polymer films. Opt Mater Express 5, 1129–1136 (2015). doi: 10.1364/OME.5.001129 |
[176] | Fischer J, Wegener M. Three-dimensional direct laser writing inspired by stimulated-emission-depletion microscopy [Invited]. Opt Mater Express 1, 614–624 (2011). doi: 10.1364/OME.1.000614 |
[177] | Ni JC, Wang CW, Zhang CC et al. Three-dimensional chiral microstructures fabricated by structured optical vortices in isotropic material. Light Sci Appl 6, e17011 (2017). doi: 10.1038/lsa.2017.11 |
[178] | Dat Nguyen H, Sedao X, Mauclair C et al. Non-diffractive Bessel beams for ultrafast laser scanning platform and proof-of-concept side-wall polishing of additively manufactured parts. Micromachines 11, 974 (2020). doi: 10.3390/mi11110974 |
[179] | Ergin T, Stenger N, Brenner P et al. Three-dimensional invisibility cloak at optical wavelengths. Science 328, 337–339 (2010). doi: 10.1126/science.1186351 |
[180] | in’t Veld BH, Overmeyer L, Schmidt M et al. Micro additive manufacturing using ultra short laser pulses. CIRP Ann 64, 701–724 (2015). doi: 10.1016/j.cirp.2015.05.007 |
[181] | Saunders J, Elbestawi M, Fang QY. Ultrafast laser additive manufacturing: a review. J Manuf Mater Process 7, 89 (2023). doi: 10.3390/jmmp7030089 |
[182] | Schmidt M, Cvecek K, Duflou J et al. Dynamic beam shaping—Improving laser materials processing via feature synchronous energy coupling. CIRP Ann 73, 533–559 (2024). doi: 10.1016/j.cirp.2024.05.005 |
[183] | Geng Q, Wang DE, Chen PF et al. Ultrafast multi-focus 3-D nano-fabrication based on two-photon polymerization. Nat Commun 10, 2179 (2019). doi: 10.1038/s41467-019-10249-2 |
[184] | Auyeung RCY, Kim H, Mathews S et al. Laser forward transfer using structured light. Opt Express 23, 422–430 (2015). doi: 10.1364/OE.23.000422 |
[185] | Thiel M, Fischer J, von Freymann G et al. Direct laser writing of three-dimensional submicron structures using a continuous-wave laser at 532 nm. Appl Phys Lett 97, 221102 (2010). doi: 10.1063/1.3521464 |
[186] | Batchelor R, Messer T, Hippler M et al. Two in one: light as a tool for 3D printing and erasing at the microscale. Adv Mater 31, 1904085 (2019). doi: 10.1002/adma.201904085 |
[187] | Xiong W, Zhou YS, He XN et al. Simultaneous additive and subtractive three-dimensional nanofabrication using integrated two-photon polymerization and multiphoton ablation. Light Sci Appl 1, e6 (2012). doi: 10.1038/lsa.2012.6 |
[188] | Malinauskas M, Rekštytė S, Lukoševičius L et al. 3D microporous scaffolds manufactured via combination of fused filament fabrication and direct laser writing ablation. Micromachines 5, 839–858 (2014). doi: 10.3390/mi5040839 |
[189] | Hell SW, Wichmann J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt Lett 19, 780–782 (1994). doi: 10.1364/OL.19.000780 |
[190] | Rittweger E, Han KY, Irvine SE et al. STED microscopy reveals crystal colour centres with nanometric resolution. Nat Photonics 3, 144–147 (2009). doi: 10.1038/nphoton.2009.2 |
[191] | Pereira A, Sousa M, Almeida AC et al. Coherent-hybrid STED: high contrast sub-diffraction imaging using a bi-vortex depletion beam. Opt Express 27, 8092–8111 (2019). doi: 10.1364/OE.27.008092 |
[192] | Hahn V, Rietz P, Hermann F et al. Light-sheet 3D microprinting via two-colour two-step absorption. Nat Photonics 16, 784–791 (2022). doi: 10.1038/s41566-022-01081-0 |
[193] | Nakamura R, Kawaguchi H, Iwata M et al. Optical vortex-induced forward mass transfer: manifestation of helical trajectory of optical vortex. Opt Express 27, 38019–38027 (2019). doi: 10.1364/OE.382288 |
[194] | Kaneko A, Iwata M, Wei R et al. Using optical vortex laser induced forward transfer to fabricate a twisted ferrite microcrystal array. APL Mater 12, 061116 (2024). doi: 10.1063/5.0209114 |
[195] | Nie B, Huang H, Bai S et al. Femtosecond laser melting and resolidifying of high-temperature powder materials. Appl Phys A 118, 37–41 (2015). doi: 10.1007/s00339-014-8897-y |
[196] | Kaden L, Matthäus G, Ullsperger T et al. Selective laser melting of copper using ultrashort laser pulses. Appl Phys A 123, 596 (2017). doi: 10.1007/s00339-017-1189-6 |
[197] | Kaligar AB, Kumar HA, Ali A et al. Femtosecond laser-based additive manufacturing: current status and perspectives. Quantum Beam Sci 6, 5 (2022). doi: 10.3390/qubs6010005 |
[198] | Mingareev I, Bonhoff T, El-Sherif AF et al. Femtosecond laser post-processing of metal parts produced by laser additive manufacturing. J Laser Appl 25, 052009 (2013). doi: 10.2351/1.4824146 |
[199] | Worts N, Jones J, Squier J. Surface structure modification of additively manufactured titanium components via femtosecond laser micromachining. Opt Commun 430, 352–357 (2019). doi: 10.1016/j.optcom.2018.08.055 |
[200] | Chaen K, Takahashi H, Hasegawa S et al. Display method with compensation of the spatial frequency response of a liquid crystal spatial light modulator for holographic femtosecond laser processing. Opt Commun 280, 165–172 (2007). doi: 10.1016/j.optcom.2007.08.006 |
[201] | Ackermann L, Roider C, Gehring M et al. High-speed speckle averaging for phase-only beam shaping in laser materials processing. Opt Lasers Eng 165, 107537 (2023). doi: 10.1016/j.optlaseng.2023.107537 |
[202] | Schroff P, La Rooij A, Haller E et al. Accurate holographic light potentials using pixel crosstalk modelling. Sci Rep 13, 3252 (2023). doi: 10.1038/s41598-023-30296-6 |
[203] | Hayasaki Y, Onodeara R, Kumagai K et al. Automatic generation of a holographically shaped beam in an actual optical system for use in material laser processing. Opt Express 31, 1982–1991 (2023). doi: 10.1364/OE.477886 |
[204] | Houzet J, Faure N, Larochette M, et al. Ultrafast laser spatial beam shaping based on zernike polynomials for surface processing. Opt Express 24, 6542–6552 (2016). doi: 10.1364/OE.24.006542 |
[205] | Lazarev G, Chen PJ, Strauss J et al. Beyond the display: phase-only liquid crystal on silicon devices and their applications in photonics [Invited]. Opt Express 27, 16206–16249 (2019). doi: 10.1364/OE.27.016206 |
[206] | Kuang Z, Liu D, Perrie W et al. Fast parallel diffractive multi-beam femtosecond laser surface micro-structuring. Appl Surf Sci 255, 6582–6588 (2009). doi: 10.1016/j.apsusc.2009.02.043 |
[207] | Kuang Z, Perrie W, Liu D et al. Diffractive multi-beam surface micro-processing using 10 ps laser pulses. Appl Surf Sci 255, 9040–9044 (2009). doi: 10.1016/j.apsusc.2009.06.089 |
[208] | Wang J, Sun SF, Zhang HH et al. Holographic femtosecond laser parallel processing method based on the fractional Fourier transform. Opt Lasers Eng 146, 106704 (2021). doi: 10.1016/j.optlaseng.2021.106704 |
[209] | Ronzitti E, Guillon M, de Sars V et al. LCoS nematic SLM characterization and modeling for diffraction efficiency optimization, zero and ghost orders suppression. Opt Express 20, 17843–17855 (2012). doi: 10.1364/OE.20.017843 |
[210] | Prossotowicz M, Flamm D, Heimes A et al. Dynamic focus shaping with mixed-aperture coherent beam combining. Opt Lett 46, 1660–1663 (2021). doi: 10.1364/OL.422135 |
[211] | Arrizón V, Ruiz U, Carrada R et al. Pixelated phase computer holograms for the accurate encoding of scalar complex fields. J Opt Soc Am A 24, 3500–3507 (2007). doi: 10.1364/JOSAA.24.003500 |
[212] | Wang ZP, Li XW, Jiang L et al. High-quality micropattern printing by interlacing-pattern holographic femtosecond pulses. Nanophotonics 9, 2895–2904 (2020). doi: 10.1515/nanoph-2020-0138 |
[213] | Mauclair C, Landon S, Pietroy D et al. Ultrafast laser machining of micro grooves on stainless steel with spatially optimized intensity distribution. J Laser Micro Nanoeng 8, 11–14 (2013). doi: 10.2961/jlmn.2013.01.0003 |
[214] | Chang CL, Xia J, Yang L et al. Speckle-suppressed phase-only holographic three-dimensional display based on double-constraint Gerchberg-Saxton algorithm. Appl Opt 54, 6994–7001 (2015). doi: 10.1364/AO.54.006994 |
[215] | Ackermann L, Roider C, Cvecek K et al. Methods for uniform beam shaping and their effect on material ablation. Appl Phys A 128, 877 (2022). doi: 10.1007/s00339-022-06004-y |
[216] | Kim D, Keesling A, Omran A et al. Large-scale uniform optical focus array generation with a phase spatial light modulator. Opt Lett 44, 3178–3181 (2019). doi: 10.1364/OL.44.003178 |
[217] | Bañas A, Glückstad J. Light shaping with holography, GPC and holo-GPC. Opt Data Process Storage 3, 20–40 (2017). doi: 10.1515/odps-2017-0004 |
[218] | Nakata Y, Osawa K, Miyanaga N. Utilization of the high spatial-frequency component in adaptive beam shaping by using a virtual diagonal phase grating. Sci Rep 9, 4640 (2019). doi: 10.1038/s41598-019-40829-7 |
[219] | Madsen AEG, Eriksen RL, Glückstad J. Comparison of state-of-the-art Computer Generated Holography algorithms and a machine learning approach. Opt Commun 505, 127590 (2022). doi: 10.1016/j.optcom.2021.127590 |
[220] | Mikhaylov D, Zhou BF, Kiedrowski T et al. High accuracy beam splitting using spatial light modulator combined with machine learning algorithms. Opt Lasers Eng 121, 227–235 (2019). doi: 10.1016/j.optlaseng.2019.04.010 |
[221] | Zhang YX, Zhang MK, Liu KX et al. Progress of the computer-generated holography based on deep learning. Appl Sci 12, 8568 (2022). doi: 10.3390/app12178568 |
[222] | Wu JC, Liu KX, Sui XM et al. High-speed computer-generated holography using an autoencoder-based deep neural network. Opt Lett 46, 2908–2911 (2021). doi: 10.1364/OL.425485 |
[223] | Lee J, Jeong J, Cho J et al. Deep neural network for multi-depth hologram generation and its training strategy. Opt Express 28, 27137–27154 (2020). doi: 10.1364/OE.402317 |
[224] | Hasegawa S, Hayasaki Y. Femtosecond laser processing with adaptive optics based on convolutional neural network. Opt Lasers Eng 141, 106563 (2021). doi: 10.1016/j.optlaseng.2021.106563 |
[225] | Zhang HH, Hasegawa S, Takahashi H et al. In-system optimization of a hologram for high-stability parallel laser processing. Opt Lett 45, 3344–3347 (2020). doi: 10.1364/OL.392578 |
[226] | Buske P, Völl A, Eisebitt M et al. Advanced beam shaping for laser materials processing based on diffractive neural networks. Opt Express 30, 22798–22816 (2022). doi: 10.1364/OE.459460 |
[227] | Buske P, Hofmann O, Bonnhoff A et al. High fidelity laser beam shaping using liquid crystal on silicon spatial light modulators as diffractive neural networks. Opt Express 32, 7064–7078 (2024). doi: 10.1364/OE.507630 |
[228] | Genty G, Salmela L, Dudley JM et al. Machine learning and applications in ultrafast photonics. Nat Photonics 15, 91–101 (2021). doi: 10.1038/s41566-020-00716-4 |
[229] | McDonnell MDT, Arnaldo D, Pelletier E et al. Machine learning for multi-dimensional optimisation and predictive visualisation of laser machining. J Intell Manuf 32, 1471–1483 (2021). doi: 10.1007/s10845-020-01717-4 |
[230] | Wang B, Wang P, Song J et al. A hybrid machine learning approach to determine the optimal processing window in femtosecond laser-induced periodic nanostructures. J Mater Process Technol 308, 117716 (2022). doi: 10.1016/j.jmatprotec.2022.117716 |
[231] | Narazaki A, Yoshitomi D, Takada H et al. ICT data-driven active laser processing. Photonics Rev 2024, 240212 (2024). doi: 10.11470/photo.240212 |
[232] | Mermillod-Blondin A, Burakov IM, Meshcheryakov YP et al. Flipping the sign of refractive index changes in ultrafast and temporally shaped laser-irradiated borosilicate crown optical glass at high repetition rates. Phys Rev B 77, 104205 (2008). doi: 10.1103/PhysRevB.77.104205 |
[233] | Pereiro-García J, García-De-Blas M, De La Rosa P et al. Reconfigurable perfect vortex beam generator based on a liquid crystal spiral phase plate. Opt Express 31, 37653–37662 (2023). doi: 10.1364/OE.501796 |
[234] | Xu A, Nourshargh C, Salter PS et al. Laser-written tunable liquid crystal aberration correctors. ACS Photonics 10, 3401–3408 (2023). doi: 10.1021/acsphotonics.3c00907 |
[235] | Zhao ZM, Chen BH, Salter PS et al. Multielement polychromatic 2D liquid crystal dammann gratings. Adv Mater Technol 8, 2200861 (2023). doi: 10.1002/admt.202200861 |
[236] | García-Márquez J, López V, González-Vega A et al. Flicker minimization in an LCoS spatial light modulator. Opt Express 20, 8431–8441 (2012). doi: 10.1364/OE.20.008431 |
[237] | Clark NA, Lagerwall ST. Submicrosecond bistable electro‐optic switching in liquid crystals. Appl Phys Lett 36, 899–901 (1980). doi: 10.1063/1.91359 |
[238] | Fukushima S, Kurokawa T, Matsuo S et al. Bistable spatial light modulator using a ferroelectric liquid crystal. Opt Lett 15, 285–287 (1990). doi: 10.1364/OL.15.000285 |
[239] | Jung W, Kim H, Mishchik K et al. Direct laser patterning of glass mask for micro display using GHz bursts. J Soc Inf Display 32, 426–434 (2024). doi: 10.1002/jsid.1308 |
[240] | Ackermann L, Roider C, Schmidt M. Uniform and efficient beam shaping for high-energy lasers. Opt Express 29, 17997–18009 (2021). doi: 10.1364/OE.426953 |
[241] | Matsumoto N, Itoh H, Inoue T et al. Stable and flexible multiple spot pattern generation using LCOS spatial light modulator. Opt Express 22, 24722–24733 (2014). doi: 10.1364/OE.22.024722 |
[242] | Kaakkunen JJJ, Laakso P, Kujanpää V. Adaptive multibeam laser cutting of thin steel sheets with fiber laser using spatial light modulator. J Laser Appl 26, 032008 (2014). doi: 10.2351/1.4883935 |
[243] | di Pietro VM, Jullien A, Bortolozzo U et al. Thermally-induced nonlinear spatial shaping of infrared femtosecond pulses in nematic liquid crystals. Laser Phys Lett 16, 015301 (2018). doi: 10.1088/1612-202X/aaf329 |
[244] | di Pietro VM, Bux S, Forget N et al. Phase-only pulse shaper for multi-octave light sources. Opt Lett 45, 543–546 (2020). doi: 10.1364/OL.380712 |
[245] | Barland S, Ramousse L, Chériaux G et al. Reconfigurable design of a thermo-optically addressed liquid-crystal phase modulator by a neural network. Opt Express 31, 12597–12608 (2023). doi: 10.1364/OE.483141 |
[246] | Benstiti A, Bencheikh A, Ferria K et al. Generation of Flexible hyperbolic Airy-like beams using a truncated acousto-optical effect. Opt Commun 505, 127501 (2022). doi: 10.1016/j.optcom.2021.127501 |
[247] | Benstiti A, Bencheikh A, Ferria K et al. Gaussian laser beam structuring using acousto-optic effect: a parametric characterization. Appl Phys B 128, 141 (2022). doi: 10.1007/s00340-022-07857-0 |
[248] | Miazek A, Dupuy J, Gusachenko I et al. Advanced USP laser process with deep learning and triangular beam shaping for micro Fresnel lenses fabrication. Proc SPIE 12408, 1240802 (2023). doi: 10.1117/12.2649063 |
[249] | Tzang O, Niv E, Singh S et al. Wavefront shaping in complex media with a 350 kHz modulator via a 1D-to-2D transform. Nat Photonics 13, 788–793 (2019). doi: 10.1038/s41566-019-0503-6 |
[250] | Linden J, Cohen S, Berg Y et al. High-speed temporal and spatial beam-shaping combining active and passive elements. Opt Express 29, 31229–31239 (2021). doi: 10.1364/OE.434772 |
[251] | Li JN, Tang Y, Kuang Z et al. Multi imaging-based beam shaping for ultrafast laser-material processing using spatial light modulators. Opt Lasers Eng 112, 59–67 (2019). doi: 10.1016/j.optlaseng.2018.09.002 |
[252] | Bi J, Wu LK, Li SD et al. Beam shaping technology and its application in metal laser additive manufacturing: a review. J Mater Res Technol 26, 4606–4628 (2023). doi: 10.1016/j.jmrt.2023.08.037 |
[253] | Badloe T, Lee J, Seong J et al. Tunable metasurfaces: the path to fully active nanophotonics. Adv Photonics Res 2, 2000205 (2021). doi: 10.1002/adpr.202000205 |
[254] | Berini P. Optical beam steering using tunable metasurfaces. ACS Photonics 9, 2204–2218 (2022). doi: 10.1021/acsphotonics.2c00439 |
[255] | Liu ZX, Zhang BL, Li YK et al. Efficient dynamic tunable metasurface based on Ge2Sb2Te5 in the near infrared band. Appl Opt 62, 5508–5515 (2023). doi: 10.1364/AO.492429 |
[256] | Ren HR, Fang XY, Jang J et al. Complex-amplitude metasurface-based orbital angular momentum holography in momentum space. Nat Nanotechnol 15, 948–955 (2020). doi: 10.1038/s41565-020-0768-4 |
[257] | Emelianov AV, Pettersson M, Bobrinetskiy II. Ultrafast laser processing of 2D materials: novel routes to advanced devices. Adv Mater 36, 2402907 (2024). doi: 10.1002/adma.202402907 |
[258] | Han WN, Wei DH, Peng BY et al. 3D femtosecond laser beam deflection for high-precision fabrication and modulation of individual voxelated PCM meta-atoms. Adv Sci 12, 2413316 (2025). doi: 10.1002/advs.202413316 |
[259] | Bor Z, Horváth ZL. Distortion of femtosecond pulse fronts in lenses. In Stuke M. Dye Lasers: 25 Years 87–94 (Springer, Berlin, Heidelberg, 1992). doi: 10.1007/3-540-54953-6_6. |
[260] | Patel A, Svirko Y, Durfee C et al. Direct writing with tilted-front femtosecond pulses. Sci Rep 7, 12928 (2017). doi: 10.1038/s41598-017-13403-2 |
[261] | Sun BS, Salter PS, Booth MJ. Pulse front adaptive optics: a new method for control of ultrashort laser pulses. Opt Express 23, 19348–19357 (2015). doi: 10.1364/OE.23.019348 |
[262] | Ambat MV, Shaw JL, Pigeon JJ et al. Programmable-trajectory ultrafast flying focus pulses. Opt Express 31, 31354–31368 (2023). doi: 10.1364/OE.499839 |
[263] | Sainte-Marie A, Gobert O, Quéré F. Controlling the velocity of ultrashort light pulses in vacuum through spatio-temporal couplings. Optica 4, 1298–1304 (2017). doi: 10.1364/OPTICA.4.001298 |
[264] | Froula DH, Palastro JP, Turnbull D et al. Flying focus: spatial and temporal control of intensity for laser-based applications. Phys Plasmas 26, 032109 (2019). doi: 10.1063/1.5086308 |
[265] | Weiner AM. Femtosecond pulse shaping using spatial light modulators. Rev Sci Instrum 71, 1929–1960 (2000). doi: 10.1063/1.1150614 |
[266] | Stoian R, Boyle M, Thoss A et al. Laser ablation of dielectrics with temporally shaped femtosecond pulses. Appl Phys Lett 80, 353–355 (2002). doi: 10.1063/1.1432747 |
[267] | Stoian R, Mermillod-Blondin A, Winkler S et al. Temporal pulse manipulation and consequences for ultrafast laser processing of materials. Opt Eng 44, 051106 (2005). doi: 10.1117/1.1915467 |
[268] | He F, Xu H, Cheng Y et al. Fabrication of microfluidic channels with a circular cross section using spatiotemporally focused femtosecond laser pulses. Opt Lett 35, 1106–1108 (2010). doi: 10.1364/OL.35.001106 |
[269] | Tan YX, Lv HT, Xu J et al. Three-dimensional isotropic microfabrication in glass using spatiotemporal focusing of high-repetition-rate femtosecond laser pulses. Opto-Electron Adv 6, 230066 (2023). doi: 10.29026/oea.2023.230066 |
[270] | Bor Z, Gogolak Z, Szabo G. Femtosecond-resolution pulse-front distortion measurement by time-of-flight interferometry. Opt Lett 14, 862–864 (1989). doi: 10.1364/OL.14.000862 |
[271] | Bor Z, Racz B, Szabo G et al. Femtosecond pulse front tilt caused by angular dispersion. Opt Eng 32, 2501–2504 (1993). doi: 10.1117/12.145393 |
[272] | Akturk S, Gu X, Zeek E et al. Pulse-front tilt caused by spatial and temporal chirp. Opt Express 12, 4399–4410 (2004). doi: 10.1364/OPEX.12.004399 |
[273] | Yang WJ, Kazansky PG, Svirko YP. Non-reciprocal ultrafast laser writing. Nat Photonics 2, 99–104 (2008). doi: 10.1038/nphoton.2007.276 |
[274] | Chambonneau M, Grojo D, Tokel O et al. In-volume laser direct writing of silicon—challenges and opportunities. Laser Photonics Rev 15, 2100140 (2021). doi: 10.1002/lpor.202100140 |
Principle of spatial beam shaping of ultrafast laser. A light modulator (transmittive or reflective) is placed on the laser beam path. It imprints a wavefront modulation (modulation mask) that rearranges the laser intensity distribution in a further plane of propagation, usually the focal plane of a converging element. There, a variety of beam distributions can be obtained in he three dimensions, from multi-spot arrangement to continuous beam shapes, as well as non-diffracting beams.
Main experimental systems for dynamic wavefront modulation. (a) Spatial light modulators (SLM) are based on a liquid crystal (LC) layer whose molecules can be orientated under an electric field E, permitting to dynamically control the spatial optical retardation of an impinging laser beam. (b) Deformable mirrors (DM) rely on a similar principle with actuators whose controllable height defines the optical retardation on the beam wavefront. They can be membrane-based or segmented. (c) The acousto-optic deflectors (AOD) are based on the generation of sound waves inside a crystal (e.g. TeO2 or PbMoO4). The related periodical variation of refractive index also permits wavefront modulation. (d) The multi-plane light conversion (MPLC) set-up is based on spatial mode conversion through successive passages on specifically designed phase retardation maps. (e) The general phase contrast method (GPC) relies on the principle of phase contrast microscopy where the transparent pure-phase sample corresponds to a controlled phase modulation (applied with an SLM for example) and the phase contrast filter (PCF) is the optical element turning this modulation into an intensity contrast in an imaging plane. See text for more details.
Main calculation strategies for determination of the spatial phase modulation ϕM. (a) The iterative fourier transform algorithm (IFTA) based on FFT iterations between the modulation and the shaping planes. (b) The lens and grating (LG) calculation relies on the complex sum of phase masks to generate arrays of laser spots in 3D. (c) The global optimization algorithms encompasses all the strategies that permit to 'guess' the optimal ϕM through stochastic optimization (simulated annealing, evolutionary algorithm etc.) or machine learning strategies (neural network etc.).
Surface structuring with dynamic wavefront shaping. (a) Array of impacts on silicon using 15 irradiation steps, the unwanted 0th order leaves a strong crater at the top of the array. (b1) Parallel structuring of tempered glass using an array of 6 laser spots with anti-reflection properties due to the LIPSS (b2). (c) Combination of multispot shaping and beam scanning for stainless steel surface processing conferring friction reduction properties. (d) Reaching more than
Examples of ultrafast laser bulk photoinscription with the help of spatial beam shaping. (a) Structuring of glass at the microscale level using 3D arrays of spots achieved in a single irradiation using LG algorithm including depth-related aberration correction. (b) Photoinscription in glass using the fractional Fourier transform iterative algorithm generating arrays of laser spots in multiple planes. (c) Photo emulsification of the crystalline lens for the cataract surgery with the help of spatial beam shaping of ultrafast laser. (d) Photoinscription of photonic devices inside fused silica with optical functions (here light division). (e) Fabrication of gyroid photonic crystals using wavefront compensation of the depth-related strong spherical aberration in chalcogenide glass generating circular dichroism (RCP: right handed circular polarization). (f) Photonic crystal in lithium niobate with adaptive control of the wavefront to compensate for the spherical aberrations. (g) Structuring of diamond in three dimension yielding conductive wires in the bulk. Figure reproduced with permission from: (a) ref.95, the author; (b) ref.122, the author; (c) ref.9, the author, ref.123, under a Creative Commons Attribution License; (d) ref.124, Optical Society of America; (e) ref.125, the author; (f) ref.126, the author; (g) ref.95,127, the author.
Surface and bulk structuring towards the sub micrometric scale using non-diffractive beams with the help of spatial beam shaping. (a) Bessel beam generation and high aspect ratio structuring of glass with single femtosecond pulses. (b) Turning non diffractive beam (or Airy beam) enabling curved machining of silicon. (c) Hollow core non-diffractive beam based on vortex phase modulation yielding tubular bulk photo inscription in a single irradiation. (d) Modulated axiconic phase mask forming a multiple lobes non diffractive beam permitting dynamic crack orientation control for glass cutting. (e) Drilling of stainless steel using non-diffractive beam with enhanced efficacy. (f) Machining of grooves using superimposed bessel beams associating an axicon and an SLM. Figure reproduced with permission from: (a) ref.137, the author, ref.138, under a Creative Commons Attribution License; (b) ref.139, the author; (c) ref.140, under a Creative Commons Attribution License; (d) ref.141, SPIE; (e) ref.142, under a Creative Commons Attribution License; (f) ref.143, the author.
Spatial beam shaping with polarization control to achieve nanometric structuring. (a) Helical wavefront shaping using an SLM associated with an S-waveplate yielding a vortex beam generating spiral orientation of LIPSS on metal. (b) Array of laser spots with individual polarization control. The laser-induced surface tracks show the corresponding LIPSS orientation. (c) Example of integrated advanced dynamic polarization control using a single slm. (d) 10 nanometer surface hole on sapphire combining annular beam shaping, polarization control and high numerical aperture focusing. (e) Generation of spot arrays in 3D with controlled polarization (not ultrafast laser). (f) Arbitrary intensity distribution controlled polarization distribution (not ultrafast laser). (g) Cutting of cornea using vortex beam shaping (right) compared with regular Gaussian beam (left) showing a smoother and more precise cut. Figure reproduced with permission from: (a) ref.157, the author; (b) ref.158, the author; (c) ref.159, (d) ref.160, under a Creative Commons Attribution License; (e) ref.161, the author; (f) ref.162, the author; (g) ref.163, under a Creative Commons Attribution License.
Additive fabrication using spatial beam shaping. Two photon polymerization using arbitrary beam shapes (a) and an array of laser spots (b). (c) Continuous projection of femtosecond pulses using digital micro-mirror device with spatio temporal focusing permits high throughput photo polymerization. (d) Laser induced forward transfer of polymer on PDMS based on spatial intensity shaping using digital micro mirror device. (e) Stimulated emission depletion inspiring two photon polymerization combining the polymerizing beam with a ring shaped depletion beam for improved fabrication resolution. (f) Chiral micro structures achieved with helical phase wavefront on isotropic polymers with coaxial interference second laser beams for different topological charge. (g) Side wall polishing of laser powder bed fusion manufactured parts using non diffractive femtosecond beam. Figure reproduced with permission from: (a) ref.173, the author; (b) ref.172, the author; (c) ref.174, under a Creative Commons Attribution License. (d) ref.175, the author; (e) ref.176, Optical Society of America; (f) ref.177, (g) ref.178, under a Creative Commons Attribution License.
Examples of recently developed to improve the fidelity and/or efficacy of spatial beam shaping. (a) Compensating the limited spatial resolution of SLM by using spatial frequency filtering of the phase modulation. (b) Averaging the detrimental speckle effect by addressing different phase masks on the SLM for uniform multi-pulse ablation. (c) Incorporating Vortex elimination during the phase modulation calculation step. (d, e) High fidelity intensity distribution shaping in the region of interest with the compromise of energy losses for atom trapping. (f) Parallel surface structuring using multi-spot arrays with individually controlled spot intensity based on an optical feedback of the experimental intensity distribution. (g) Smooth top hat generation using optical feedback to adjust the intensity pattern in the iterative Fourier transform algorithm. (h) Arbitrary intensity distribution using the GPC technique. (i) Groove machining with controlled intensity distribution using Zernike polynomials optimization. (j) Spatial beam shaping based on diffractive optical neural network. Figure reproduced with permission from: (a) ref.200, the author; (b) ref.201, under a Creative Commons Attribution License; (c) ref.118, Optical Society of America; (d) ref.202, (e) ref.92, under a Creative Commons Attribution License; (f) ref.90,92, Optical Society of America; (g) ref.203, the author; (h) ref.65,68, the author; (i) ref.204, Optical Society of America; (j) ref.226, under Optica Open Access Publishing Agreement.
Future research trends taking advantage of the temporal effects associated with spatial shaping. (a) Illustration of the pulse front distortion around the focal point implying complex consequences on the spatial and temporal properties of the local excitation. (b) Pulse front tilt and spatial chirp involving non reciprocal photo inscription on glasses. (c) Concepts for pulse front and wavefront modulation based on an SLM and a DM. (d) Controlling the velocity of the intensity focal point in the focal region along z by tuning the pulse and phase fronts. (e) Simulation of a controlled intensity trajectory with accelerating and decelerating steps. (f) Overcoming ionization induced refraction by controlling the flying focus speed. Figure reproduced with permission from: (a) ref.259, Springer Nature; (b) ref.260, under a Creative Commons Attribution License; (c) ref.261, the author; (d) ref.262, under the Optica Open Access Publishing Agreement; (e) ref.263, the author; (f) ref.264, the author.