Mauclair C, Najih B, Comte V et al. Dynamic spatial beam shaping for ultrafast laser processing: a review. Opto-Electron Sci x, 250002 (2025). doi: 10.29026/oes.2025.250002
Citation: Mauclair C, Najih B, Comte V et al. Dynamic spatial beam shaping for ultrafast laser processing: a review. Opto-Electron Sci x, 250002 (2025). doi: 10.29026/oes.2025.250002

Review Open Access

Dynamic spatial beam shaping for ultrafast laser processing: a review

More Information
  • This review examines the state-of-the-art in spatial manipulation of ultrafast laser processing using dynamic light modulators, with a particular focus on liquid crystal-based systems. We discuss phase modulation strategies and highlight the current limitations and challenges in surface and bulk processing. Specifically, we emphasize the delicate balance between high-fidelity beam shaping and energy efficiency, both critical for surface and bulk processing applications. Given the inherent physical limitations of spatial light modulators such as spatial resolution, fill factor, and phase modulation range. We explore techniques developed to bridge the gap between desired intensity distributions and actual experimental beam profiles. We present various laser light modulation technologies and the main algorithmic strategies for obtaining modulation patterns. The paper includes application examples across a wide range of fields, from surgery to surface structuring, cutting, bulk photo-inscription of optical functions, and additive manufacturing, highlighting the significant enhancements in processing speed and precision due to spatial beam shaping. The diverse applications and the technological limitations underscore the need for adapted modulation pattern calculation methods. We discuss several advancements addressing these challenges, involving both experimental and algorithmic developments, including the recent incorporation of artificial intelligence. Additionally, we cover recent progress in phase and pulse front control based on spatial modulators, which introduces an extra control parameter for light excitation with high potential for achieving more controlled processing outcomes.
  • 加载中
  • [1] Itoh K, Watanabe W, Nolte S et al. Ultrafast processes for bulk modification of transparent materials. MRS Bull 31, 620–625 (2006). doi: 10.1557/mrs2006.159

    CrossRef Google Scholar

    [2] Vorobyev AY, Guo CL. Direct femtosecond laser surface nano/microstructuring and its applications. Laser Photonics Rev 7, 385–407 (2013). doi: 10.1002/lpor.201200017

    CrossRef Google Scholar

    [3] Sibbett W, Lagatsky AA, Brown CTA. The development and application of femtosecond laser systems. Opt Express 20, 6989–7001 (2012). doi: 10.1364/OE.20.006989

    CrossRef Google Scholar

    [4] Brauch U, Röcker C, Graf T et al. High-power, high-brightness solid-state laser architectures and their characteristics. Appl Phys B 128, 58 (2022). doi: 10.1007/s00340-021-07736-0

    CrossRef Google Scholar

    [5] Pouysegur J, Gruson V, Ferachou D et al. Kilowatt femtosecond lasers for high productivity. In Proceedings of the Conference on Lasers and Electro-Optics ATh4P. 2 (Optica Publishing Group, 2021).http://doi.org/10.1364/CLEO_AT.2021.ATh4P.2.

    Google Scholar

    [6] Dominik J, Scharun M, Dannecker B et al. Multi-kilowatt ultrafast laser with thin-disk technology. In Proceedings of the Laser Congress 2021 AM2A. 6 (Optica Publishing Group, 2021). http://doi.org/10.1364/ASSL.2021.AM2A.6.

    Google Scholar

    [7] Buldt J, Stark H, Müeller M et al. Broadband ytterbium fiber CPA-system delivering 120fs, 10 mJ pulses at 1 kW average power. In Proceedings of 2021 Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference 61 (Optica Publishing Group, 2021). http://doi.org/10.1109/CLEO/Europe-EQEC52157.2021.9542142.

    Google Scholar

    [8] Juhasz T, Loesel FH, Kurtz RM et al. Corneal refractive surgery with femtosecond lasers. IEEE J Sel Top Quantum Electron 5, 902–910 (1999). doi: 10.1109/2944.796309

    CrossRef Google Scholar

    [9] Bernard A, Gain P, Mauclair C et al. Device and method for cutting a cornea or crystalline lens. (2017).https://eureka-patsnap-com.libproxy1.nus.edu.sg/patent-US20170304118A1.

    Google Scholar

    [10] Taylor R, Hnatovsky C, Simova E. Applications of femtosecond laser induced self-organized planar nanocracks inside fused silica glass. Laser Photonics Rev 2, 26–46 (2008). doi: 10.1002/lpor.200710031

    CrossRef Google Scholar

    [11] Bonse J, Krüger J, Höhm S et al. Femtosecond laser-induced periodic surface structures. J Laser Appl 24, 042006 (2012). doi: 10.2351/1.4712658

    CrossRef Google Scholar

    [12] Nolte S, Momma C, Jacobs H et al. Ablation of metals by ultrashort laser pulses. J Opt Soc Am B 14, 2716–2722 (1997). doi: 10.1364/JOSAB.14.002716

    CrossRef Google Scholar

    [13] Neuenschwander B, Jaeggi B, Schmid M et al. Surface structuring with ultra-short laser pulses: basics, limitations and needs for high throughput. Phys Procedia 56, 1047–1058 (2014). doi: 10.1016/j.phpro.2014.08.017

    CrossRef Google Scholar

    [14] Bellouard Y, Said A, Dugan M et al. Fabrication of high-aspect ratio, micro-fluidic channels and tunnels using femtosecond laser pulses and chemical etching. Opt Express 12, 2120–2129 (2004). doi: 10.1364/OPEX.12.002120

    CrossRef Google Scholar

    [15] Mishchik K, Cheng G, Huo G et al. Nanosize structural modifications with polarization functions in ultrafast laser irradiated bulk fused silica. Opt Express 18, 24809–24824 (2010). doi: 10.1364/OE.18.024809

    CrossRef Google Scholar

    [16] Wu D, Wu SZ, Xu J et al. Hybrid femtosecond laser microfabrication to achieve true 3D glass/polymer composite biochips with multiscale features and high performance: the concept of ship-in-a-bottle biochip. Laser Photonics Rev 8, 458–467 (2014). doi: 10.1002/lpor.201400005

    CrossRef Google Scholar

    [17] Colombier JP, Combis P, Bonneau F et al. Hydrodynamic simulations of metal ablation by femtosecond laser irradiation. Phys Rev B 71, 165406 (2005). doi: 10.1103/PhysRevB.71.165406

    CrossRef Google Scholar

    [18] Ahmmed KMT, Ling EJY, Servio P et al. Introducing a new optimization tool for femtosecond laser-induced surface texturing on titanium, stainless steel, aluminum and copper. Opt Lasers Eng 66, 258–268 (2015). doi: 10.1016/j.optlaseng.2014.09.017

    CrossRef Google Scholar

    [19] Sedao X, Lenci M, Rudenko A et al. Influence of pulse repetition rate on morphology and material removal rate of ultrafast laser ablated metallic surfaces. Opt Lasers Eng 116, 68–74 (2019). doi: 10.1016/j.optlaseng.2018.12.009

    CrossRef Google Scholar

    [20] Shin H, Kim D. Cutting thin glass by femtosecond laser ablation. Opt Laser Technol 102, 1–11 (2018). doi: 10.1016/j.optlastec.2017.12.020

    CrossRef Google Scholar

    [21] Pietroy D, Baubeau E, Faure N et al. Intensity profile distortion at the processing image plane of a focused femtosecond laser below the critical power: analysis and counteraction. Opt Lasers Eng 66, 138–143 (2015). doi: 10.1016/j.optlaseng.2014.08.018

    CrossRef Google Scholar

    [22] Mauclair C, Mermillod-Blondin A, Landon S et al. Single-pulse ultrafast laser imprinting of axial dot arrays in bulk glasses. Opt Lett 36, 325–327 (2011). doi: 10.1364/OL.36.000325

    CrossRef Google Scholar

    [23] Le Harzic R, Huot N, Audouard E et al. Comparison of heat-affected zones due to nanosecond and femtosecond laser pulses using transmission electronic microscopy. Appl Phys Lett 80, 3886–3888 (2002). doi: 10.1063/1.1481195

    CrossRef Google Scholar

    [24] Bauer F, Michalowski A, Kiedrowski T et al. Heat accumulation in ultra-short pulsed scanning laser ablation of metals. Opt Express 23, 1035–1043 (2015). doi: 10.1364/OE.23.001035

    CrossRef Google Scholar

    [25] Eaton SM, Zhang HB, Herman PR et al. Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate. Opt Express 13, 4708–4716 (2005). doi: 10.1364/OPEX.13.004708

    CrossRef Google Scholar

    [26] Emelyanenko AM, Shagieva FM, Domantovsky AG et al. Nanosecond laser micro- and nanotexturing for the design of a superhydrophobic coating robust against long-term contact with water, cavitation, and abrasion. Appl Surf Sci 332, 513–517 (2015). doi: 10.1016/j.apsusc.2015.01.202

    CrossRef Google Scholar

    [27] Ancona A, Röser F, Rademaker K et al. High speed laser drilling of metals using a high repetition rate, high average power ultrafast fiber CPA system. Opt Express 16, 8958–8968 (2008). doi: 10.1364/OE.16.008958

    CrossRef Google Scholar

    [28] Neuenschwander B, Jaeggi B, Zimmermannn M et al. Laser surface structuring with 100 W of average power and sub-ps pulses. J Laser Appl 28, 022506 (2016). doi: 10.2351/1.4944104

    CrossRef Google Scholar

    [29] Loeschner U, Schille J, Streek A et al. High-rate laser microprocessing using a polygon scanner system. J Laser Appl 27, S29303 (2015). doi: 10.2351/1.4906473

    CrossRef Google Scholar

    [30] Römer GRBE, Bechtold P. Electro-optic and acousto-optic laser beam scanners. Phys Procedia 56, 29–39 (2014). doi: 10.1016/j.phpro.2014.08.092

    CrossRef Google Scholar

    [31] Kerse C, Kalaycıoğlu H, Elahi P et al. Ablation-cooled material removal with ultrafast bursts of pulses. Nature 537, 84–88 (2016). doi: 10.1038/nature18619

    CrossRef Google Scholar

    [32] Audouard E, Mottay E. High efficiency GHz laser processing with long bursts. Int J Extrem Manuf 5, 015003 (2023). doi: 10.1088/2631-7990/aca79f

    CrossRef Google Scholar

    [33] Nyenhuis F, Michalowski A, L’huillier J. Surface treatment with GHz bursts. Proc SPIE 11268, 112680B (2020). doi: 10.1117/12.2544337

    CrossRef Google Scholar

    [34] Dahmen M, Güdükkurt O, Kaierle S. The ecological footprint of laser beam welding. Phys Procedia 5, 19–28 (2010). doi: 10.1016/j.phpro.2010.08.025

    CrossRef Google Scholar

    [35] Sanner N, Huot N, Audouard E et al. Programmable focal spot shaping of amplified femtosecond laser pulses. Opt Lett 30, 1479–1481 (2005). doi: 10.1364/OL.30.001479

    CrossRef Google Scholar

    [36] Hasegawa S, Hayasaki Y, Nishida N. Holographic femtosecond laser processing with multiplexed phase Fresnel lenses. Opt Lett 31, 1705–1707 (2006). doi: 10.1364/OL.31.001705

    CrossRef Google Scholar

    [37] Kuang Z, Perrie W, Leach J et al. High throughput diffractive multi-beam femtosecond laser processing using a spatial light modulator. Appl Surf Sci 255, 2284–2289 (2008). doi: 10.1016/j.apsusc.2008.07.091

    CrossRef Google Scholar

    [38] Massachusetts Institute of Technology. Archimedes Death Ray: Idea Feasibility Testing. [2025-01-15] https://web.mit.edu/2.009_gallery/www/2005_other/archimedes/10_ArchimedesResult.html

    Google Scholar

    [39] Strobel V. Pold87/academic-keyword-occurrence: first release (Zenodo, 2018). doi: 10.5281/zenodo.1218409.

    Google Scholar

    [40] Siegman AE. Lasers 2nd ed (University Science Books, 1990).

    Google Scholar

    [41] Diels JC, Rudolph W. Ultrashort Laser Pulse Phenomena: Fundamentals, Techniques, and Applications on a Femtosecond Time Scale 2nd ed (Academic Press Inc., Burlington, 2006).

    Google Scholar

    [42] Goodman JW. Introduction to Fourier Optics 3rd ed (Roberts & Company Publishers, Englewood, 2005).

    Google Scholar

    [43] Ams M, Marshall GD, Spence DJ et al. Slit beam shaping method for femtosecond laser direct-write fabrication of symmetric waveguides in bulk glasses. Opt Express 13, 5676–5681 (2005). doi: 10.1364/OPEX.13.005676

    CrossRef Google Scholar

    [44] Kuang Z, Li JN, Edwardson S et al. Ultrafast laser beam shaping for material processing at imaging plane by geometric masks using a spatial light modulator. Opt Lasers Eng 70, 1–5 (2015). doi: 10.1016/j.optlaseng.2015.02.004

    CrossRef Google Scholar

    [45] Malitson IH. Interspecimen comparison of the refractive index of fused silica. J Opt Soc Am 55, 1205–1209 (1965). doi: 10.1364/JOSA.55.001205

    CrossRef Google Scholar

    [46] Torres-Peiró S, González-Ausejo J, Mendoza-Yero O et al. Parallel laser micromachining based on diffractive optical elements with dispersion compensated femtosecond pulses. Opt Express 21, 31830–31836 (2013). doi: 10.1364/OE.21.031830

    CrossRef Google Scholar

    [47] Amako J, Nagasaka K, Kazuhiro N. Chromatic-distortion compensation in splitting and focusing of femtosecond pulses by use of a pair of diffractive optical elements. Opt Lett 27, 969–971 (2002). doi: 10.1364/OL.27.000969

    CrossRef Google Scholar

    [48] Hasegawa S, Ito H, Toyoda H et al. Massively parallel femtosecond laser processing. Opt Express 24, 18513–18524 (2016). doi: 10.1364/OE.24.018513

    CrossRef Google Scholar

    [49] Yang YQ, Forbes A, Cao LC. A review of liquid crystal spatial light modulators: devices and applications. Opto-Electron Sci 2, 230026 (2023). doi: 10.29026/oes.2023.230026

    CrossRef Google Scholar

    [50] Salter PS, Booth MJ. Adaptive optics in laser processing. Light Sci Appl 8, 110 (2019). doi: 10.1038/s41377-019-0215-1

    CrossRef Google Scholar

    [51] Malinauskas M, Žukauskas A, Hasegawa S et al. Ultrafast laser processing of materials: from science to industry. Light Sci Appl 5, e16133 (2016). doi: 10.1038/lsa.2016.133

    CrossRef Google Scholar

    [52] Aubourg P, Huignard JP, Hareng M et al. Liquid crystal light valve using bulk monocrystalline Bi12SiO20 as the photoconductive material. Appl Opt 21, 3706–3712 (1982). doi: 10.1364/AO.21.003706

    CrossRef Google Scholar

    [53] Zhu G, Whitehead D, Perrie W et al. Investigation of the thermal and optical performance of a spatial light modulator with high average power picosecond laser exposure for materials processing applications. J Phys D: Appl Phys 51, 095603 (2018). doi: 10.1088/1361-6463/aaa948

    CrossRef Google Scholar

    [54] Hasegawa S, Nozaki K, Tanabe A et al. Holographic femtosecond laser processing using 6.3 kHz pulse-to-pulse spatial light modulation with binary phase masks. Opt Laser Technol 176, 111014 (2024). doi: 10.1016/j.optlastec.2024.111014

    CrossRef Google Scholar

    [55] Smarra M, Gurevich EL, Ostendorf A. Theoretical simulation and experimental verification of dynamic caustic manipulation using a deformable mirror for laser material processing. Opt Laser Technol 149, 107814 (2022). doi: 10.1016/j.optlastec.2021.107814

    CrossRef Google Scholar

    [56] El-Agmy R, Bulte H, Greenaway AH et al. Adaptive beam profile control using a simulated annealing algorithm. Opt Express 13, 6085–6091 (2005). doi: 10.1364/OPEX.13.006085

    CrossRef Google Scholar

    [57] Scholes S, Mohapi L, Leach J et al. Experimentally simulating the beam shaping capabilities of piston-type deformable mirrors using a liquid crystal spatial light modulator. Appl Phys B 129, 45 (2023). doi: 10.1007/s00340-023-07991-3

    CrossRef Google Scholar

    [58] Ren YX, Lu RD, Gong L. Tailoring light with a digital micromirror device. Ann Phys 527, 447–470 (2015). doi: 10.1002/andp.201500111

    CrossRef Google Scholar

    [59] Trypogeorgos D, Harte T, Bonnin A et al. Precise shaping of laser light by an acousto-optic deflector. Opt Express 21, 24837–24846 (2013). doi: 10.1364/OE.21.024837

    CrossRef Google Scholar

    [60] Häfner T, Strauß J, Roider C et al. Tailored laser beam shaping for efficient and accurate microstructuring. Appl Phys A 124, 111 (2018). doi: 10.1007/s00339-017-1530-0

    CrossRef Google Scholar

    [61] Fontaine NK, Ryf R, Chen HS et al. Laguerre-gaussian mode sorter. Nat Commun 10, 1865 (2019). doi: 10.1038/s41467-019-09840-4

    CrossRef Google Scholar

    [62] Labroille G, Denolle B, Jian P et al. Efficient and mode selective spatial mode multiplexer based on multi-plane light conversion. Opt Express 22, 15599–15607 (2014). doi: 10.1364/OE.22.015599

    CrossRef Google Scholar

    [63] Meunier M, Kumar A, Lucas A et al. Stainless steel laser beam welding with a dynamic tailored beam shaping laser-head based on multi-plane light conversion. Proc SPIE PC12414, PC1241407 (2023). doi: 10.1117/12.2655458

    CrossRef Google Scholar

    [64] Jacquard C, Placzek K, Holder D et al. Microprocessing with a multi-plane light conversion beam shaper and a femtosecond laser at 515nm. Proc SPIE 12409, 1240910 (2023). doi: 10.1117/12.2655447

    CrossRef Google Scholar

    [65] Palima D, Glückstad J. Gaussian to uniform intensity shaper based on generalized phase contrast. Opt Express 16, 1507–1516 (2008). doi: 10.1364/OE.16.001507

    CrossRef Google Scholar

    [66] Tauro S, Bañas A, Palima D et al. Experimental demonstration of Generalized Phase Contrast based Gaussian beam-shaper. Opt Express 19, 7106–7111 (2011). doi: 10.1364/OE.19.007106

    CrossRef Google Scholar

    [67] Zernike VF. Beugungstheorie des schneidenver-fahrens und seiner verbesserten form, der phasenkontrastmethode. Physica 1, 689–704 (1934). doi: 10.1016/S0031-8914(34)80259-5

    CrossRef Google Scholar

    [68] Bañas A, Kopylov O, Villangca M et al. GPC light shaper: static and dynamic experimental demonstrations. Opt Express 22, 23759–23769 (2014). doi: 10.1364/OE.22.023759

    CrossRef Google Scholar

    [69] Eriksen RL, Mogensen PC, Glückstad J. Multiple-beam optical tweezers generated by the generalized phase-contrast method. Opt Lett 27, 267–269 (2002). doi: 10.1364/OL.27.000267

    CrossRef Google Scholar

    [70] Lasagni A, Roch T, Bieda M et al. High speed surface functionalization using direct laser interference patterning, towards 1 m2/min fabrication speed with sub-micrometric resolution. Proc SPIE 8968, 89680A (2014). doi: 10.1117/12.2041215

    CrossRef Google Scholar

    [71] Zhou Q, Yang WZ, He FT et al. Femtosecond multi-beam interference lithography based on dynamic wavefront engineering. Opt Express 21, 9851–9861 (2013). doi: 10.1364/OE.21.009851

    CrossRef Google Scholar

    [72] Li BH, Jiang L, Li XW et al. Flexible gray-scale surface patterning through spatiotemporal-interference-based femtosecond laser shaping. Adv Opt Mater 6, 1801021 (2018). doi: 10.1002/adom.201801021

    CrossRef Google Scholar

    [73] Wu H, Jiao YL, Zhang CC et al. Large area metal micro-/nano-groove arrays with both structural color and anisotropic wetting fabricated by one-step focused laser interference lithography. Nanoscale 11, 4803–4810 (2019). doi: 10.1039/C8NR09747J

    CrossRef Google Scholar

    [74] Madelung A, Alamri S, Steege T et al. Scanner-based direct laser interference patterning on stainless steel. Adv Eng Mater 23, 2001414 (2021). doi: 10.1002/adem.202001414

    CrossRef Google Scholar

    [75] Rank A, Lang V, Lasagni AF. High-speed roll-to-roll hot embossing of micrometer and sub micrometer structures using seamless direct laser interference patterning treated sleeves. Adv Eng Mater 19, 1700201 (2017). doi: 10.1002/adem.201700201

    CrossRef Google Scholar

    [76] McLeod E, Hopkins AB, Arnold CB. Multiscale Bessel beams generated by a tunable acoustic gradient index of refraction lens. Opt Lett 31, 3155–3157 (2006). doi: 10.1364/OL.31.003155

    CrossRef Google Scholar

    [77] Duocastella M, Arnold CB. Enhanced depth of field laser processing using an ultra-high-speed axial scanner. Appl Phys Lett 102, 061113 (2013). doi: 10.1063/1.4791593

    CrossRef Google Scholar

    [78] Du XH, Florian C, Arnold CB. Single-lens dynamic z-scanning for simultaneous in situ position detection and laser processing focus control. Light Sci Appl 12, 274 (2023). doi: 10.1038/s41377-023-01303-2

    CrossRef Google Scholar

    [79] Toporovsky V, Samarkin V, Sheldakova J et al. Water-cooled stacked-actuator flexible mirror for high-power laser beam correction. Opt Laser Technol 144, 107427 (2021). doi: 10.1016/j.optlastec.2021.107427

    CrossRef Google Scholar

    [80] Chorel M, Lanternier T, Lavastre É et al. Robust optimization of the laser induced damage threshold of dielectric mirrors for high power lasers. Opt Express 26, 11764–11774 (2018). doi: 10.1364/OE.26.011764

    CrossRef Google Scholar

    [81] Ramousse L, Chériaux G, Claudet C et al. Femtosecond laser-induced damage threshold of nematic liquid crystals at 1030 nm. Appl Opt 60, 8050–8056 (2021). doi: 10.1364/AO.436236

    CrossRef Google Scholar

    [82] Xing ZB, Fan W, Huang DJ et al. High laser damage threshold liquid crystal optical switch based on a gallium nitride transparent electrode. Opt Lett 45, 3537–3540 (2020). doi: 10.1364/OL.390440

    CrossRef Google Scholar

    [83] LCOS-Slm Applications and Features Cat. No. LLAP3012E05 Hamamatsu Photonics. 2025.https://lcos-slm.hamamatsu.com/eu/en/related-contents.html.

    Google Scholar

    [84] Tang Y, Li QL, Fang Z et al. Extending the operational limit of a cooled spatial light modulator exposed to 200W average power for holographic picosecond laser materials processing. Opt Laser Technol 181, 111589 (2025). doi: 10.1016/j.optlastec.2024.111589

    CrossRef Google Scholar

    [85] Maingot B, Neradovskaia E, Claudet C et al. Measurement of nonlinear refractive indices of bulk and liquid crystals by nonlinear chirped interferometry. Opt Lett 48, 3243–3246 (2023). doi: 10.1364/OL.487261

    CrossRef Google Scholar

    [86] Duclère JR, Hayakawa T, Roginskii EM et al. Third order nonlinear optical properties of a paratellurite single crystal. J Appl Phys 123, 183105 (2018). doi: 10.1063/1.5020646

    CrossRef Google Scholar

    [87] Gerchberg RW, Saxton WO. A practical algorithm for the determination of phase from image and diffraction plane pictures. Optik 35, 237–246 (1972).

    Google Scholar

    [88] Sinclair G, Leach J, Jordan P et al. Interactive application in holographic optical tweezers of a multi-plane Gerchberg-saxton algorithm for three-dimensional light shaping. Opt Express 12, 1665–1670 (2004). doi: 10.1364/OPEX.12.001665

    CrossRef Google Scholar

    [89] Di Leonardo R, Ianni F, Ruocco G. Computer generation of optimal holograms for optical trap arrays. Opt Express 15, 1913–1922 (2007). doi: 10.1364/OE.15.001913

    CrossRef Google Scholar

    [90] Silvennoinen M, Kaakkunen J, Paivasaari K et al. Parallel femtosecond laser ablation with individually controlled intensity. Opt Express 22, 2603–2608 (2014). doi: 10.1364/OE.22.002603

    CrossRef Google Scholar

    [91] Gaunt AL, Hadzibabic Z. Robust digital holography for ultracold atom trapping. Sci Rep 2, 721 (2012). doi: 10.1038/srep00721

    CrossRef Google Scholar

    [92] van Bijnen RMW, Ravensbergen C, Bakker DJ et al. Patterned Rydberg excitation and ionization with a spatial light modulator. New J Phys 17, 023045 (2015). doi: 10.1088/1367-2630/17/2/023045

    CrossRef Google Scholar

    [93] Liesener J, Reicherter M, Haist T et al. Multi-functional optical tweezers using computer-generated holograms. Opt Commun 185, 77–82 (2000). doi: 10.1016/S0030-4018(00)00990-1

    CrossRef Google Scholar

    [94] Leach J, Wulff K, Sinclair G et al. Interactive approach to optical tweezers control. Appl Opt 45, 897–903 (2006). doi: 10.1364/AO.45.000897

    CrossRef Google Scholar

    [95] Jesacher A, Booth MJ. Parallel direct laser writing in three dimensions with spatially dependent aberration correction. Opt Express 18, 21090–21099 (2010). doi: 10.1364/OE.18.021090

    CrossRef Google Scholar

    [96] Bengtsson J. Kinoform design with an optimal-rotation-angle method. Appl Opt 33, 6879–6884 (1994). doi: 10.1364/AO.33.006879

    CrossRef Google Scholar

    [97] Dammann H, Klotz E. Coherent optical generation and inspection of two-dimensional periodic structures. Opt Acta: Int J Opt 24, 505–515 (1977). doi: 10.1080/713819570

    CrossRef Google Scholar

    [98] Yu JJ, Zhou CH, Jia W et al. Three-dimensional Dammann array. Appl Opt 51, 1619–1630 (2012). doi: 10.1364/AO.51.001619

    CrossRef Google Scholar

    [99] Zhu LW, Yu JJ, Zhang DW et al. Multifocal spot array generated by fractional talbot effect phase-only modulation. Opt Express 22, 9798–9808 (2014). doi: 10.1364/OE.22.009798

    CrossRef Google Scholar

    [100] Wright AJ, Burns D, Patterson BA et al. Exploration of the optimisation algorithms used in the implementation of adaptive optics in confocal and multiphoton microscopy. Micros Res Tech 67, 36–44 (2005). doi: 10.1002/jemt.20178

    CrossRef Google Scholar

    [101] Mauclair C, Mermillod-Blondin A, Huot N et al. Ultrafast laser writing of homogeneous longitudinal waveguides in glasses using dynamic wavefront correction. Opt Express 16, 5481–5492 (2008). doi: 10.1364/OE.16.005481

    CrossRef Google Scholar

    [102] Hauschwitz P, Brajer J, Rostohar D et al. Anti-reflection nanostructures on tempered glass by dynamic beam shaping. Micromachines 12, 289 (2021). doi: 10.3390/mi12030289

    CrossRef Google Scholar

    [103] Saint-Pierre D, Granier J, Egaud G et al. Fast uniform micro structuring of DLC surfaces using multiple ultrashort laser spots through spatial beam shaping. Phys Procedia 83, 1178–1183 (2016). doi: 10.1016/j.phpro.2016.08.124

    CrossRef Google Scholar

    [104] Parry JP, Beck RJ, Shephard JD et al. Application of a liquid crystal spatial light modulator to laser marking. Appl Opt 50, 1779–1785 (2011). doi: 10.1364/AO.50.001779

    CrossRef Google Scholar

    [105] Wang ZP, Jiang L, Li XW et al. High efficiency and scalable fabrication of fresnel zone plates using holographic femtosecond pulses. Nanophotonics 11, 3081–3091 (2022). doi: 10.1515/nanoph-2022-0112

    CrossRef Google Scholar

    [106] Kato J, Takeyasu N, Adachi Y et al. Multiple-spot parallel processing for laser micronanofabrication. Appl Phys Lett 86, 044102 (2005). doi: 10.1063/1.1855404

    CrossRef Google Scholar

    [107] Sipe JE, Young JF, Preston JS et al. Laser-induced periodic surface structure. I. theory. Phys Rev B 27, 1141–1154 (1983). doi: 10.1103/PhysRevB.27.1141

    CrossRef Google Scholar

    [108] Han RZ, Zhang YC, Jiang QL et al. Ultrafast dynamics of femtosecond laser-induced high spatial frequency periodic structures on silicon surfaces. Opto-Electron Sci 3, 230013 (2024). doi: 10.29026/oes.2024.230013

    CrossRef Google Scholar

    [109] Dusser B, Sagan Z, Soder H et al. Controlled nanostructrures formation by ultra fast laser pulses for color marking. Opt Express 18, 2913–2924 (2010). doi: 10.1364/OE.18.002913

    CrossRef Google Scholar

    [110] Hendriks A, Naidoo D, Roux FS et al. The generation of flat-top beams by complex amplitude modulation with a phase-only spatial light modulator. Proc SPIE 8490, 849006 (2012). doi: 10.1117/12.932224

    CrossRef Google Scholar

    [111] Mauclair C, Saint-Pierre D, Desrus H. Advances in spatial beam shaping for ultrafast laser surface functionalization. In Proceedings of the Lasers in Manufacturing Conference 2017 (2017).

    Google Scholar

    [112] Mourier L, Mazuyer D, Lubrecht AA et al. Action of a femtosecond laser generated micro-cavity passing through a circular EHL contact. Wear 264, 450–456 (2008). doi: 10.1016/j.wear.2006.08.037

    CrossRef Google Scholar

    [113] Dong ZL, Sun XY, Kong DJ et al. Spatial light modulated femtosecond laser ablated durable superhydrophobic copper mesh for oil-water separation and self-cleaning. Surf Coat Technol 402, 126254 (2020). doi: 10.1016/j.surfcoat.2020.126254

    CrossRef Google Scholar

    [114] Mauclair C, Pietroy D, Di Maïo Y et al. Ultrafast laser micro-cutting of stainless steel and PZT using a modulated line of multiple foci formed by spatial beam shaping. Opt Lasers Eng 67, 212–217 (2015). doi: 10.1016/j.optlaseng.2014.11.018

    CrossRef Google Scholar

    [115] Laskin A, Laskin V. Refractive beam shapers for material processing with high power single mode and multimode lasers. Proc SPIE 8600, 860010 (2013). doi: 10.1117/12.2001390

    CrossRef Google Scholar

    [116] Schlutow H, Fuchs U, Müller FA et al. Squared focal intensity distributions for applications in laser material processing. Materials 14, 4981 (2021). doi: 10.3390/ma14174981

    CrossRef Google Scholar

    [117] Sanner N. Mise en forme programmable de faisceau laser femtoseconde pour le micro-usinage et la photoinscription de guides d’ondes (Université Jean Monnet, Saint-Etienne, 2005).

    Google Scholar

    [118] Guillon M, Forget BC, Foust AJ et al. Vortex-free phase profiles for uniform patterning with computer-generated holography. Opt Express 25, 12640–12652 (2017). doi: 10.1364/OE.25.012640

    CrossRef Google Scholar

    [119] Yuan YJ, Jiang L, Li X et al. Laser photonic-reduction stamping for graphene-based micro-supercapacitors ultrafast fabrication. Nat Commun 11, 6185 (2020). doi: 10.1038/s41467-020-19985-2

    CrossRef Google Scholar

    [120] Hasegawa S, Shiono K, Hayasaki Y. Femtosecond laser processing with a holographic line-shaped beam. Opt Express 23, 23185–23194 (2015). doi: 10.1364/OE.23.023185

    CrossRef Google Scholar

    [121] Hasegawa S, Ito H, Toyoda H et al. Diffraction-limited ring beam generated by radial grating. OSA Continuum 1, 283–294 (2018). doi: 10.1364/OSAC.1.000283

    CrossRef Google Scholar

    [122] Wang J, Hayasaki Y, Zhang FY et al. Three-dimensional holographic femtosecond laser parallel processing method with the fractional Fourier transform for glass substrates. Ceram Int 48, 16364–16373 (2022). doi: 10.1016/j.ceramint.2022.02.187

    CrossRef Google Scholar

    [123] de Saint Jean A, Dufournel D, Stodulka P et al. Comparison of ultrasound phacoemulsification and FemtoMatrix® PhotoEmulsification® cataract surgery. Front Med 10, 1157486 (2023). doi: 10.3389/fmed.2023.1157486

    CrossRef Google Scholar

    [124] Mauclair C, Cheng G, Huot N et al. Dynamic ultrafast laser spatial tailoring for parallel micromachining of photonic devices in transparent materials. Opt Express 17, 3531–3542 (2009). doi: 10.1364/OE.17.003531

    CrossRef Google Scholar

    [125] Cumming BP, Turner MD, Schröder-Turk GE et al. Adaptive optics enhanced direct laser writing of high refractive index gyroid photonic crystals in chalcogenide glass. Opt Express 22, 689–698 (2014). doi: 10.1364/OE.22.000689

    CrossRef Google Scholar

    [126] Cumming BP, Jesacher A, Booth MJ et al. Adaptive aberration compensation for three-dimensional micro-fabrication of photonic crystals in lithium niobate. Opt Express 19, 9419–9425 (2011). doi: 10.1364/OE.19.009419

    CrossRef Google Scholar

    [127] Sun BS, Salter PS, Booth MJ. High conductivity micro-wires in diamond following arbitrary paths. Appl Phys Lett 105, 231105 (2014). doi: 10.1063/1.4902998

    CrossRef Google Scholar

    [128] Xu K, Huang PL, Huang LY et al. High-precision multi-focus laser sculpting of microstructured glass. Opto-Electron Adv 7, 240082 (2024). doi: 10.29026/oea.2024.240082

    CrossRef Google Scholar

    [129] Vellekoop IM, Mosk AP. Focusing coherent light through opaque strongly scattering media. Opt Lett 32, 2309–2311 (2007). doi: 10.1364/OL.32.002309

    CrossRef Google Scholar

    [130] Galaktionov I, Nikitin A, Sheldakova J et al. Focusing of a laser beam passed through a moderately scattering medium using phase-only spatial light modulator. Photonics 9, 296 (2022). doi: 10.3390/photonics9050296

    CrossRef Google Scholar

    [131] Jayasinghe AK, Rohner J, Hutson MS. Holographic UV laser microsurgery. Biomed Opt Express 2, 2590–2599 (2011). doi: 10.1364/BOE.2.002590

    CrossRef Google Scholar

    [132] Vargas-Martín F, Prieto PM, Artal P. Correction of the aberrations in the human eye with a liquid-crystal spatial light modulator: limits to performance. J Opt Soc Am A 15, 2552–2562 (1998). doi: 10.1364/JOSAA.15.002552

    CrossRef Google Scholar

    [133] Sinjab F, Liao ZY, Notingher I. Applications of spatial light modulators in Raman spectroscopy. Appl Spectrosc 73, 727–746 (2019). doi: 10.1177/0003702819834575

    CrossRef Google Scholar

    [134] Carnegie DJ, Čižmár T, Baumgartl J et al. Automated laser guidance of neuronal growth cones using a spatial light modulator. J Biophotonics 2, 682–692 (2009). doi: 10.1002/jbio.200910043

    CrossRef Google Scholar

    [135] Ocier CR, Richards CA, Bacon-Brown DA et al. Direct laser writing of volumetric gradient index lenses and waveguides. Light Sci Appl 9, 196 (2020). doi: 10.1038/s41377-020-00431-3

    CrossRef Google Scholar

    [136] Ochiai Y, Kumagai K, Hoshi T et al. Fairy lights in femtoseconds: aerial and volumetric graphics rendered by focused femtosecond laser combined with computational holographic fields. ACM Trans Graph 35, 17 (2016). doi: 10.1145/2850414

    CrossRef Google Scholar

    [137] Bhuyan MK, Courvoisier F, Lacourt PA et al. High aspect ratio nanochannel machining using single shot femtosecond Bessel beams. Appl Phys Lett 97, 081102 (2010). doi: 10.1063/1.3479419

    CrossRef Google Scholar

    [138] Belloni VV, Hassan M, Furfaro L et al. Single shot generation of high-aspect-ratio nano-rods from sapphire by ultrafast first order Bessel beam. Laser Photonics Rev 18, 2300687 (2024). doi: 10.1002/lpor.202300687

    CrossRef Google Scholar

    [139] Mathis A, Courvoisier F, Froehly L et al. Micromachining along a curve: femtosecond laser micromachining of curved profiles in diamond and silicon using accelerating beams. Appl Phys Lett 101, 071110 (2012). doi: 10.1063/1.4745925

    CrossRef Google Scholar

    [140] Xie C, Jukna V, Milián C et al. Tubular filamentation for laser material processing. Sci Rep 5, 8914 (2015). doi: 10.1038/srep08914

    CrossRef Google Scholar

    [141] Flamm D, Grossmann DG, Sailer M et al. Structured light for ultrafast laser micro- and nanoprocessing. Opt Eng 60, 025105 (2021). doi: 10.1117/1.OE.60.2.025105

    CrossRef Google Scholar

    [142] Dat Nguyen H, Moreno E, Rudenko A et al. Super-efficient drilling of metals with ultrafast non diffractive laser beams. Sci Rep 12, 2074 (2022). doi: 10.1038/s41598-022-05967-5

    CrossRef Google Scholar

    [143] Yu XM, Trallero-Herrero CT, Lei ST. Materials processing with superposed Bessel beams. Appl Surf Sci 360, 833–839 (2016). doi: 10.1016/j.apsusc.2015.11.074

    CrossRef Google Scholar

    [144] Courvoisier F, Lacourt PA, Jacquot M et al. Surface nanoprocessing with nondiffracting femtosecond Bessel beams. Opt Lett 34, 3163–3165 (2009). doi: 10.1364/OL.34.003163

    CrossRef Google Scholar

    [145] Fahrbach FO, Simon P, Rohrbach A. Microscopy with self-reconstructing beams. Nat Photonics 4, 780–785 (2010). doi: 10.1038/nphoton.2010.204

    CrossRef Google Scholar

    [146] Simon DS. Bessel beams, self-healing, and diffraction-free propagation. In Simon DS. A Guided Tour of Light Beams: From Lasers to Optical Knots (Morgan & Claypool Publishers, San Rafael, 2016);http://doi.org/10.1088/978-1-6817-4437-7ch5.

    Google Scholar

    [147] Mishchik K, Beuton R, Caulier OD et al. Improved laser glass cutting by spatio-temporal control of energy deposition using bursts of femtosecond pulses. Opt Express 25, 33271–33282 (2017). doi: 10.1364/OE.25.033271

    CrossRef Google Scholar

    [148] Osbild M, Gerhorst EA, Sivankutty S et al. Submicrometer surface structuring with a Bessel beam generated by a reflective axicon. J Laser Appl 33, 042013 (2021). doi: 10.2351/7.0000532

    CrossRef Google Scholar

    [149] D’Amico C, Martin G, Troles J et al. Multiscale laser written photonic structures in bulk chalcogenide glasses for infrared light transport and extraction. Photonics 8, 211 (2021). doi: 10.3390/photonics8060211

    CrossRef Google Scholar

    [150] Tamaki T, Watanabe W, Nishii J et al. Welding of transparent materials using femtosecond laser pulses. Jpn J Appl Phys 44, L687 (2005). doi: 10.1143/JJAP.44.L687

    CrossRef Google Scholar

    [151] Tan DZ, Zhang B, Qiu JR. Ultrafast laser direct writing in glass: thermal accumulation engineering and applications. Laser Photonics Rev 15, 2000455 (2021). doi: 10.1002/lpor.202000455

    CrossRef Google Scholar

    [152] Zhang GD, Stoian R, Zhao W et al. Femtosecond laser Bessel beam welding of transparent to non-transparent materials with large focal-position tolerant zone. Opt Express 26, 917–926 (2018). doi: 10.1364/OE.26.000917

    CrossRef Google Scholar

    [153] Zhang GD, Pan Y, Wu PF et al. Glass micro welding in thermal accumulation regime with using spatially shaped ultrafast laser. Opt Laser Technol 168, 109845 (2024). doi: 10.1016/j.optlastec.2023.109845

    CrossRef Google Scholar

    [154] Baltrukonis J, Ulčinas O, Orlov S et al. High-order vector Bessel-gauss beams for laser micromachining of transparent materials. Phys Rev Appl 16, 034001 (2021). doi: 10.1103/PhysRevApplied.16.034001

    CrossRef Google Scholar

    [155] Alimohammadian E, Ertorer E, Uzeda EM et al. Inhibition and enhancement of linear and nonlinear optical effects by conical phase front shaping for femtosecond laser material processing. Sci Rep 10, 21528 (2020). doi: 10.1038/s41598-020-78373-4

    CrossRef Google Scholar

    [156] Ganguly N, Dwivedi R, D’Amico C et al. Asymmetric shaping for ultrafast elliptical bessel-like beams. Photonics 10, 651 (2023). doi: 10.3390/photonics10060651

    CrossRef Google Scholar

    [157] Ouyang J, Perrie W, Allegre OJ et al. Tailored optical vector fields for ultrashort-pulse laser induced complex surface plasmon structuring. Opt Express 23, 12562–12572 (2015). doi: 10.1364/OE.23.012562

    CrossRef Google Scholar

    [158] Hasegawa S, Hayasaki Y. Polarization distribution control of parallel femtosecond pulses with spatial light modulators. Opt Express 21, 12987–12995 (2013). doi: 10.1364/OE.21.012987

    CrossRef Google Scholar

    [159] Hong JT, Li J, Chu DP. Efficient dynamic control method of light polarization using single phase-only liquid crystal on silicon spatial light modulators for optical data storage. Appl Opt 61, B34–B42 (2022). doi: 10.1364/AO.443205

    CrossRef Google Scholar

    [160] Li ZQ, Allegre O, Li L. Realising high aspect ratio 10 nm feature size in laser materials processing in air at 800 nm wavelength in the far-field by creating a high purity longitudinal light field at focus. Light Sci Appl 11, 339 (2022). doi: 10.1038/s41377-022-00962-x

    CrossRef Google Scholar

    [161] Zeng TT, Chang CL, Chen ZZ et al. Three-dimensional vectorial multifocal arrays created by pseudo-period encoding. J Opt 20, 065605 (2018). doi: 10.1088/2040-8986/aac1de

    CrossRef Google Scholar

    [162] Li P, Fan XH, Wu DJ et al. Shaping vector fields in three dimensions by random Fourier phase-only encoding. Opt Express 27, 30009–30019 (2019). doi: 10.1364/OE.27.030009

    CrossRef Google Scholar

    [163] Freidank S, Vogel A, Linz N. Optical vortex beam for gentle and ultraprecise intrastromal corneal dissection in refractive surgery. Trans Vis Sci Technol 9, 22 (2020). doi: 10.1167/tvst.9.10.22

    CrossRef Google Scholar

    [164] Yao AM, Padgett MJ. Orbital angular momentum: origins, behavior and applications. Adv Opt Photonics 3, 161–204 (2011). doi: 10.1364/AOP.3.000161

    CrossRef Google Scholar

    [165] Allegre OJ, Jin Y, Perrie W et al. Complete wavefront and polarization control for ultrashort-pulse laser microprocessing. Opt Express 21, 21198–21207 (2013). doi: 10.1364/OE.21.021198

    CrossRef Google Scholar

    [166] Jin Y, Allegre OJ, Perrie W et al. Dynamic modulation of spatially structured polarization fields for real-time control of ultrafast laser-material interactions. Opt Express 21, 25333–25343 (2013). doi: 10.1364/OE.21.025333

    CrossRef Google Scholar

    [167] Ghosal A, Allegre OJ, Liu Z et al. Surface engineering with structured femtosecond laser vector fields. Results Opt 5, 100179 (2021). doi: 10.1016/j.rio.2021.100179

    CrossRef Google Scholar

    [168] Skoulas E, Manousaki A, Fotakis C et al. Biomimetic surface structuring using cylindrical vector femtosecond laser beams. Sci Rep 7, 45114 (2017). doi: 10.1038/srep45114

    CrossRef Google Scholar

    [169] Gu M, Li XP, Cao YY. Optical storage arrays: a perspective for future big data storage. Light Sci Appl 3, e177 (2014). doi: 10.1038/lsa.2014.58

    CrossRef Google Scholar

    [170] Lu JF, Hassan M, Courvoisier F et al. 3D structured Bessel beam polarization and its application to imprint chiral optical properties in silica. APL Photonics 8, 060801 (2023). doi: 10.1063/5.0140843

    CrossRef Google Scholar

    [171] Freidank S, Vogel A, Linz N. Mechanisms of corneal intrastromal laser dissection for refractive surgery: ultra-high-speed photographic investigation at up to 50 million frames per second. Biomed Opt Express 13, 3056–3079 (2022). doi: 10.1364/BOE.455926

    CrossRef Google Scholar

    [172] Yang L, Li JW, Hu YL et al. Projection two-photon polymerization using a spatial light modulator. Opt Commun 331, 82–86 (2014). doi: 10.1016/j.optcom.2014.05.051

    CrossRef Google Scholar

    [173] Yang L, El-Tamer A, Hinze U et al. Parallel direct laser writing of micro-optical and photonic structures using spatial light modulator. Opt Lasers Eng 70, 26–32 (2015). doi: 10.1016/j.optlaseng.2015.02.006

    CrossRef Google Scholar

    [174] Somers P, Liang ZH, Johnson JE et al. Rapid, continuous projection multi-photon 3D printing enabled by spatiotemporal focusing of femtosecond pulses. Light Sci Appl 10, 199 (2021). doi: 10.1038/s41377-021-00645-z

    CrossRef Google Scholar

    [175] Heath DJ, Feinaeugle M, Grant-Jacob JA et al. Dynamic spatial pulse shaping via a digital micromirror device for patterned laser-induced forward transfer of solid polymer films. Opt Mater Express 5, 1129–1136 (2015). doi: 10.1364/OME.5.001129

    CrossRef Google Scholar

    [176] Fischer J, Wegener M. Three-dimensional direct laser writing inspired by stimulated-emission-depletion microscopy [Invited]. Opt Mater Express 1, 614–624 (2011). doi: 10.1364/OME.1.000614

    CrossRef Google Scholar

    [177] Ni JC, Wang CW, Zhang CC et al. Three-dimensional chiral microstructures fabricated by structured optical vortices in isotropic material. Light Sci Appl 6, e17011 (2017). doi: 10.1038/lsa.2017.11

    CrossRef Google Scholar

    [178] Dat Nguyen H, Sedao X, Mauclair C et al. Non-diffractive Bessel beams for ultrafast laser scanning platform and proof-of-concept side-wall polishing of additively manufactured parts. Micromachines 11, 974 (2020). doi: 10.3390/mi11110974

    CrossRef Google Scholar

    [179] Ergin T, Stenger N, Brenner P et al. Three-dimensional invisibility cloak at optical wavelengths. Science 328, 337–339 (2010). doi: 10.1126/science.1186351

    CrossRef Google Scholar

    [180] in’t Veld BH, Overmeyer L, Schmidt M et al. Micro additive manufacturing using ultra short laser pulses. CIRP Ann 64, 701–724 (2015). doi: 10.1016/j.cirp.2015.05.007

    CrossRef Google Scholar

    [181] Saunders J, Elbestawi M, Fang QY. Ultrafast laser additive manufacturing: a review. J Manuf Mater Process 7, 89 (2023). doi: 10.3390/jmmp7030089

    CrossRef Google Scholar

    [182] Schmidt M, Cvecek K, Duflou J et al. Dynamic beam shaping—Improving laser materials processing via feature synchronous energy coupling. CIRP Ann 73, 533–559 (2024). doi: 10.1016/j.cirp.2024.05.005

    CrossRef Google Scholar

    [183] Geng Q, Wang DE, Chen PF et al. Ultrafast multi-focus 3-D nano-fabrication based on two-photon polymerization. Nat Commun 10, 2179 (2019). doi: 10.1038/s41467-019-10249-2

    CrossRef Google Scholar

    [184] Auyeung RCY, Kim H, Mathews S et al. Laser forward transfer using structured light. Opt Express 23, 422–430 (2015). doi: 10.1364/OE.23.000422

    CrossRef Google Scholar

    [185] Thiel M, Fischer J, von Freymann G et al. Direct laser writing of three-dimensional submicron structures using a continuous-wave laser at 532 nm. Appl Phys Lett 97, 221102 (2010). doi: 10.1063/1.3521464

    CrossRef Google Scholar

    [186] Batchelor R, Messer T, Hippler M et al. Two in one: light as a tool for 3D printing and erasing at the microscale. Adv Mater 31, 1904085 (2019). doi: 10.1002/adma.201904085

    CrossRef Google Scholar

    [187] Xiong W, Zhou YS, He XN et al. Simultaneous additive and subtractive three-dimensional nanofabrication using integrated two-photon polymerization and multiphoton ablation. Light Sci Appl 1, e6 (2012). doi: 10.1038/lsa.2012.6

    CrossRef Google Scholar

    [188] Malinauskas M, Rekštytė S, Lukoševičius L et al. 3D microporous scaffolds manufactured via combination of fused filament fabrication and direct laser writing ablation. Micromachines 5, 839–858 (2014). doi: 10.3390/mi5040839

    CrossRef Google Scholar

    [189] Hell SW, Wichmann J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt Lett 19, 780–782 (1994). doi: 10.1364/OL.19.000780

    CrossRef Google Scholar

    [190] Rittweger E, Han KY, Irvine SE et al. STED microscopy reveals crystal colour centres with nanometric resolution. Nat Photonics 3, 144–147 (2009). doi: 10.1038/nphoton.2009.2

    CrossRef Google Scholar

    [191] Pereira A, Sousa M, Almeida AC et al. Coherent-hybrid STED: high contrast sub-diffraction imaging using a bi-vortex depletion beam. Opt Express 27, 8092–8111 (2019). doi: 10.1364/OE.27.008092

    CrossRef Google Scholar

    [192] Hahn V, Rietz P, Hermann F et al. Light-sheet 3D microprinting via two-colour two-step absorption. Nat Photonics 16, 784–791 (2022). doi: 10.1038/s41566-022-01081-0

    CrossRef Google Scholar

    [193] Nakamura R, Kawaguchi H, Iwata M et al. Optical vortex-induced forward mass transfer: manifestation of helical trajectory of optical vortex. Opt Express 27, 38019–38027 (2019). doi: 10.1364/OE.382288

    CrossRef Google Scholar

    [194] Kaneko A, Iwata M, Wei R et al. Using optical vortex laser induced forward transfer to fabricate a twisted ferrite microcrystal array. APL Mater 12, 061116 (2024). doi: 10.1063/5.0209114

    CrossRef Google Scholar

    [195] Nie B, Huang H, Bai S et al. Femtosecond laser melting and resolidifying of high-temperature powder materials. Appl Phys A 118, 37–41 (2015). doi: 10.1007/s00339-014-8897-y

    CrossRef Google Scholar

    [196] Kaden L, Matthäus G, Ullsperger T et al. Selective laser melting of copper using ultrashort laser pulses. Appl Phys A 123, 596 (2017). doi: 10.1007/s00339-017-1189-6

    CrossRef Google Scholar

    [197] Kaligar AB, Kumar HA, Ali A et al. Femtosecond laser-based additive manufacturing: current status and perspectives. Quantum Beam Sci 6, 5 (2022). doi: 10.3390/qubs6010005

    CrossRef Google Scholar

    [198] Mingareev I, Bonhoff T, El-Sherif AF et al. Femtosecond laser post-processing of metal parts produced by laser additive manufacturing. J Laser Appl 25, 052009 (2013). doi: 10.2351/1.4824146

    CrossRef Google Scholar

    [199] Worts N, Jones J, Squier J. Surface structure modification of additively manufactured titanium components via femtosecond laser micromachining. Opt Commun 430, 352–357 (2019). doi: 10.1016/j.optcom.2018.08.055

    CrossRef Google Scholar

    [200] Chaen K, Takahashi H, Hasegawa S et al. Display method with compensation of the spatial frequency response of a liquid crystal spatial light modulator for holographic femtosecond laser processing. Opt Commun 280, 165–172 (2007). doi: 10.1016/j.optcom.2007.08.006

    CrossRef Google Scholar

    [201] Ackermann L, Roider C, Gehring M et al. High-speed speckle averaging for phase-only beam shaping in laser materials processing. Opt Lasers Eng 165, 107537 (2023). doi: 10.1016/j.optlaseng.2023.107537

    CrossRef Google Scholar

    [202] Schroff P, La Rooij A, Haller E et al. Accurate holographic light potentials using pixel crosstalk modelling. Sci Rep 13, 3252 (2023). doi: 10.1038/s41598-023-30296-6

    CrossRef Google Scholar

    [203] Hayasaki Y, Onodeara R, Kumagai K et al. Automatic generation of a holographically shaped beam in an actual optical system for use in material laser processing. Opt Express 31, 1982–1991 (2023). doi: 10.1364/OE.477886

    CrossRef Google Scholar

    [204] Houzet J, Faure N, Larochette M, et al. Ultrafast laser spatial beam shaping based on zernike polynomials for surface processing. Opt Express 24, 6542–6552 (2016). doi: 10.1364/OE.24.006542

    CrossRef Google Scholar

    [205] Lazarev G, Chen PJ, Strauss J et al. Beyond the display: phase-only liquid crystal on silicon devices and their applications in photonics [Invited]. Opt Express 27, 16206–16249 (2019). doi: 10.1364/OE.27.016206

    CrossRef Google Scholar

    [206] Kuang Z, Liu D, Perrie W et al. Fast parallel diffractive multi-beam femtosecond laser surface micro-structuring. Appl Surf Sci 255, 6582–6588 (2009). doi: 10.1016/j.apsusc.2009.02.043

    CrossRef Google Scholar

    [207] Kuang Z, Perrie W, Liu D et al. Diffractive multi-beam surface micro-processing using 10 ps laser pulses. Appl Surf Sci 255, 9040–9044 (2009). doi: 10.1016/j.apsusc.2009.06.089

    CrossRef Google Scholar

    [208] Wang J, Sun SF, Zhang HH et al. Holographic femtosecond laser parallel processing method based on the fractional Fourier transform. Opt Lasers Eng 146, 106704 (2021). doi: 10.1016/j.optlaseng.2021.106704

    CrossRef Google Scholar

    [209] Ronzitti E, Guillon M, de Sars V et al. LCoS nematic SLM characterization and modeling for diffraction efficiency optimization, zero and ghost orders suppression. Opt Express 20, 17843–17855 (2012). doi: 10.1364/OE.20.017843

    CrossRef Google Scholar

    [210] Prossotowicz M, Flamm D, Heimes A et al. Dynamic focus shaping with mixed-aperture coherent beam combining. Opt Lett 46, 1660–1663 (2021). doi: 10.1364/OL.422135

    CrossRef Google Scholar

    [211] Arrizón V, Ruiz U, Carrada R et al. Pixelated phase computer holograms for the accurate encoding of scalar complex fields. J Opt Soc Am A 24, 3500–3507 (2007). doi: 10.1364/JOSAA.24.003500

    CrossRef Google Scholar

    [212] Wang ZP, Li XW, Jiang L et al. High-quality micropattern printing by interlacing-pattern holographic femtosecond pulses. Nanophotonics 9, 2895–2904 (2020). doi: 10.1515/nanoph-2020-0138

    CrossRef Google Scholar

    [213] Mauclair C, Landon S, Pietroy D et al. Ultrafast laser machining of micro grooves on stainless steel with spatially optimized intensity distribution. J Laser Micro Nanoeng 8, 11–14 (2013). doi: 10.2961/jlmn.2013.01.0003

    CrossRef Google Scholar

    [214] Chang CL, Xia J, Yang L et al. Speckle-suppressed phase-only holographic three-dimensional display based on double-constraint Gerchberg-Saxton algorithm. Appl Opt 54, 6994–7001 (2015). doi: 10.1364/AO.54.006994

    CrossRef Google Scholar

    [215] Ackermann L, Roider C, Cvecek K et al. Methods for uniform beam shaping and their effect on material ablation. Appl Phys A 128, 877 (2022). doi: 10.1007/s00339-022-06004-y

    CrossRef Google Scholar

    [216] Kim D, Keesling A, Omran A et al. Large-scale uniform optical focus array generation with a phase spatial light modulator. Opt Lett 44, 3178–3181 (2019). doi: 10.1364/OL.44.003178

    CrossRef Google Scholar

    [217] Bañas A, Glückstad J. Light shaping with holography, GPC and holo-GPC. Opt Data Process Storage 3, 20–40 (2017). doi: 10.1515/odps-2017-0004

    CrossRef Google Scholar

    [218] Nakata Y, Osawa K, Miyanaga N. Utilization of the high spatial-frequency component in adaptive beam shaping by using a virtual diagonal phase grating. Sci Rep 9, 4640 (2019). doi: 10.1038/s41598-019-40829-7

    CrossRef Google Scholar

    [219] Madsen AEG, Eriksen RL, Glückstad J. Comparison of state-of-the-art Computer Generated Holography algorithms and a machine learning approach. Opt Commun 505, 127590 (2022). doi: 10.1016/j.optcom.2021.127590

    CrossRef Google Scholar

    [220] Mikhaylov D, Zhou BF, Kiedrowski T et al. High accuracy beam splitting using spatial light modulator combined with machine learning algorithms. Opt Lasers Eng 121, 227–235 (2019). doi: 10.1016/j.optlaseng.2019.04.010

    CrossRef Google Scholar

    [221] Zhang YX, Zhang MK, Liu KX et al. Progress of the computer-generated holography based on deep learning. Appl Sci 12, 8568 (2022). doi: 10.3390/app12178568

    CrossRef Google Scholar

    [222] Wu JC, Liu KX, Sui XM et al. High-speed computer-generated holography using an autoencoder-based deep neural network. Opt Lett 46, 2908–2911 (2021). doi: 10.1364/OL.425485

    CrossRef Google Scholar

    [223] Lee J, Jeong J, Cho J et al. Deep neural network for multi-depth hologram generation and its training strategy. Opt Express 28, 27137–27154 (2020). doi: 10.1364/OE.402317

    CrossRef Google Scholar

    [224] Hasegawa S, Hayasaki Y. Femtosecond laser processing with adaptive optics based on convolutional neural network. Opt Lasers Eng 141, 106563 (2021). doi: 10.1016/j.optlaseng.2021.106563

    CrossRef Google Scholar

    [225] Zhang HH, Hasegawa S, Takahashi H et al. In-system optimization of a hologram for high-stability parallel laser processing. Opt Lett 45, 3344–3347 (2020). doi: 10.1364/OL.392578

    CrossRef Google Scholar

    [226] Buske P, Völl A, Eisebitt M et al. Advanced beam shaping for laser materials processing based on diffractive neural networks. Opt Express 30, 22798–22816 (2022). doi: 10.1364/OE.459460

    CrossRef Google Scholar

    [227] Buske P, Hofmann O, Bonnhoff A et al. High fidelity laser beam shaping using liquid crystal on silicon spatial light modulators as diffractive neural networks. Opt Express 32, 7064–7078 (2024). doi: 10.1364/OE.507630

    CrossRef Google Scholar

    [228] Genty G, Salmela L, Dudley JM et al. Machine learning and applications in ultrafast photonics. Nat Photonics 15, 91–101 (2021). doi: 10.1038/s41566-020-00716-4

    CrossRef Google Scholar

    [229] McDonnell MDT, Arnaldo D, Pelletier E et al. Machine learning for multi-dimensional optimisation and predictive visualisation of laser machining. J Intell Manuf 32, 1471–1483 (2021). doi: 10.1007/s10845-020-01717-4

    CrossRef Google Scholar

    [230] Wang B, Wang P, Song J et al. A hybrid machine learning approach to determine the optimal processing window in femtosecond laser-induced periodic nanostructures. J Mater Process Technol 308, 117716 (2022). doi: 10.1016/j.jmatprotec.2022.117716

    CrossRef Google Scholar

    [231] Narazaki A, Yoshitomi D, Takada H et al. ICT data-driven active laser processing. Photonics Rev 2024, 240212 (2024). doi: 10.11470/photo.240212

    CrossRef Google Scholar

    [232] Mermillod-Blondin A, Burakov IM, Meshcheryakov YP et al. Flipping the sign of refractive index changes in ultrafast and temporally shaped laser-irradiated borosilicate crown optical glass at high repetition rates. Phys Rev B 77, 104205 (2008). doi: 10.1103/PhysRevB.77.104205

    CrossRef Google Scholar

    [233] Pereiro-García J, García-De-Blas M, De La Rosa P et al. Reconfigurable perfect vortex beam generator based on a liquid crystal spiral phase plate. Opt Express 31, 37653–37662 (2023). doi: 10.1364/OE.501796

    CrossRef Google Scholar

    [234] Xu A, Nourshargh C, Salter PS et al. Laser-written tunable liquid crystal aberration correctors. ACS Photonics 10, 3401–3408 (2023). doi: 10.1021/acsphotonics.3c00907

    CrossRef Google Scholar

    [235] Zhao ZM, Chen BH, Salter PS et al. Multielement polychromatic 2D liquid crystal dammann gratings. Adv Mater Technol 8, 2200861 (2023). doi: 10.1002/admt.202200861

    CrossRef Google Scholar

    [236] García-Márquez J, López V, González-Vega A et al. Flicker minimization in an LCoS spatial light modulator. Opt Express 20, 8431–8441 (2012). doi: 10.1364/OE.20.008431

    CrossRef Google Scholar

    [237] Clark NA, Lagerwall ST. Submicrosecond bistable electro‐optic switching in liquid crystals. Appl Phys Lett 36, 899–901 (1980). doi: 10.1063/1.91359

    CrossRef Google Scholar

    [238] Fukushima S, Kurokawa T, Matsuo S et al. Bistable spatial light modulator using a ferroelectric liquid crystal. Opt Lett 15, 285–287 (1990). doi: 10.1364/OL.15.000285

    CrossRef Google Scholar

    [239] Jung W, Kim H, Mishchik K et al. Direct laser patterning of glass mask for micro display using GHz bursts. J Soc Inf Display 32, 426–434 (2024). doi: 10.1002/jsid.1308

    CrossRef Google Scholar

    [240] Ackermann L, Roider C, Schmidt M. Uniform and efficient beam shaping for high-energy lasers. Opt Express 29, 17997–18009 (2021). doi: 10.1364/OE.426953

    CrossRef Google Scholar

    [241] Matsumoto N, Itoh H, Inoue T et al. Stable and flexible multiple spot pattern generation using LCOS spatial light modulator. Opt Express 22, 24722–24733 (2014). doi: 10.1364/OE.22.024722

    CrossRef Google Scholar

    [242] Kaakkunen JJJ, Laakso P, Kujanpää V. Adaptive multibeam laser cutting of thin steel sheets with fiber laser using spatial light modulator. J Laser Appl 26, 032008 (2014). doi: 10.2351/1.4883935

    CrossRef Google Scholar

    [243] di Pietro VM, Jullien A, Bortolozzo U et al. Thermally-induced nonlinear spatial shaping of infrared femtosecond pulses in nematic liquid crystals. Laser Phys Lett 16, 015301 (2018). doi: 10.1088/1612-202X/aaf329

    CrossRef Google Scholar

    [244] di Pietro VM, Bux S, Forget N et al. Phase-only pulse shaper for multi-octave light sources. Opt Lett 45, 543–546 (2020). doi: 10.1364/OL.380712

    CrossRef Google Scholar

    [245] Barland S, Ramousse L, Chériaux G et al. Reconfigurable design of a thermo-optically addressed liquid-crystal phase modulator by a neural network. Opt Express 31, 12597–12608 (2023). doi: 10.1364/OE.483141

    CrossRef Google Scholar

    [246] Benstiti A, Bencheikh A, Ferria K et al. Generation of Flexible hyperbolic Airy-like beams using a truncated acousto-optical effect. Opt Commun 505, 127501 (2022). doi: 10.1016/j.optcom.2021.127501

    CrossRef Google Scholar

    [247] Benstiti A, Bencheikh A, Ferria K et al. Gaussian laser beam structuring using acousto-optic effect: a parametric characterization. Appl Phys B 128, 141 (2022). doi: 10.1007/s00340-022-07857-0

    CrossRef Google Scholar

    [248] Miazek A, Dupuy J, Gusachenko I et al. Advanced USP laser process with deep learning and triangular beam shaping for micro Fresnel lenses fabrication. Proc SPIE 12408, 1240802 (2023). doi: 10.1117/12.2649063

    CrossRef Google Scholar

    [249] Tzang O, Niv E, Singh S et al. Wavefront shaping in complex media with a 350 kHz modulator via a 1D-to-2D transform. Nat Photonics 13, 788–793 (2019). doi: 10.1038/s41566-019-0503-6

    CrossRef Google Scholar

    [250] Linden J, Cohen S, Berg Y et al. High-speed temporal and spatial beam-shaping combining active and passive elements. Opt Express 29, 31229–31239 (2021). doi: 10.1364/OE.434772

    CrossRef Google Scholar

    [251] Li JN, Tang Y, Kuang Z et al. Multi imaging-based beam shaping for ultrafast laser-material processing using spatial light modulators. Opt Lasers Eng 112, 59–67 (2019). doi: 10.1016/j.optlaseng.2018.09.002

    CrossRef Google Scholar

    [252] Bi J, Wu LK, Li SD et al. Beam shaping technology and its application in metal laser additive manufacturing: a review. J Mater Res Technol 26, 4606–4628 (2023). doi: 10.1016/j.jmrt.2023.08.037

    CrossRef Google Scholar

    [253] Badloe T, Lee J, Seong J et al. Tunable metasurfaces: the path to fully active nanophotonics. Adv Photonics Res 2, 2000205 (2021). doi: 10.1002/adpr.202000205

    CrossRef Google Scholar

    [254] Berini P. Optical beam steering using tunable metasurfaces. ACS Photonics 9, 2204–2218 (2022). doi: 10.1021/acsphotonics.2c00439

    CrossRef Google Scholar

    [255] Liu ZX, Zhang BL, Li YK et al. Efficient dynamic tunable metasurface based on Ge2Sb2Te5 in the near infrared band. Appl Opt 62, 5508–5515 (2023). doi: 10.1364/AO.492429

    CrossRef Google Scholar

    [256] Ren HR, Fang XY, Jang J et al. Complex-amplitude metasurface-based orbital angular momentum holography in momentum space. Nat Nanotechnol 15, 948–955 (2020). doi: 10.1038/s41565-020-0768-4

    CrossRef Google Scholar

    [257] Emelianov AV, Pettersson M, Bobrinetskiy II. Ultrafast laser processing of 2D materials: novel routes to advanced devices. Adv Mater 36, 2402907 (2024). doi: 10.1002/adma.202402907

    CrossRef Google Scholar

    [258] Han WN, Wei DH, Peng BY et al. 3D femtosecond laser beam deflection for high-precision fabrication and modulation of individual voxelated PCM meta-atoms. Adv Sci 12, 2413316 (2025). doi: 10.1002/advs.202413316

    CrossRef Google Scholar

    [259] Bor Z, Horváth ZL. Distortion of femtosecond pulse fronts in lenses. In Stuke M. Dye Lasers: 25 Years 87–94 (Springer, Berlin, Heidelberg, 1992). doi: 10.1007/3-540-54953-6_6.

    Google Scholar

    [260] Patel A, Svirko Y, Durfee C et al. Direct writing with tilted-front femtosecond pulses. Sci Rep 7, 12928 (2017). doi: 10.1038/s41598-017-13403-2

    CrossRef Google Scholar

    [261] Sun BS, Salter PS, Booth MJ. Pulse front adaptive optics: a new method for control of ultrashort laser pulses. Opt Express 23, 19348–19357 (2015). doi: 10.1364/OE.23.019348

    CrossRef Google Scholar

    [262] Ambat MV, Shaw JL, Pigeon JJ et al. Programmable-trajectory ultrafast flying focus pulses. Opt Express 31, 31354–31368 (2023). doi: 10.1364/OE.499839

    CrossRef Google Scholar

    [263] Sainte-Marie A, Gobert O, Quéré F. Controlling the velocity of ultrashort light pulses in vacuum through spatio-temporal couplings. Optica 4, 1298–1304 (2017). doi: 10.1364/OPTICA.4.001298

    CrossRef Google Scholar

    [264] Froula DH, Palastro JP, Turnbull D et al. Flying focus: spatial and temporal control of intensity for laser-based applications. Phys Plasmas 26, 032109 (2019). doi: 10.1063/1.5086308

    CrossRef Google Scholar

    [265] Weiner AM. Femtosecond pulse shaping using spatial light modulators. Rev Sci Instrum 71, 1929–1960 (2000). doi: 10.1063/1.1150614

    CrossRef Google Scholar

    [266] Stoian R, Boyle M, Thoss A et al. Laser ablation of dielectrics with temporally shaped femtosecond pulses. Appl Phys Lett 80, 353–355 (2002). doi: 10.1063/1.1432747

    CrossRef Google Scholar

    [267] Stoian R, Mermillod-Blondin A, Winkler S et al. Temporal pulse manipulation and consequences for ultrafast laser processing of materials. Opt Eng 44, 051106 (2005). doi: 10.1117/1.1915467

    CrossRef Google Scholar

    [268] He F, Xu H, Cheng Y et al. Fabrication of microfluidic channels with a circular cross section using spatiotemporally focused femtosecond laser pulses. Opt Lett 35, 1106–1108 (2010). doi: 10.1364/OL.35.001106

    CrossRef Google Scholar

    [269] Tan YX, Lv HT, Xu J et al. Three-dimensional isotropic microfabrication in glass using spatiotemporal focusing of high-repetition-rate femtosecond laser pulses. Opto-Electron Adv 6, 230066 (2023). doi: 10.29026/oea.2023.230066

    CrossRef Google Scholar

    [270] Bor Z, Gogolak Z, Szabo G. Femtosecond-resolution pulse-front distortion measurement by time-of-flight interferometry. Opt Lett 14, 862–864 (1989). doi: 10.1364/OL.14.000862

    CrossRef Google Scholar

    [271] Bor Z, Racz B, Szabo G et al. Femtosecond pulse front tilt caused by angular dispersion. Opt Eng 32, 2501–2504 (1993). doi: 10.1117/12.145393

    CrossRef Google Scholar

    [272] Akturk S, Gu X, Zeek E et al. Pulse-front tilt caused by spatial and temporal chirp. Opt Express 12, 4399–4410 (2004). doi: 10.1364/OPEX.12.004399

    CrossRef Google Scholar

    [273] Yang WJ, Kazansky PG, Svirko YP. Non-reciprocal ultrafast laser writing. Nat Photonics 2, 99–104 (2008). doi: 10.1038/nphoton.2007.276

    CrossRef Google Scholar

    [274] Chambonneau M, Grojo D, Tokel O et al. In-volume laser direct writing of silicon—challenges and opportunities. Laser Photonics Rev 15, 2100140 (2021). doi: 10.1002/lpor.202100140

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(10)

Tables(1)

Article Metrics

Article views() PDF downloads() Cited by()

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint