Citation: | Huang HZ, Chen HX, Liu HG et al. High-intensity spatial-mode steerable frequency up-converter toward on-chip integration. Opto-Electron Sci 3, 230036 (2024). doi: 10.29026/oes.2024.230036 |
[1] | Lu XY, Li Q, Westly DA et al. Chip-integrated visible–telecom entangled photon pair source for quantum communication. Nat Phys 15, 373–381 (2019). doi: 10.1038/s41567-018-0394-3 |
[2] | Xie YW, Hong SH, Yan H et al. Low-loss chip-scale programmable silicon photonic processor. Opto-Electron Adv 6, 220030 (2023). doi: 10.29026/oea.2023.220030 |
[3] | Chen YP, Yin Y, Ma LB et al. Recent progress on optoplasmonic whispering-gallery-mode microcavities. Adv Opt Mater 9, 2100143 (2021). doi: 10.1002/adom.202100143 |
[4] | Liu J, Bo F, Chang L et al. Emerging material platforms for integrated microcavity photonics. Sci China Phys Mech 65, 104201 (2022). doi: 10.1007/s11433-022-1957-3 |
[5] | Li MX, Ling JW, He Y et al. Lithium niobate photonic-crystal electro-optic modulator. Nat Commun 11, 4123 (2020). doi: 10.1038/s41467-020-17950-7 |
[6] | Zhang M, Buscaino B, Wang C et al. Broadband electro-optic frequency comb generation in a lithium niobate microring resonator. Nature 568, 373–377 (2019). doi: 10.1038/s41586-019-1008-7 |
[7] | He MB, Xu MY, Ren YX et al. High-performance hybrid silicon and lithium niobate Mach-Zehnder modulators for 100 Gbit s-1 and beyond. Nat Photonics 13, 359–364 (2019). doi: 10.1038/s41566-019-0378-6 |
[8] | Tran MA, Zhang C, Morin TJ et al. Extending the spectrum of fully integrated photonics to submicrometre wavelengths. Nature 610, 54–60 (2022). doi: 10.1038/s41586-022-05119-9 |
[9] | Aghaeimeibodi S, Desiatov B, Kim JH et al. Integration of quantum dots with lithium niobate photonics. Appl Phys Lett 113, 221102 (2018). doi: 10.1063/1.5054865 |
[10] | Li NX, Chen GY, Ng DKT et al. Integrated lasers on silicon at communication wavelength: a progress review. Adv Opt Mater 10, 2201008 (2022). doi: 10.1002/adom.202201008 |
[11] | Mizuno T, Miyamoto Y. High-capacity dense space division multiplexing transmission. Opt Fiber Technol 35, 108–117 (2017). doi: 10.1016/j.yofte.2016.09.015 |
[12] | Khonina SN, Kazanskiy NL, Butt MA et al. Optical multiplexing techniques and their marriage for on-chip and optical fiber communication: a review. Opto-Electron Adv 5, 210127 (2022). doi: 10.29026/oea.2022.210127 |
[13] | Dong M, Clark G, Leenheer AJ et al. High-speed programmable photonic circuits in a cryogenically compatible, visible-near-infrared 200 mm CMOS architecture. Nat Photonics 16, 59–65 (2022). doi: 10.1038/s41566-021-00903-x |
[14] | Liao K, Chen Y, Yu ZC et al. All-optical computing based on convolutional neural networks. Opto-Electron Adv 4, 200060 (2021). doi: 10.29026/oea.2021.200060 |
[15] | Wang JW, Paesani S, Ding YH et al. Multidimensional quantum entanglement with large-scale integrated optics. Science 360, 285–291 (2018). doi: 10.1126/science.aar7053 |
[16] | Paesani S, Ding YH, Santagati R et al. Generation and sampling of quantum states of light in a silicon chip. Nat Phys 15, 925–929 (2019). doi: 10.1038/s41567-019-0567-8 |
[17] | Crespi A, Ramponi R, Osellame R et al. Integrated photonic quantum gates for polarization qubits. Nat Commun 2, 566 (2011). doi: 10.1038/ncomms1570 |
[18] | Qiang XG, Zhou XQ, Wang JW et al. Large-scale silicon quantum photonics implementing arbitrary two-qubit processing. Nat Photonics 12, 534–539 (2018). doi: 10.1038/s41566-018-0236-y |
[19] | Lee SY, Ihn YS, Kim Z. Quantum illumination via quantum-enhanced sensing. Phys Rev A 103, 012411 (2021). doi: 10.1103/PhysRevA.103.012411 |
[20] | Crawford SE, Shugayev RA, Paudel HP et al. Quantum sensing for energy applications: review and perspective. Adv Quantum Technol 4, 2100049 (2021). doi: 10.1002/qute.202100049 |
[21] | Yim J, Chandra N, Feng XL et al. Broadband continuous supersymmetric transformation: a new paradigm for transformation optics. eLight 2, 16 (2022). doi: 10.1186/s43593-022-00023-1 |
[22] | Carletti L, Zilli A, Moia F et al. Steering and encoding the polarization of the second harmonic in the visible with a monolithic LiNbO3 metasurface. ACS Photonics 8, 731–737 (2021). doi: 10.1021/acsphotonics.1c00026 |
[23] | Lin ZJ, Lin YM, Li H et al. High-performance polarization management devices based on thin-film lithium niobate. Light Sci Appl 11, 93 (2022). doi: 10.1038/s41377-022-00779-8 |
[24] | Kumar S, Zhang H, Kumar P et al. Spatiotemporal mode-selective quantum frequency converter. Phys Rev A 104, 023506 (2021). doi: 10.1103/PhysRevA.104.023506 |
[25] | Guo YH, Zhang SC, Pu MB et al. Spin-decoupled metasurface for simultaneous detection of spin and orbital angular momenta via momentum transformation. Light Sci Appl 10, 63 (2021). doi: 10.1038/s41377-021-00497-7 |
[26] | Meng WJ, Hua YL, Cheng K et al. 100 Hertz frame-rate switching three-dimensional orbital angular momentum multiplexing holography via cross convolution. Opto-Electron Sci 1, 220004 (2022). doi: 10.29026/oes.2022.220004 |
[27] | Shang JM, Chen HJ, Sui Z et al. Electro-optic high-speed optical beam shifting based on a lithium niobate tapered waveguide. Opt Express 30, 14530–14537 (2022). doi: 10.1364/OE.455198 |
[28] | Xu Y, Zheng KP, Shang JM et al. Wavefront shaping for reconfigurable beam steering in lithium niobate multimode waveguide. Opt Lett 47, 329–332 (2022). doi: 10.1364/OL.445790 |
[29] | Li SJ, Li ZY, Huang GS et al. Digital coding transmissive metasurface for multi-OAM-beam. Front Phys 17, 62501 (2022). doi: 10.1007/s11467-022-1179-9 |
[30] | Biard H, Moreno-Pineda E, Ruben M et al. Increasing the Hilbert space dimension using a single coupled molecular spin. Nat Commun 12, 4443 (2021). doi: 10.1038/s41467-021-24693-6 |
[31] | Kruse R, Katzschmann F, Christ A et al. Spatio-spectral characteristics of parametric down-conversion in waveguide arrays. New J Phys 15, 083046 (2013). doi: 10.1088/1367-2630/15/8/083046 |
[32] | Feng LT, Zhang M, Xiong X et al. On-chip transverse-mode entangled photon pair source. npj Quantum Inf 5, 2 (2019). doi: 10.1038/s41534-018-0121-z |
[33] | Li MX, Chang L, Wu L et al. Integrated Pockels laser. Nat Commun 13, 5344 (2022). doi: 10.1038/s41467-022-33101-6 |
[34] | Li Y, Huang ZJ, Qiu WT et al. Recent progress of second harmonic generation based on thin film lithium niobate [Invited]. Chin Opt Lett 19, 060012 (2021). doi: 10.3788/COL202119.060012 |
[35] | Wang C, Li ZY, Kim MH et al. Metasurface-assisted phase-matching-free second harmonic generation in lithium niobate waveguides. Nat Commun 8, 2098 (2017). doi: 10.1038/s41467-017-02189-6 |
[36] | Mishra J, McKenna TP, Ng E et al. Mid-infrared nonlinear optics in thin-film lithium niobate on sapphire. Optica 8, 921–924 (2021). doi: 10.1364/OPTICA.427428 |
[37] | Lu JJ, Al Sayem A, Gong Z et al. Ultralow-threshold thin-film lithium niobate optical parametric oscillator. Optica 8, 539–544 (2021). doi: 10.1364/OPTICA.418984 |
[38] | Xue GT, Niu YF, Liu XY et al. Ultrabright multiplexed energy-time-entangled photon generation from lithium niobate on insulator chip. Phys Rev Appl 15, 064059 (2021). doi: 10.1103/PhysRevApplied.15.064059 |
[39] | Zhao J, Ma CX, Rusing M et al. High quality entangled photon pair generation in periodically poled thin-film lithium niobate waveguides. Phys Rev Lett 124, 163603 (2020). doi: 10.1103/PhysRevLett.124.163603 |
[40] | Karpiński M, Radzewicz C, Banaszek K. Dispersion-based control of modal characteristics for parametric down-conversion in a multimode waveguide. Opt Lett 37, 878–880 (2012). doi: 10.1364/OL.37.000878 |
[41] | Machulka R, Svozilík J, Soubusta J et al. Spatial and spectral properties of fields generated by pulsed second-harmonic generation in a periodically poled potassium-titanyl-phosphate waveguide. Phys Rev A 87, 013836 (2013). doi: 10.1103/PhysRevA.87.013836 |
[42] | Mosley PJ, Christ A, Eckstein A et al. Direct measurement of the spatial-spectral structure of waveguided parametric down-conversion. Phys Rev Lett 103, 233901 (2009). doi: 10.1103/PhysRevLett.103.233901 |
[43] | Christ A, Laiho K, Eckstein A et al. Spatial modes in waveguided parametric down-conversion. Phys Rev A 80, 033829 (2009). doi: 10.1103/PhysRevA.80.033829 |
[44] | Kumar S, Zhang H, Maruca S et al. Mode-selective image upconversion. Opt Lett 44, 98–101 (2019). doi: 10.1364/OL.44.000098 |
[45] | Karpiński M, Radzewicz C, Banaszek K. Experimental characterization of three-wave mixing in a multimode nonlinear KTiOPO4 waveguide. Appl Phys Lett 94, 181105 (2009). doi: 10.1063/1.3132086 |
[46] | Lee YL, Shin W, Yu BA et al. Mode tailoring in a ridge-type periodically poled lithium niobate waveguide. Opt Express 18, 7678–7684 (2010). doi: 10.1364/OE.18.007678 |
[47] | Eigner C, Padberg L, Santandrea M et al. Spatially single mode photon pair source at 800 nm in periodically poled Rubidium exchanged KTP waveguides. Opt Express 28, 32925–32935 (2020). doi: 10.1364/OE.399483 |
[48] | Park JH, Kim WK, Jeong WJ et al. Continuous control of spatial mode rotation using second harmonic generation. Appl Phys Lett 97, 191113 (2010). doi: 10.1063/1.3507267 |
[49] | Yu MJ, Barton III D, Cheng R et al. Integrated femtosecond pulse generator on thin-film lithium niobate. Nature 612, 252–258 (2022). doi: 10.1038/s41586-022-05345-1 |
[50] | Liu SL, Yang C, Xu ZH et al. High-dimensional quantum frequency converter. Phys Rev A 101, 012339 (2020). doi: 10.1103/PhysRevA.101.012339 |
[51] | Vazimali MG, Fathpour S. Applications of thin-film lithium niobate in nonlinear integrated photonics. Adv Photonics 4, 034001 (2022). |
[52] | Cai LT, Mahmoud A, Khan M et al. Acousto-optical modulation of thin film lithium niobate waveguide devices. Photonics Res 7, 1003–1013 (2019). doi: 10.1364/PRJ.7.001003 |
[53] | Yu MJ, Okawachi Y, Cheng R et al. Raman lasing and soliton mode-locking in lithium niobate microresonators. Light Sci Appl 9, 9 (2020). doi: 10.1038/s41377-020-0246-7 |
[54] | Snigirev V, Riedhauser A, Lihachev G et al. Ultrafast tunable lasers using lithium niobate integrated photonics. Nature 615, 411–417 (2023). doi: 10.1038/s41586-023-05724-2 |
[55] | Hou JF, Situ GH. Image encryption using spatial nonlinear optics. eLight 2, 3 (2022). doi: 10.1186/s43593-021-00010-y |
Supplementary information for High-intensity spatial-mode steerable frequency up-converter toward on-chip integration |
(a) Geometric of the prepared Z-cut PPMgLN waveguide with a poling period of 10.2 μm, where w= 11.2 μm, h1 = 10.9 μm, h2 = 0.5 μm, and θ = 75.1°. (b) Characteristic mode profiles of the SFG light at 25°C, described by the y-component of the electric field, where the arrows indicate directions of the electric field. (c) Effective indices for the TM modes of the SFG light, as the functions of the waveguide temperature. (d–f) Theoretical conversion efficiencies (CEs) by coupling among TM00, TM01, TM10, and TM11 modes of the high-intensity pump and signal lights for the SFG lights with (d) TM00. (e) TM01, and (f) TM10 modes, respectively. (g) Predicted temperature conditions for producing the TM00 (F00, cyan area), TM10 (F10, red area), and TM01(F01, blue area) modes of the SFG light by comparing the maximum CE.
(a) Schematic of the temperature/wavelength-dependent spatial mode steerable SFG device. (b) In the temperature steering scheme, the detected up-conversion lights with (i) TM01, (ii) TM10, and (iii) TM00 modes at 30°C, 40°C, and 60°C, respectively, on a white broad. (c) In the wavelength steering scheme, the detected SFG lights with (i) TM00, (ii) TM01, and (iii) TM10 modes at 597.46, 597.99, and 598.41 nm, respectively, on a white broad. (d) Microscope image of the fabricated PPMgLN waveguide array on an LT wafer (Inset: detail profile of the third waveguide). (e) Cross-section view of the fifth waveguide selected in the experiments. (f) The fabricated polling structure with a period of 10.2 μm. EDFLs, Erbium-ion doped fiber laser system; SM LD, single-mode fiber-coupled diode laser; WDM, wavelength division multiplexer; CLEN, collimating lens; ASL, aspherical lens; TEC, thermoelectric cooler.
Characterizing the temperature-dependent spatial mode steering scheme in the SFG waveguide. (a) Power curves of the waveguide at typical temperatures of 35 °C, 45 °C, 55 °C, and 65 °C. (b) Evolution in SFG power under the maximum incident pump power of 27.8 dBm, in which the gray color denotes the regions without clear TM01, TM10, or TM00 modes. (c) Experimental efficiency (ηexp = 100·PF/PP/PS) and theoretical efficiency (ηcal = max(ηFjk, ηFjk, ηFjk)) of the inter-mode up-conversion process. (d) Temperature windows for preparing mode TM01, TM10, and TM00, where state1 and state2 denote the transition process from TM10 to TM01 and TM01 to TM00, respectively. (e) Mode profiles captured by the CCD camera to tell the exact modes during rising the waveguide temperature. (f) Evolutions in the SFG wavelength during the spatial mode steerable SFG process.
Transition states from two-mode coupling (first state), three-mode coupling (second state), to quasi TM00 mode (third state). (a–c) Evolutions of the (a) inter-mode QPM efficiency (sinc(ΔKL/2)), (b) integral, and (c) conversion efficiency for TM00, TM10, and TM01, respectively. (d–f) Typical mixing mode pattern in the (d) first state, (e) second state, and (f) third state, respectively, where the upper picture is experimentally captured by a CCD camera, and the bottom picture is reproduced based on Eq. (3) with I= |EF|2.
Characterizing the wavelength-dependent spatial mode steering scheme in the SFG waveguide. (a, b) The changed SFG wavelength by increasing the signal wavelength from 1546 to 1556 nm: (a) spectral profiles, (b) fitted slop rate ΔλP/ΔλS = 0.14; (c) at waveguide temperature of 25 °C, the evolution of the spatial mode from TM00 to TM10, TM10 to TM01, and TM01 to TM10.
(a) Evolution in SFG power at varied waveguide temperature under an incident pump and signal powers of 25.1 and 27.8 dBm, respectively, where characterized regions for the TM00, TM01, and TM10 modes are denoted with cyan, red, and blue colors, respectively. (b) Wavelength windows for preparing the spatial mode during red shifting the SFG wavelength.