Liu JJ, Yang XX, Xu QL et al. Unraveling the efficiency losses and improving methods in quantum dot-based infrared up-conversion photodetectors. Opto-Electron Sci 3, 230029 (2024). doi: 10.29026/oes.2024.230029
Citation: Liu JJ, Yang XX, Xu QL et al. Unraveling the efficiency losses and improving methods in quantum dot-based infrared up-conversion photodetectors. Opto-Electron Sci 3, 230029 (2024). doi: 10.29026/oes.2024.230029

Article Open Access

Unraveling the efficiency losses and improving methods in quantum dot-based infrared up-conversion photodetectors

More Information
  • Quantum dot-based up-conversion photodetector, in which an infrared photodiode (PD) and a quantum dot light-emitting diode (QLED) are back-to-back connected, is a promising candidate for low-cost infrared imaging. However, the huge efficiency losses caused by integrating the PD and QLED together hasn’t been studied sufficiently. This work revealed at least three origins for the efficiency losses. First, the PD unit and QLED unit usually didn’t work under optimal conditions at the same time. Second, the potential barriers and traps at the interconnection between PD and QLED units induced unfavorable carrier recombination. Third, much emitted visible light was lost due to the strong visible absorption in the PD unit. Based on the understandings on the loss mechanisms, the infrared up-conversion photodetectors were optimized and achieved a breakthrough photon-to-photon conversion efficiency of 6.9%. This study provided valuable guidance on how to optimize the way of integration for up-conversion photodetectors.
  • 加载中
  • [1] Ban D, Han S, Lu ZH et al. Near-infrared to visible light optical upconversion by direct tandem integration of organic light-emitting diode and inorganic photodetector. Appl Phys Lett 90, 093108 (2007). doi: 10.1063/1.2710003

    CrossRef Google Scholar

    [2] Gao XH, Cui YY, Levenson RM et al. In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol 22, 969–976 (2004). doi: 10.1038/nbt994

    CrossRef Google Scholar

    [3] Gu YY, Guo ZY, Yuan W et al. High-sensitivity imaging of time-domain near-infrared light transducer. Nat Photonics 13, 525–531 (2019). doi: 10.1038/s41566-019-0437-z

    CrossRef Google Scholar

    [4] Zhao YQ, Yang SY, Zhao JS et al. PbS quantum dots based organic-inorganic hybrid infrared detecting and display devices. Mater Lett 196, 176–178 (2017). doi: 10.1016/j.matlet.2017.03.009

    CrossRef Google Scholar

    [5] De Iacovo A, Venettacci C, Colace L et al. PbS colloidal quantum dot photodetectors operating in the near infrared. Sci Rep 6, 37913 (2016). doi: 10.1038/srep37913

    CrossRef Google Scholar

    [6] Ng TN, Wong WS, Chabinyc ML et al. Flexible image sensor array with bulk heterojunction organic photodiode. Appl Phys Lett 92, 213303 (2008). doi: 10.1063/1.2937018

    CrossRef Google Scholar

    [7] Yang Y, Zhang YH, Shen WZ et al. Semiconductor infrared up-conversion devices. Prog Quantum Electron 35, 77–108 (2011). doi: 10.1016/j.pquantelec.2011.05.001

    CrossRef Google Scholar

    [8] Shen TY, Qin JJ, Bai YJ et al. Giant magneto field effect in up-conversion amplified spontaneous emission via spatially extended states in organic-inorganic hybrid perovskites. Opto-Electron Adv 5, 200051 (2022). doi: 10.29026/oea.2022.200051

    CrossRef Google Scholar

    [9] Xu KM, Zhou WJ, Ning ZJ. Integrated structure and device engineering for high performance and scalable quantum dot infrared photodetectors. Small 16, 2003397 (2020). doi: 10.1002/smll.202003397

    CrossRef Google Scholar

    [10] Wu ZH, Yao WC, London AE et al. Elucidating the detectivity limits in shortwave infrared organic photodiodes. Adv Funct Mater 28, 1800391 (2018). doi: 10.1002/adfm.201800391

    CrossRef Google Scholar

    [11] Wu ZH, Zhai YC, Yao WC et al. The role of dielectric screening in organic shortwave infrared photodiodes for spectroscopic image sensing. Adv Funct Mater 28, 1805738 (2018). doi: 10.1002/adfm.201805738

    CrossRef Google Scholar

    [12] Wang WG, Wu ZH, Ye TK et al. High-performance perovskite light-emitting diodes based on double hole transport layers. J Mater Chem C 9, 2115–2122 (2021). doi: 10.1039/D0TC05669C

    CrossRef Google Scholar

    [13] He JH. High-performance warm white LED based on thermally stable all inorganic perovskite quantum dots. Opto-Electron Adv 6, 230022 (2023). doi: 10.29026/oea.2023.230022

    CrossRef Google Scholar

    [14] Lu TW, Lin XS, Guo W et al. High-speed visible light communication based on micro-LED: a technology with wide applications in next generation communication. Opto-Electron Sci 1, 220020 (2022). doi: 10.29026/oes.2022.220020

    CrossRef Google Scholar

    [15] Wu ZH, Liu P, Qu XW et al. Identifying the surface charges and their impact on carrier dynamics in quantum-dot light-emitting diodes by impedance spectroscopy. Adv Opt Mater 9, 2100389 (2021). doi: 10.1002/adom.202100389

    CrossRef Google Scholar

    [16] Wu ZH, Liu P, Zhang WD et al. Development of InP quantum dot-based light-emitting diodes. ACS Energy Lett 5, 1095–1106 (2020). doi: 10.1021/acsenergylett.9b02824

    CrossRef Google Scholar

    [17] Liu MX, Voznyy O, Sabatini R et al. Hybrid organic-inorganic inks flatten the energy landscape in colloidal quantum dot solids. Nat Mater 16, 258–263 (2017). doi: 10.1038/nmat4800

    CrossRef Google Scholar

    [18] Ning ZJ, Voznyy O, Pan J et al. Air-stable n-type colloidal quantum dot solids. Nat Mater 13, 822–828 (2014). doi: 10.1038/nmat4007

    CrossRef Google Scholar

    [19] Wang RL, Shang YQ, Kanjanaboos P et al. Colloidal quantum dot ligand engineering for high performance solar cells. Energy Environ Sci 9, 1130–1143 (2016). doi: 10.1039/C5EE03887A

    CrossRef Google Scholar

    [20] Marus M, Xia Y, Zhong HY et al. Bright infra-red quantum dot light-emitting diodes through efficient suppressing of electrons. Appl Phys Lett 116, 191103 (2020). doi: 10.1063/5.0005843

    CrossRef Google Scholar

    [21] Zhang N, Tang HD, Shi KM et al. High-performance all-solution-processed quantum dot near-infrared-to-visible upconversion devices for harvesting photogenerated electrons. Appl Phys Lett 115, 221103 (2019). doi: 10.1063/1.5124735

    CrossRef Google Scholar

    [22] Wei YZ, Ren ZW, Zhang AD et al. Hybrid organic/PbS quantum dot bilayer photodetector with low dark current and high detectivity. Adv Funct Mater 28, 1706690 (2018). doi: 10.1002/adfm.201706690

    CrossRef Google Scholar

    [23] Yu H, Kim D, Lee J et al. High-gain infrared-to-visible upconversion light-emitting phototransistors. Nat Photonics 10, 129–134 (2016). doi: 10.1038/nphoton.2015.270

    CrossRef Google Scholar

    [24] Kim DY, Choudhury KR, Lee JW et al. PbSe nanocrystal-based infrared-to-visible up-conversion device. Nano Lett 11, 2109–2113 (2011). doi: 10.1021/nl200704h

    CrossRef Google Scholar

    [25] Tang HD, Shi KM, Zhang N et al. Up-conversion device based on quantum dots with high-conversion efficiency over 6%. IEEE Access 8, 71041–71049 (2020). doi: 10.1109/ACCESS.2020.2987043

    CrossRef Google Scholar

    [26] Zhou WJ, Shang YQ, García de Arquer FP et al. Solution-processed upconversion photodetectors based on quantum dots. Nat Electron 3, 251–258 (2020). doi: 10.1038/s41928-020-0388-x

    CrossRef Google Scholar

    [27] Lee JW, Kim DY, So F. Unraveling the gain mechanism in high performance solution-processed PbS infrared PIN photodiodes. Adv Funct Mater 25, 1233–1238 (2015). doi: 10.1002/adfm.201403673

    CrossRef Google Scholar

    [28] Shen HB, Gao Q, Zhang YB et al. Visible quantum dot light-emitting diodes with simultaneous high brightness and efficiency. Nat Photonics 13, 192–197 (2019). doi: 10.1038/s41566-019-0364-z

    CrossRef Google Scholar

    [29] Mu G, Rao TY, Zhang S et al. Ultrasensitive colloidal quantum-dot upconverters for extended short-wave infrared. ACS Appl Mater Interfaces 14, 45553–45561 (2022). doi: 10.1021/acsami.2c12002

    CrossRef Google Scholar

    [30] Xu QL, Yang XX, Liu JJ et al. Elaborating the interplay between the detecting unit and emitting unit in infrared quantum dot up-conversion photodetectors. Nanoscale 15, 8197–8203 (2023). doi: 10.1039/D3NR01237A

    CrossRef Google Scholar

    [31] Chuang CHM, Brown PR, Bulović V et al. Improved performance and stability in quantum dot solar cells through band alignment engineering. Nat Mater 13, 796–801 (2014). doi: 10.1038/nmat3984

    CrossRef Google Scholar

    [32] Kumawat NK, Gupta D, Kabra D. Recent advances in metal halide-based perovskite light-emitting diodes. Energy Technol 5, 1734–1749 (2017). doi: 10.1002/ente.201700356

    CrossRef Google Scholar

    [33] Bi Y, Pradhan S, Gupta S et al. Infrared solution-processed quantum dot solar cells reaching external quantum efficiency of 80% at 1.35µm and JSC in excess of 34 mA cm-2. Adv Mater 30, 1704928 (2018). doi: 10.1002/adma.201704928

    CrossRef Google Scholar

    [34] Vafaie M, Fan JZ, Morteza Najarian A et al. Colloidal quantum dot photodetectors with 10-ns response time and 80% quantum efficiency at 1, 550nm. Matter 4, 1042–1053 (2021). doi: 10.1016/j.matt.2020.12.017

    CrossRef Google Scholar

    [35] Würfel U, Neher D, Spies A et al. Impact of charge transport on current-voltage characteristics and power-conversion efficiency of organic solar cells. Nat Commun 6, 6951 (2015). doi: 10.1038/ncomms7951

    CrossRef Google Scholar

    [36] Neher D, Kniepert J, Elimelech A et al. A new figure of merit for organic solar cells with transport-limited photocurrents. Sci Rep 6, 24861 (2016). doi: 10.1038/srep24861

    CrossRef Google Scholar

    [37] Deng YZ, Lin X, Fang W et al. Deciphering exciton-generation processes in quantum-dot electroluminescence. Nat Commun 11, 2309 (2020). doi: 10.1038/s41467-020-15944-z

    CrossRef Google Scholar

  • Supplementary information for Unraveling the efficiency losses and improving methods in quantum dot-based infrared up-conversion photodetectors
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(4)

Article Metrics

Article views(1272) PDF downloads(356) Cited by(0)

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint