Lai SQ, Liu SB, Li ZL, Zhang ZN, Chen Z et al. Applications of lasers: A promising route toward low-cost fabrication of high-efficiency full-color micro-LED displays. Opto-Electron Sci 2, 230028 (2023). doi: 10.29026/oes.2023.230028
Citation: Lai SQ, Liu SB, Li ZL, Zhang ZN, Chen Z et al. Applications of lasers: A promising route toward low-cost fabrication of high-efficiency full-color micro-LED displays. Opto-Electron Sci 2, 230028 (2023). doi: 10.29026/oes.2023.230028

Review Open Access

Applications of lasers: A promising route toward low-cost fabrication of high-efficiency full-color micro-LED displays

More Information
  • Micro-light-emitting diodes (micro-LEDs) with outstanding performance are promising candidates for next-generation displays. To achieve the application of high-resolution displays such as meta-displays, virtual reality, and wearable electronics, the size of LEDs must be reduced to the micro-scale. Thus, traditional technology cannot meet the demand during the processing of micro-LEDs. Recently, lasers with short-duration pulses have attracted attention because of their unique advantages during micro-LED processing such as noncontact processing, adjustable energy and speed of the laser beam, no cutting force acting on the devices, high efficiency, and low cost. Herein, we review the techniques and principles of laser-based technologies for micro-LED displays, including chip dicing, geometry shaping, annealing, laser-assisted bonding, laser lift-off, defect detection, laser repair, mass transfer, and optimization of quantum dot color conversion films. Moreover, the future prospects and challenges of laser-based techniques for micro-LED displays are discussed.
  • 加载中
  • [1] Zhu SJ, Shan XY, Lin RZ, Qiu PJ, Wang Z et al. Characteristics of GaN-on-Si green micro-LED for wide color gamut display and high-speed visible light communication. ACS Photonics 10, 92–100 (2023).

    Google Scholar

    [2] Wu TZ, Sher CW, Lin Y, Lee CF, Liang SJ et al. Mini-LED and micro-LED: promising candidates for the next generation display technology. Appl Sci 8, 1557 (2018). doi: 10.3390/app8091557

    CrossRef Google Scholar

    [3] Qian YZ, Yang ZY, Huang YH, Lin KH, Wu ST. Directional high-efficiency nanowire LEDs with reduced angular color shift for AR and VR displays. Opto-Electron Sci 1, 220021 (2022). doi: 10.29026/oes.2022.220021

    CrossRef Google Scholar

    [4] Chen SWH, Shen CC, Wu TZ, Liao ZY, Chen LF et al. Full-color monolithic hybrid quantum dot nanoring micro light-emitting diodes with improved efficiency using atomic layer deposition and nonradiative resonant energy transfer. Photonics Res 7, 416–422 (2019). doi: 10.1364/PRJ.7.000416

    CrossRef Google Scholar

    [5] Xiong JH, Hsiang EL, He ZQ, Zhan T, Wu ST. Augmented reality and virtual reality displays: emerging technologies and future perspectives. Light Sci Appl 10, 216 (2021). doi: 10.1038/s41377-021-00658-8

    CrossRef Google Scholar

    [6] Hsiang EL, Yang ZY, Yang Q, Lai PC, Lin CL et al. AR/VR light engines: perspectives and challenges. Adv Opt Photonics 14, 783–861 (2022). doi: 10.1364/AOP.468066

    CrossRef Google Scholar

    [7] Chen Z, Yan SK, Danesh C. MicroLED technologies and applications: characteristics, fabrication, progress, and challenges. J Phys D Appl Phys 54, 123001 (2021). doi: 10.1088/1361-6463/abcfe4

    CrossRef Google Scholar

    [8] Lai SQ, Li QX, Long H, Ying LY, Zheng ZW et al. Theoretical study and optimization of the green InGaN/GaN multiple quantum wells with pre-layer. Superlattices Microstruct 155, 106906 (2021). doi: 10.1016/j.spmi.2021.106906

    CrossRef Google Scholar

    [9] Lin JY, Jiang HX. Development of microLED. Appl Phys Lett 116, 100502 (2020). doi: 10.1063/1.5145201

    CrossRef Google Scholar

    [10] Zhang FL, Su ZC, Li Z, Zhu Y, Gagrani N et al. High-speed multiwavelength InGaAs/InP quantum well nanowire array micro-LEDs for next generation optical communications. Opto-Electron Sci 2, 230003 (2023). doi: 10.29026/oes.2023.230003

    CrossRef Google Scholar

    [11] Lu TW, Lin XS, Guo QA, Tu CC, Liu SB et al. High-speed visible light communication based on micro-LED: A technology with wide applications in next generation communication. Opto-Electron Sci 1, 220020 (2022). doi: 10.29026/oes.2022.220020

    CrossRef Google Scholar

    [12] Yeh YW, Lin SH, Hsu TC, Lai SQ, Lee PT et al. Advanced atomic layer deposition technologies for micro-LEDs and VCSELs. Nanoscale Res Lett 16, 164 (2021). doi: 10.1186/s11671-021-03623-x

    CrossRef Google Scholar

    [13] Chen SWH, Huang YM, Singh KJ, Hsu YC, Liou FJ et al. Full-color micro-LED display with high color stability using semipolar (20-21) InGaN LEDs and quantum-dot photoresist. Photonics Res 8, 630–636 (2020). doi: 10.1364/PRJ.388958

    CrossRef Google Scholar

    [14] Meng WQ, Xu FF, Yu ZH, Tao T, Shao LW et al. Three-dimensional monolithic micro-LED display driven by atomically thin transistor matrix. Nat Nanotechnol 16, 1231–1236 (2021). doi: 10.1038/s41565-021-00966-5

    CrossRef Google Scholar

    [15] Lee HE, Lee D, Lee TI, Shin JH, Choi GM et al. Wireless powered wearable micro light-emitting diodes. Nano Energy 55, 454–462 (2019). doi: 10.1016/j.nanoen.2018.11.017

    CrossRef Google Scholar

    [16] Yang X, Lin Y, Wu TZ, Yan ZJ, Chen Z et al. An overview on the principle of inkjet printing technique and its application in micro-display for augmented/virtual realities. Opto-Electron Adv 5, 210123 (2022). doi: 10.29026/oea.2022.210123

    CrossRef Google Scholar

    [17] Fan XT, Wu TZ, Liu B, Zhang R, Kuo HC et al. Recent developments of quantum dot based micro-LED based on non-radiative energy transfer mechanism. Opto-Electron Adv 4, 210022 (2021). doi: 10.29026/oea.2021.210022

    CrossRef Google Scholar

    [18] McCall SL, Levi AFJ, Slusher RE, Pearton SJ, Logan RA. Whispering-gallery mode microdisk lasers. Appl Phys Lett 60, 289–291 (1992). doi: 10.1063/1.106688

    CrossRef Google Scholar

    [19] Jin SX, Li J, Li JZ, Lin JY, Jiang HX. GaN microdisk light emitting diodes. Appl Phys Lett 76, 631–633 (2000). doi: 10.1063/1.125841

    CrossRef Google Scholar

    [20] Jin SX, Shakya J, Lin JY, Jiang HX. Size dependence of III-nitride microdisk light-emitting diode characteristics. Appl Phys Lett 78, 3532–3534 (2001). doi: 10.1063/1.1376152

    CrossRef Google Scholar

    [21] Jeon CW, Choi HW, Gu E, Dawson MD. High-density matrix-addressable AlInGaN-based 368-nm microarray light-emitting diodes. IEEE Photonics Technol Lett 16, 2421–2423 (2004). doi: 10.1109/LPT.2004.835626

    CrossRef Google Scholar

    [22] Liu ZJ, Chong WC, Wong KM, Lau KM. 360 PPI flip-chip mounted active matrix addressable light emitting diode on silicon (LEDoS) micro-displays. J Disp Technol 9, 678–682 (2013). doi: 10.1109/JDT.2013.2256107

    CrossRef Google Scholar

    [23] Chong WC, Cho WK, Liu ZJ, Wang CH, Lau KM. 1700 pixels per inch (PPI) passive-matrix micro-LED display powered by ASIC. In IEEE Compound Semiconductor Integrated Circuit Symposium 1–4 (IEEE, 2014);http://doi.org/10.1109/CSICS.2014.6978524.

    Google Scholar

    [24] Liu ZJ, Zhang K, Liu YB, Yan SW, Kwok HS et al. Fully multi-functional GaN-based micro-LEDs for 2500 PPI micro-displays, temperature sensing, light energy harvesting, and light detection. In IEEE International Electron Devices Meeting (IEDM) 38.1. 1–38.1. 4 (IEEE, 2018);http://doi.org/10.1109/IEDM.2018.8614692.

    Google Scholar

    [25] Tian PF, McKendry JJD, Gong Z, Zheng SL, Watson S et al. Characteristics and applications of micro-pixelated GaN-based light emitting diodes on Si substrates. J Appl Phys 115, 033112 (2014). doi: 10.1063/1.4862298

    CrossRef Google Scholar

    [26] Zhuang Z, Guo X, Liu B, Hu FR, Li Y et al. High color rendering index hybrid III-nitride/nanocrystals white light-emitting diodes. Adv Funct Mater 26, 36–43 (2016). doi: 10.1002/adfm.201502870

    CrossRef Google Scholar

    [27] Zhou YJ, Zhu X, Hu FC, Shi JY, Wang FM et al. Common-anode LED on a Si substrate for beyond 15 Gbit/s underwater visible light communication. Photonics Res 7, 1019–1029 (2019). doi: 10.1364/PRJ.7.001019

    CrossRef Google Scholar

    [28] Chen SWH, Huang YM, Chang YH, Lin Y, Liou FJ et al. High-bandwidth green semipolar (20–21) InGaN/GaN micro light-emitting diodes for visible light communication. ACS Photonics 7, 2228–2235 (2020). doi: 10.1021/acsphotonics.0c00764

    CrossRef Google Scholar

    [29] Wu TZ, Lin Y, Huang YM, Liu M, Singh KJ et al. Highly stable full-color display device with VLC application potential using semipolar μLEDs and all-inorganic encapsulated perovskite nanocrystal. Photonics Res 9, 2132–2143 (2021). doi: 10.1364/PRJ.431095

    CrossRef Google Scholar

    [30] Hassan NB, Dehkhoda F, Xie EY, Herrnsdorf J, Strain MJ et al. Ultrahigh frame rate digital light projector using chip-scale LED-on-CMOS technology. Photonics Res 10, 2434–2446 (2022). doi: 10.1364/PRJ.455574

    CrossRef Google Scholar

    [31] Zhu GQ, Liu YJ, Ming R, Shi F, Cheng MJ. Mass transfer, detection and repair technologies in micro-LED displays. Sci China Mater 65, 2128–2153 (2022). doi: 10.1007/s40843-022-2110-2

    CrossRef Google Scholar

    [32] Linghu CH, Zhang S, Wang CJ, Luo HY, Song JZ. Mass transfer for micro-LED display: transfer printing techniques. Semicond Semimetals 106, 253–280 (2021).

    Google Scholar

    [33] Tian WY, Wu YS, Wu TX, Dou L, Cao X et al. Mechanisms and performance analysis of GaN-based micro-LED grown on pattern sapphire substrate by laser lift-off Process. ECS J Solid State Sci Technol 11, 046001 (2022). doi: 10.1149/2162-8777/ac63e5

    CrossRef Google Scholar

    [34] Wei Q, Zhou F, Xu WZ, Ren FF, Zhou D et al. Demonstration of vertical GaN schottky barrier diode with robust electrothermal ruggedness and fast switching capability by eutectic bonding and laser lift-off techniques. IEEE J Electron Devices Soc 10, 1003–1008 (2022). doi: 10.1109/JEDS.2022.3222081

    CrossRef Google Scholar

    [35] Lu H, Guo WJ, Su CW, Li XL, Lu YJ et al. Optimization on adhesive stamp Mass-transfer of Micro-LEDs with support vector machine model. IEEE J Electron Devices Soc 8, 554–558 (2020). doi: 10.1109/JEDS.2020.2995710

    CrossRef Google Scholar

    [36] Chen FR, Bian J, Hu JL, Sun NN, Yang B et al. Mass transfer techniques for large-scale and high-density microLED arrays. Int J Extrem Manuf 4, 042005 (2022). doi: 10.1088/2631-7990/ac92ee

    CrossRef Google Scholar

    [37] Leitão MF, Islim MS, Yin L, Viola S, Watson S et al. MicroLED-pumped perovskite quantum dot color converter for visible light communications. In IEEE Photonics Conference 69–70 (IEEE, 2017); http://doi.org/10.1109/IPCon.2017.8116011.

    Google Scholar

    [38] https://www.ledinside.cn/interview/20230515-55051.html.

    Google Scholar

    [39] https://www.ledinside.cn/news/20230601-55182.html.

    Google Scholar

    [40] https://m.ledinside.cn/news/20230505-54971.html.

    Google Scholar

    [41] Gu E, Jeon CW, Choi HW, Rice G, Dawson MD et al. Micromachining and dicing of sapphire, gallium nitride and micro LED devices with UV copper vapour laser. Thin Solid Films 453–454, 462–466 (2004).

    Google Scholar

    [42] Guo YN, Zhang Y, Yan JC, Chen X, Zhang S et al. Sapphire substrate sidewall shaping of deep ultraviolet light-emitting diodes by picosecond laser multiple scribing. Appl Phys Express 10, 062101 (2017). doi: 10.7567/APEX.10.062101

    CrossRef Google Scholar

    [43] Zheng BS, Ho CL, Cheng KY, Liao CL, Wu MC et al. Improved contact characteristics of laser-annealed p-GaN coated with Ni films. J Appl Phys 118, 085706 (2015). doi: 10.1063/1.4929522

    CrossRef Google Scholar

    [44] Park JB, Lee KH, Han SH, Chung TH, Kwak MK et al. Stable and efficient transfer-printing including repair using a GaN-based microscale light-emitting diode array for deformable displays. Sci Rep 9, 11551 (2019). doi: 10.1038/s41598-019-47449-1

    CrossRef Google Scholar

    [45] Haupt O, Brune J, Fatahilah M, Delmdahl R. MicroLEDs: high precision large scale UV laser lift-off and mass transfer processes. Proc SPIE 11989, 119890I (2022).

    Google Scholar

    [46] Yang X, Yan ZJ, Zhong CM, Jia H, Chen GL et al. Electrohydrodynamically printed high-resolution arrays based on stabilized CsPbBr3 quantum dot inks. Adv Funct Mater 11, 2202673 (2023).

    Google Scholar

    [47] Zhou XJ, Tian PF, Sher CW, Wu J, Liu HZ et al. Growth, transfer printing and colour conversion techniques towards full-colour micro-LED display. Prog Quantum Electron 71, 100263 (2020). doi: 10.1016/j.pquantelec.2020.100263

    CrossRef Google Scholar

    [48] Pan ZJ, Chen ZZ, Jiao F, Zhan JL, Chen YY et al. A review of key technologies for epitaxy and chip process of micro light-emitting diodes in display application. Acta Phys Sin 69, 198501 (2020). doi: 10.7498/aps.69.20200742

    CrossRef Google Scholar

    [49] Liu ZJ, Hyun BR, Sheng YJ, Lin CJ, Changhu M et al. Micro-light-emitting diodes based on InGaN materials with quantum dots. Adv Mater Technol 7, 2101189 (2022). doi: 10.1002/admt.202101189

    CrossRef Google Scholar

    [50] Choi M, Jang B, Lee W, Lee S, Kim TW et al. Stretchable active matrix inorganic light-emitting diode display enabled by overlay-aligned roll-transfer printing. Adv Funct Mater 27, 1606005 (2017). doi: 10.1002/adfm.201606005

    CrossRef Google Scholar

    [51] Charipar N, Auyeung RCY, Kim H, Charipar K, Piqué A. Hierarchical laser patterning of indium tin oxide thin films. Opt Mater Express 9, 3035–3045 (2019). doi: 10.1364/OME.9.003035

    CrossRef Google Scholar

    [52] Behrman K, Fouilloux J, Ireland T, Fern GR, Silver J et al. Early defect identification for micro light-emitting diode displays via photoluminescent and cathodoluminescent imaging. J Soc Inf Disp 29, 264–274 (2021). doi: 10.1002/jsid.985

    CrossRef Google Scholar

    [53] Shi SC, Bai WH, Lin CJ, Xuan TT, Dong GY et al. Uniformity and stability of quantum dot pixels evaluated by microscale fluorescence spectroscopy. Laser Photonics Rev 16, 2100699 (2022). doi: 10.1002/lpor.202100699

    CrossRef Google Scholar

    [54] Wang L, Pan ZX, Li B, Wang JJ, Guan XJ et al. Mechanism analysis of proton irradiation-induced increase of 3-dB bandwidth of GaN-based microlight-emitting diodes for space light communication. IEEE Trans Nucl Sci 67, 1360–1364 (2020). doi: 10.1109/TNS.2020.2964334

    CrossRef Google Scholar

    [55] Boussadi Y, Rochat N, Barnes JP, Bakir BB, Ferrandis P et al. Investigation of sidewall damage induced by reactive ion etching on AlGaInP MESA for micro-LED application. J Lumin 234, 117937 (2021). doi: 10.1016/j.jlumin.2021.117937

    CrossRef Google Scholar

    [56] Wong MS, Hwang D, Alhassan AI, Lee C, Ley R et al. High efficiency of III-nitride micro-light-emitting diodes by sidewall passivation using atomic layer deposition. Opt Express 26, 21324–21331 (2018). doi: 10.1364/OE.26.021324

    CrossRef Google Scholar

    [57] Mikulics M, Kordoš P, Gregušová D, Sofer Z, Winden A et al. Conditioning nano-LEDs in arrays by laser-micro-annealing: the key to their performance improvement. Appl Phys Lett 118, 043101 (2021). doi: 10.1063/5.0038070

    CrossRef Google Scholar

    [58] Wang H, Wang L, Sun J, Guo TL, Chen EG et al. Role of surface microstructure and shape on light extraction efficiency enhancement of GaN micro-LEDs: a numerical simulation study. Displays 73, 102172 (2022). doi: 10.1016/j.displa.2022.102172

    CrossRef Google Scholar

    [59] Lai SQ, Lin WS, Chen JL, Lu TW, Liu SB et al. The impacts of sidewall passivation via atomic layer deposition on GaN-based flip-chip blue mini-LEDs. J Phys D Appl Phys 55, 374001 (2022). doi: 10.1088/1361-6463/ac7b51

    CrossRef Google Scholar

    [60] Xu Y, Cui JW, Hu ZL, Gao X, Gao X et al. Pixel crosstalk in naked-eye micro-LED 3D display. Appl Opt 60, 5977–5983 (2021). doi: 10.1364/AO.429975

    CrossRef Google Scholar

    [61] Kim JH, Kim BC, Lim DW, Shin BC. Control of adhesion force for micro LED transfer using a magnetorheological elastomer. J Mech Sci Technol 33, 5321–5325 (2019). doi: 10.1007/s12206-019-1024-4

    CrossRef Google Scholar

    [62] Mei Y, Xie MC, Yang T, Hou X, Ou W et al. Improvement of the emission intensity of GaN-based micro-light emitting diodes by a suspended structure. ACS Photonics 9, 3967–3973 (2022). doi: 10.1021/acsphotonics.2c01366

    CrossRef Google Scholar

    [63] Wu YF, Ma JS, Su P, Zhang LJ, Xia BZ. Full-color realization of micro-LED displays. Nanomaterials 10, 2482 (2020). doi: 10.3390/nano10122482

    CrossRef Google Scholar

    [64] Lin CH, Kang CY, Verma A, Wu TZ, Pai YM et al. Ultrawide color gamut perovskite and CdSe/ZnS quantum-dots-based white light-emitting diode with high luminous efficiency. Nanomaterials 9, 1314 (2019). doi: 10.3390/nano9091314

    CrossRef Google Scholar

    [65] Cai YF, Bai J, Wang T. Review of a direct epitaxial approach to achieving micro-LEDs. Chin Phys B 32, 018508 (2023). doi: 10.1088/1674-1056/ac90b5

    CrossRef Google Scholar

    [66] Steffen B, Nursidik Y, Hendrik S, Yuliati H, Joan DP et al. Femtosecond laser lift-off with sub-bandgap excitation for production of free-standing GaN light-emitting diode chips. Adv Eng Mater 22, 1901192 (2019). doi: 10.1002/adem.201901192

    CrossRef Google Scholar

    [67] Fan SKS, Hsu CY, Jen CH, Chen KL, Juan LT. Defective wafer detection using a denoising autoencoder for semiconductor manufacturing processes. Adv Eng Inf 46, 101166 (2020). doi: 10.1016/j.aei.2020.101166

    CrossRef Google Scholar

    [68] Bi ZX, Chen Z, Danesh F, Samuelson L. From nanoLEDs to the realization of RGB-emitting microLEDs. Semicond Semimetals 106, 223–251 (2021).

    Google Scholar

    [69] Li XH, Kundaliya D, Tan ZJ, Anc M, Fang NX. Quantum dots color converters for microLEDs: material composite and patterning technology. In 2020 Conference on Lasers and Electro-Optics (CLEO) 1–2 (IEEE, 2020);http://doi.org/10.1364/CLEO_SI.2020.STu3P.7.

    Google Scholar

    [70] Lai SQ, Lu TW, Lin SH, Lin Y, Lin GC et al. Improved modulation bandwidth of blue Mini-LEDs by atomic-layer deposition sidewall passivation. IEEE Trans Electron Devices 69, 4936–4943 (2022). doi: 10.1109/TED.2022.3188738

    CrossRef Google Scholar

    [71] Wang L, Liu NY, Li B, Zhu HP, Shan XT et al. Comparison of X-ray and proton irradiation effects on the characteristics of InGaN/GaN multiple quantum wells light-emitting diodes. IEEE Trans Nucl Sci 67, 1345–1350 (2020). doi: 10.1109/TNS.2020.2975002

    CrossRef Google Scholar

    [72] Zhou R, Lin SD, Ding Y, Yang H, Ong YKK et al. Enhancement of laser ablation via interacting spatial double-pulse effect. Opto-Electron Adv 1, 180014 (2018).

    Google Scholar

    [73] Bellouard Y, Lehnert T, Clavel R, Sidler T, Gotthardt R. Laser annealing of shape memory alloys: a versatile tool for developing smart micro-devices. J Phys IV 11, Pr8-571–Pr8-576 (2001).

    Google Scholar

    [74] Dai YT, Xu G, Cui JL, Bai F. Laser microstructuring of sapphire wafer and fiber. Proc SPIE 7590, 75900O (2010). doi: 10.1117/12.841098

    CrossRef Google Scholar

    [75] Windemuth R. Plasma dicing for thin wafers. In European Microelectronics Packaging Conference (EMPC) 1–4 (IEEE, 2015). https://ieeexplore.ieee.org/document/7390697

    Google Scholar

    [76] Li ZQ, Wang XF, Wang JL, Allegre O, Guo W et al. Stealth dicing of sapphire sheets with low surface roughness, zero kerf width, debris/crack-free and zero taper using a femtosecond Bessel beam. Opt Laser Technol 135, 106713 (2021). doi: 10.1016/j.optlastec.2020.106713

    CrossRef Google Scholar

    [77] Yadav A, Kbashi H, Kolpakov S, Gordon N, Zhou KM et al. Stealth dicing of sapphire wafers with near infra-red femtosecond pulses. Appl Phys A 123, 369 (2017). doi: 10.1007/s00339-017-0927-0

    CrossRef Google Scholar

    [78] Shah AP, Laskar MR, Rahman AA, Gokhale MR, Bhattacharya A. Inductively coupled plasma reactive ion etching of III-nitride semiconductors. AIP Conf Proc 1512, 494–495 (2013).

    Google Scholar

    [79] Chang KP, Lien PC, Yen CC, Chen PW, Horng RH et al. High performance AlGaInP-based micro-LED displays with novel pixel structures. IEEE Photonics Technol Lett 33, 1375–1378 (2021). doi: 10.1109/LPT.2021.3123447

    CrossRef Google Scholar

    [80] Zhang KX, Takahashi T, Ohori D, Cong GW, Endo K et al. High-quality nanodisk of InGaN/GaN MQWs fabricated by neutral-beam-etching and GaN regrowth: towards directional micro-LED in top-down structure. Semicond Sci Technol 35, 075001 (2020). doi: 10.1088/1361-6641/ab8539

    CrossRef Google Scholar

    [81] Fu WY, Hui KN, Wang XH, Wong K, Lai PT et al. Geometrical shaping of InGaN light-emitting diodes by laser micromachining. IEEE Photonics Technol Lett 21, 1078–1080 (2009). doi: 10.1109/LPT.2009.2022751

    CrossRef Google Scholar

    [82] Lin CM, Lin CF, Shieh BC, Yu TY, Chen SH et al. InGaN-Based Light-Emitting Diodes with a Sawtooth-shaped sidewall on sapphire substrate. IEEE Photonics Technol Lett 24, 1133–1135 (2012). doi: 10.1109/LPT.2012.2196511

    CrossRef Google Scholar

    [83] Lin CF, Lin CM, Chen KT, Huang WC, Lin MS et al. Blue light-emitting diodes with a roughened backside fabricated by wet etching. Appl Phys Lett 95, 201102 (2009). doi: 10.1063/1.3262968

    CrossRef Google Scholar

    [84] Li Y, Hong MH. Parallel laser micro/nano-processing for functional device fabrication. Laser Photonics Rev 14, 1900062 (2020). doi: 10.1002/lpor.201900062

    CrossRef Google Scholar

    [85] Voronenkov V, Bochkareva N, Gorbunov R, Zubrilov A, Kogotkov V et al. Laser slicing: a thin film lift-off method for GaN-on-GaN technology. Results Phys 13, 102233 (2019). doi: 10.1016/j.rinp.2019.102233

    CrossRef Google Scholar

    [86] Ludger O, Simon NG, Matthias S, Jan FD. On-the-fly bare die bonding based on laser induced forward transfer (LIFT). CIRP Annals 71, 41 (2022). doi: 10.1016/j.cirp.2022.03.042

    CrossRef Google Scholar

    [87] Wang FC, Liu Q, Xia JW, Huang MQ, Wang XF et al. Laser lift-off technologies for ultra-thin emerging electronics: mechanisms, applications, and progress. Adv Mater Technol 8, 2201186 (2023). doi: 10.1002/admt.202201186

    CrossRef Google Scholar

    [88] Gong YF, Gong Z. Laser-based micro/nano-processing techniques for microscale LEDs and full-color displays. Adv Mater Technol 8, 2200949 (2023). doi: 10.1002/admt.202200949

    CrossRef Google Scholar

    [89] Otto I, Mounir C, Nirschl A, Pfeuffer A, Schäpers T et al. Micro-pixel light emitting diodes: impact of the chip process on microscopic electro- and photoluminescence. Appl Phys Lett 106, 151108 (2015). doi: 10.1063/1.4918678

    CrossRef Google Scholar

    [90] Han SC, Xu CC, Li HJ, Liu SG, Xu HW et al. AlGaInP-based micro-LED array with enhanced optoelectrical properties. Opt Mater 114, 110860 (2021). doi: 10.1016/j.optmat.2021.110860

    CrossRef Google Scholar

    [91] Fu WY, Choi HW. Progress and prospects of III-nitride optoelectronic devices adopting lift-off processes. J Appl Phys 132, 060903 (2022). doi: 10.1063/5.0089750

    CrossRef Google Scholar

    [92] Sun WG, Ji LF, Lin ZY, Zheng JC, Wan ZY et al. Low-energy UV ultrafast laser controlled lift-off for high-quality flexible GaN-based device. Adv Funct Mater 32, 2111920 (2022). doi: 10.1002/adfm.202111920

    CrossRef Google Scholar

    [93] Kelly MK, Vaudo RP, Phanse VM, Görgens L, Ambacher O. Large Free-standing GaN substrates by hydride vapor phase epitaxy and laser-induced liftoff. Jpn J Appl Phys 38, L217–L219 (1999). doi: 10.1143/JJAP.38.L217

    CrossRef Google Scholar

    [94] Delmdahl R, Pätzel R, Brune J. Large-area laser-lift-off processing in microelectronics. Phys Procedia 41, 241–248 (2013). doi: 10.1016/j.phpro.2013.03.075

    CrossRef Google Scholar

    [95] Han HV, Lin HY, Lin CC, Chong WC, Li JR et al. Resonant-enhanced full-color emission of quantum-dot-based micro LED display technology. Opt Express 23, 32504–32515 (2015). doi: 10.1364/OE.23.032504

    CrossRef Google Scholar

    [96] Park S, Ko JH. Robust inspection of micro-LED chip defects using unsupervised anomaly detection. In International Conference on Information and Communication Technology Convergence (ICTC) 1841–1843 (IEEE, 2021);http://doi.org/10.1109/ICTC52510.2021.9620801.

    Google Scholar

    [97] Zhou RJ, Edwards C, Bryniarski CA, Popescu C, Goddard LL. 9nm node wafer defect inspection using three-dimensional scanning, a 405nm diode laser, and a broadband source. Proc SPIE 9424, 942416 (2015).

    Google Scholar

    [98] Kim K, Jung G, Kim J, Sung Y, Kang J et al. Correlation between photoluminescence and electroluminescence in GaN-related micro light emitting diodes: effects of leakage current, applied bias, incident light absorption and carrier escape. Opt Mater 120, 111448 (2021). doi: 10.1016/j.optmat.2021.111448

    CrossRef Google Scholar

    [99] Gui CQ, Ding XH, Zhou SJ, Gao YL, Liu XT et al. Nanoscale Ni/Au wire grids as transparent conductive electrodes in ultraviolet light-emitting diodes by laser direct writing. Opt Laser Technol 104, 112–117 (2018). doi: 10.1016/j.optlastec.2018.02.030

    CrossRef Google Scholar

    [100] Kuntoğlu M, Salur E, Canli E, Aslan A, Gupta MK et al. A state of the art on surface morphology of selective laser-melted metallic alloys. Int J Adv Manuf Technol 127, 1103–1142 (2023). doi: 10.1007/s00170-023-11534-7

    CrossRef Google Scholar

    [101] Zhang ZQ, Li DH, Li SC, Deng HL, Zhang SY et al. Effect of direct aging treatment on microstructure, mechanical and corrosion properties of a Si-Zr-Er modified Al-Zn-Mg-Cu alloy prepared by selective laser melting technology. Mater Charact 194, 112459 (2022). doi: 10.1016/j.matchar.2022.112459

    CrossRef Google Scholar

    [102] Gnanamuthu DS, Shankar VS. Laser heat treatment of iron-base alloys. Proc SPIE 527, 56–72 (1985). doi: 10.1117/12.946396

    CrossRef Google Scholar

    [103] Imam HZ, Al-Musaibeli H, Zheng YF, Martinez P, Ahmad R. Vision-based spatial damage localization method for autonomous robotic laser cladding repair processes. Robot Comput Integr Manuf 80, 102452 (2023). doi: 10.1016/j.rcim.2022.102452

    CrossRef Google Scholar

    [104] Taha K, Salah K, Yoo PD. Clustering the dominant defective patterns in semiconductor wafer maps. IEEE Trans Semicond Manuf 31, 156–165 (2018). doi: 10.1109/TSM.2017.2768323

    CrossRef Google Scholar

    [105] Bai HT, Tang H, Feng ZY, Liao ZS, Gao J et al. Development of a novel intelligent adjustable vision algorithm for LED chip repairing. IEEE Trans Ind Electron 69, 7109–7119 (2022). doi: 10.1109/TIE.2021.3095801

    CrossRef Google Scholar

    [106] Cok RS, Meitl M, Rotzoll R, Melnik G, Fecioru A et al. Inorganic light-emitting diode displays using micro-transfer printing. J Soc Inf Disp 25, 589–609 (2017). doi: 10.1002/jsid.610

    CrossRef Google Scholar

    [107] Choi KS, Joo J, Eom YS, Choi GM, Jang KS et al. Simultaneous transfer and bonding (SITRAB) process for Micro-LEDs using laser-assisted bonding with compression (LABC) process and SITRAB adhesive. In IEEE 71st Electronic Components and Technology Conference (ECTC) 1607–1613 (IEEE, 2021); http://doi.org/10.1109/ECTC32696.2021.00255.

    Google Scholar

    [108] Choi KS, Joo J, Choi GM, Yun HG, Moon SH et al. Laser-Assisted Bonding (LAB) Process and its bonding materials as technologies enabling the low-carbon era. In IEEE 72nd Electronic Components and Technology Conference (ECTC) 198–203 (IEEE, 2022);http://doi.org/10.1109/ECTC51906.2022.00042.

    Google Scholar

    [109] Lu XY, Zhu SJ, Lin RZ, Sun D, Cui XG et al. Performance improvement of red InGaN micro-LEDs by transfer printing from Si substrate onto glass substrate. IEEE Electron Device Lett 43, 1491–1494 (2022). doi: 10.1109/LED.2022.3189443

    CrossRef Google Scholar

    [110] Pan ZX, Guo C, Wang XC, Liu JC, Cao RM et al. Wafer-Scale Micro-LEDs Transferred onto an adhesive film for planar and flexible displays. Adv Mater Technol 5, 2000549 (2020). doi: 10.1002/admt.202000549

    CrossRef Google Scholar

    [111] Kim S, Jiang YJ, Towell KLT, Boutilier MSH, Nayakanti N et al. Soft nanocomposite electroadhesives for digital micro- and nanotransfer printing. Sci Adv 5, eaax4790 (2019). doi: 10.1126/sciadv.aax4790

    CrossRef Google Scholar

    [112] Trindade AJ, Guilhabert B, Xie EY, Ferreira R, Mckendry JJD et al. Heterogeneous integration of gallium nitride light-emitting diodes on diamond and silica by transfer printing. Opt Express 23, 9329–9338 (2015). doi: 10.1364/OE.23.009329

    CrossRef Google Scholar

    [113] Feinaeugle M, Gregorčič P, Heath DJ, Mills B, Eason RW. Time-resolved imaging of flyer dynamics for femtosecond laser-induced backward transfer of solid polymer thin films. Appl Surf Sci 396, 1231–1238 (2017). doi: 10.1016/j.apsusc.2016.11.120

    CrossRef Google Scholar

    [114] Zhang S, Luo HY, Wang SH, Chen Z, Nie S et al. A thermal actuated switchable dry adhesive with high reversibility for transfer printing. Int J Extrem Manuf 3, 035103 (2021). doi: 10.1088/2631-7990/abff69

    CrossRef Google Scholar

    [115] Marinov VR. Laser-enabled extremely-high rate technology for µLED assembly. SID Symp Dig Tech Pap 49, 692–695 (2018).

    Google Scholar

    [116] Prevatte C, Guven I, Ghosal K, Gomez D, Moore T et al. Pressure activated interconnection of micro transfer printed components. Appl Phys Lett 108, 203503 (2016). doi: 10.1063/1.4950992

    CrossRef Google Scholar

    [117] Ye N, Muliuk G, Zhang J, Abbasi A, Trindade AJ et al. Transfer print integration of waveguide-coupled germanium photodiodes onto passive silicon photonic ICs. J Lightwave Technol 36, 1249–1254 (2018). doi: 10.1109/JLT.2017.2777509

    CrossRef Google Scholar

    [118] Marinov VR, Swenson O, Atanasov Y, Schneck N. Laser-assisted ultrathin die packaging: insights from a process study. Microelectron Eng 101, 23–30 (2013). doi: 10.1016/j.mee.2012.08.016

    CrossRef Google Scholar

    [119] Kim S, Wu J, Carlson A, Jin SH, Kovalsky A et al. Microstructured elastomeric surfaces with reversible adhesion and examples of their use in deterministic assembly by transfer printing. Proc Natl Acad Sci USA 107, 17095–17100 (2010). doi: 10.1073/pnas.1005828107

    CrossRef Google Scholar

    [120] Bartlett MD, Crosby AJ. Material transfer controlled by elastomeric layer thickness. Mater Horiz 1, 507–512 (2014). doi: 10.1039/C4MH00106K

    CrossRef Google Scholar

    [121] Tasoglu S, Yu CH, Gungordu HI, Guven S, Vural T et al. Guided and magnetic self-assembly of tunable magnetoceptive gels. Nat Commun 5, 4702 (2014). doi: 10.1038/ncomms5702

    CrossRef Google Scholar

    [122] Dendukuri D, Hatton TA, Doyle PS. Synthesis and self-assembly of amphiphilic polymeric microparticles. Langmuir 23, 4669–4674 (2007). doi: 10.1021/la062512i

    CrossRef Google Scholar

    [123] Shin J, Kim H, Sundaram S, Jeong J, Park BI et al. Vertical full-colour micro-LEDs via 2D materials-based layer transfer. Nature 614, 81–87 (2023). doi: 10.1038/s41586-022-05612-1

    CrossRef Google Scholar

    [124] Kim J, Kim JH, Cho SH, Whang KH. Selective lift-off of GaN light-emitting diode from a sapphire substrate using 266-nm diode-pumped solid-state laser irradiation. Appl Phys A 122, 305 (2016). doi: 10.1007/s00339-016-9928-7

    CrossRef Google Scholar

    [125] Tang SKY, Derda R, Mazzeo AD, Whitesides GM. Reconfigurable self-assembly of mesoscale optical components at a liquid-liquid interface. Adv Mater 23, 2413–2418 (2011). doi: 10.1002/adma.201100067

    CrossRef Google Scholar

    [126] Hulteen JC, van Duyne RP. Nanosphere lithography: a materials general fabrication process for periodic particle array surfaces. J Vac Sci Technol 13, 1553–1558 (1995). doi: 10.1116/1.579726

    CrossRef Google Scholar

    [127] Kantrowitz A. Propulsion to orbit by ground-based lasers. Astronaut Aeronaut 10, 74–76 (1972).

    Google Scholar

    [128] Al-Attar HM, Mohammad MH, Alwan AH. Laser ablation of asphalt and coal in different solvents an in vitro study. Lasers Med Sci 38, 135 (2023). doi: 10.1007/s10103-023-03796-0

    CrossRef Google Scholar

    [129] Holmes AS. Laser processes for MEMS manufacture. Proc SPIE 4426, 203–209 (2002). doi: 10.1117/12.456807

    CrossRef Google Scholar

    [130] Li JW, Cao C, Qiu YW, Kuang CF, Liu X. Optical waveguides fabricated via femtosecond direct laser writing: processes, materials, and devices. Adv Mater Technol 8, 2300620 (2023). doi: 10.1002/admt.202300620

    CrossRef Google Scholar

    [131] Mathews SA, Auyeung RCY, Piqué A. Use of laser direct-write in microelectronics assembly. J Laser Micro/Nanoeng 2, 103–107 (2007). doi: 10.2961/jlmn.2007.01.0019

    CrossRef Google Scholar

    [132] Miller R, Marinov V, Swenson O, Chen ZG, Semler M. Noncontact selective laser-assisted placement of thinned semiconductor dice. IEEE Trans Compon Packaging Manuf Technol 2, 971–978 (2012). doi: 10.1109/TCPMT.2012.2183594

    CrossRef Google Scholar

    [133] Pique A, Charipar NA, Kim H, Auyeung RCY, Mathews SA. Applications of laser direct-write for embedding microelectronics. Advanced Laser Technologies 2006, 6606 (2007). doi: 10.1117/12.729635

    CrossRef Google Scholar

    [134] Goodfriend NT, Heng SY, Nerushev OA, Gromov AV, Bulgakov AV et al. Blister-based-laser-induced-forward-transfer: a non-contact, dry laser-based transfer method for nanomaterials. Nanotechnology 29, 385301 (2018). doi: 10.1088/1361-6528/aaceda

    CrossRef Google Scholar

    [135] Eom YS, Choi GM, Jang KS, Joo J, Lee CM et al. Process window of simultaneous transfer and bonding materials using laser-assisted bonding for mini- and micro-LED display panel packaging. ETRI J (2023). DOI: 10.4218/etrij.2022-0471.

    Google Scholar

    [136] Karlitskaya NS, de Lange DF, Sanders R, Meijer J. Study of laser die release by Q-switched Nd: YAG laser pulses. Proc SPIE 5448, 935–943 (2004). doi: 10.1117/12.546674

    CrossRef Google Scholar

    [137] Saeidpourazar R, Li R, Li YH, Sangid MD, Lu CF et al. Laser-driven micro transfer placement of prefabricated microstructures. J Microelectromech Syst 21, 1049–1058 (2012). doi: 10.1109/JMEMS.2012.2203097

    CrossRef Google Scholar

    [138] Lee BG. Micro-droplet deposition by UV-pulsed laser induced forward transfer direct writing technology. Electron Mater Lett 8, 631–637 (2012). doi: 10.1007/s13391-012-2059-1

    CrossRef Google Scholar

    [139] He XN, Cheng JX, Li ZQ, Ye HT, Wei XF et al. Multimaterial three-dimensional printing of ultraviolet-curable ionic conductive elastomers with diverse polymers for multifunctional flexible electronics. ACS Appl Mater Interfaces 15, 3455–3466 (2023). doi: 10.1021/acsami.2c18954

    CrossRef Google Scholar

    [140] Li KH, Fu WY, Cheung YF, Wong KKY, Wang Y et al. Monolithically integrated InGaN/GaN light-emitting diodes, photodetectors, and waveguides on Si substrate. Optica 5, 564–569 (2018). doi: 10.1364/OPTICA.5.000564

    CrossRef Google Scholar

    [141] Fu WY, Choi HW. Development of chipscale InGaN RGB displays using strain-relaxed nanosphere-defined nanopillars. Nanotechnology 33, 285202 (2022). doi: 10.1088/1361-6528/ac6399

    CrossRef Google Scholar

    [142] Fu WY, Choi HW. Monolithic InGaN multicolor light-emitting devices. Phys Status Solidi-Rapid Res Lett 16, 2100628 (2022). doi: 10.1002/pssr.202100628

    CrossRef Google Scholar

    [143] Liu X, Li JJ, Zhang PP, Lu WT, Yang GL et al. Perovskite quantum dot microarrays: in situ fabrication via direct print photopolymerization. Nano Res 15, 7681–7687 (2022). doi: 10.1007/s12274-022-4466-4

    CrossRef Google Scholar

    [144] Lin Y, Fan XT, Yang X, Zheng X, Huang WZ et al. Remarkable black-phase robustness of CsPbI3 nanocrystals sealed in solid SiO2/AlOx sub-micron particles. Small 17, 2103510 (2021). doi: 10.1002/smll.202103510

    CrossRef Google Scholar

    [145] Lin Y, Zheng X, Shangguan ZB, Chen GL, Huang WZ et al. All-inorganic encapsulation for remarkably stable cesium lead halide perovskite nanocrystals: toward full-color display applications. J Mater Chem C 9, 12303–12313 (2021). doi: 10.1039/D1TC02685B

    CrossRef Google Scholar

    [146] Zhang Y, Zhu HO, Zheng JL, Chai GY, Song ZP et al. Performance enhancement of all-inorganic perovskite quantum dots (CsPbX3) by UV-NIR laser irradiation. J Phys Chem C 123, 4502–4511 (2019). doi: 10.1021/acs.jpcc.8b11353

    CrossRef Google Scholar

    [147] Wei DZ, Wang CW, Wang HJ, Hu XP, Wei D et al. Publisher correction: experimental demonstration of a three-dimensional lithium niobate nonlinear photonic crystal. Nat Photonics 14, 709 (2020). doi: 10.1038/s41566-020-00698-3

    CrossRef Google Scholar

    [148] Tan DZ, Sharafudeen KN, Yue YZ, Qiu JR. Femtosecond laser induced phenomena in transparent solid materials: fundamentals and applications. Prog Mater Sci 76, 154–228 (2016). doi: 10.1016/j.pmatsci.2015.09.002

    CrossRef Google Scholar

    [149] Wang H, Wu Y, Ma MY, Dong S, Li Q et al. Pulsed laser deposition of CsPbBr3 films for application in perovskite solar cells. ACS Appl Energy Mater 2, 2305–2312 (2019). doi: 10.1021/acsaem.9b00130

    CrossRef Google Scholar

    [150] Jeon T, Jin HM, Lee SH, Lee JM, Park HI et al. Laser crystallization of organic–inorganic hybrid perovskite solar cells. ACS Nano 10, 7907–7914 (2016). doi: 10.1021/acsnano.6b03815

    CrossRef Google Scholar

    [151] Dos RR, Yang H, Ophus C, Ercius P, Bizarri G et al. Determination of the structural phase and octahedral rotation angle in halide perovskites. Appl Phys Lett 112, 071901 (2018). doi: 10.1063/1.5017537

    CrossRef Google Scholar

    [152] Chakraverty S, Ohtomo A, Kawasaki M. Controlled B-site ordering in Sr2CrReO6 double perovskite films by using pulsed laser interval deposition. Appl Phys Lett 97, 243107 (2010). doi: 10.1063/1.3525578

    CrossRef Google Scholar

    [153] Kim SJ, Byun J, Jeaon T, Jin HM, Hong HR et al. Perovskite Light-Emitting Diodes via Laser Crystallization: Systematic Investigation on Grain Size Effects for Device Performance. ACS Appl Mater Interfaces 10, 2490 (2018). doi: 10.1021/acsami.7b15470

    CrossRef Google Scholar

    [154] Chen XM, Wang ZX, Wu RJ, Cheng HL, Chui HC. Laser-induced thermal annealing of CH3NH3PbI3 perovskite microwires. Photonics 8, 30 (2021). doi: 10.3390/photonics8020030

    CrossRef Google Scholar

    [155] Chen J, Wu Y, Li XM, Cao F, Gu Y et al. Simple and fast patterning process by laser direct writing for perovskite quantum dots. Adv Mater Technol 2, 1700132 (2017). doi: 10.1002/admt.201700132

    CrossRef Google Scholar

    [156] Fenske M, Schultz C, Dagar J, Kosasih FU, Zeiser A et al. Improved electrical performance of perovskite photovoltaic mini-modules through controlled PbI2 formation using nanosecond laser pulses for P3 patterning. Energy Technol 9, 2000969 (2021). doi: 10.1002/ente.202000969

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(15)

Tables(3)

Article Metrics

Article views(5286) PDF downloads(700) Cited by(0)

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint