Citation: | Balashov IS, Chezhegov AA, Chizhov AS, Grunin AA, Anokhin KV et al. Light-stimulated adaptive artificial synapse based on nanocrystalline metal-oxide film. Opto-Electron Sci 2, 230016 (2023). doi: 10.29026/oes.2023.230016 |
[1] | Ferreira de Lima T, Shastri BJ, Tait AN, Nahmias MA, Prucnal PR. Progress in neuromorphic photonics. Nanophotonics 6, 577–599 (2017). doi: 10.1515/nanoph-2016-0139 |
[2] | Lai DX, Li EL, Yan YJ, Liu YQ, Zhong JF et al. Gelatin-hydrogel based organic synaptic transistor. Org Electron 75, 105409 (2019). doi: 10.1016/j.orgel.2019.105409 |
[3] | Mao JY, Zhou L, Zhu XJ, Zhou Y, Han ST. Photonic memristor for future computing: a perspective. Adv Opt Mater 7, 1900766 (2019). doi: 10.1002/adom.201900766 |
[4] | Ding GL, Yang BD, Zhou K, Zhang C, Wang YX et al. Synaptic plasticity and filtering emulated in metal–organic frameworks nanosheets based transistors. Adv Electron Mater 6, 1900978 (2020). doi: 10.1002/aelm.201900978 |
[5] | Merolla PA, Arthur JV, Alvarez-Icaza R, Cassidy AS, Sawada J et al. A million spiking-neuron integrated circuit with a scalable communication network and interface. Science 345, 668–673 (2014). doi: 10.1126/science.1254642 |
[6] | Yamazaki K, Vo-Ho VK, Bulsara D, Le N. Spiking neural networks and their applications: a review. Brain Sci 12, 863 (2022). doi: 10.3390/brainsci12070863 |
[7] | Taherkhani A, Belatreche A, Li YH, Cosma G, Maguire LP et al. A review of learning in biologically plausible spiking neural networks. Neural Netw 122, 253–272 (2020). doi: 10.1016/j.neunet.2019.09.036 |
[8] | Davies M, Srinivasa N, Lin TH, Chinya G, Cao YQ et al. Loihi: a neuromorphic manycore processor with on-chip learning. IEEE Micro 38, 82–99 (2018). doi: 10.1109/MM.2018.112130359 |
[9] | Furber SB, Galluppi F, Temple S, Plana LA. The spinnaker project. Proc IEEE 102, 652–665 (2014). doi: 10.1109/JPROC.2014.2304638 |
[10] | Yin L, Han C, Zhang QT, Ni ZY, Zhao SY et al. Synaptic silicon-nanocrystal phototransistors for neuromorphic computing. Nano Energy 63, 103859 (2019). doi: 10.1016/j.nanoen.2019.103859 |
[11] | Wang K, Dai SL, Zhao YW, Wang Y, Liu C et al. Light‐stimulated synaptic transistors fabricated by a facile solution process based on inorganic perovskite quantum dots and organic semiconductors. Small 15, 1900010 (2019). doi: 10.1002/smll.201900010 |
[12] | Wang Y, Lv ZY, Zhou L, Chen XL, Chen JR et al. Emerging perovskite materials for high density data storage and artificial synapses. J Mater Chem C 6, 1600–1617 (2018). doi: 10.1039/C7TC05326F |
[13] | Gupta GK, Kim IJ, Park Y, Kim MK, Lee JS. Inorganic perovskite quantum dot-mediated photonic multimodal synapse. ACS Appl Mater Interfaces 15, 18055–18064 (2023). doi: 10.1021/acsami.2c23218 |
[14] | Ge SP, Huang FC, He JQ, Xu ZS, Sun ZH et al. Bidirectional photoresponse in perovskite‐ZnO heterostructure for fully optical-controlled artificial synapse. Adv Opt Mater 10, 2200409 (2022). doi: 10.1002/adom.202200409 |
[15] | Gong JD, Yu HY, Zhou X, Wei HH, Ma MX et al. Lateral artificial synapses on hybrid perovskite platelets with modulated neuroplasticity. Adv Funct Mater 30, 2005413 (2020). doi: 10.1002/adfm.202005413 |
[16] | Chen X, Chen BK, Jiang B, Gao TF, Shang G et al. Nanowires for UV–vis–IR optoelectronic synaptic devices. Adv Funct Mater 33, 2208807 (2023). doi: 10.1002/adfm.202208807 |
[17] | Zhou K, Shang G, Hsu H, Han SH, Roy VAL et al. Emerging 2D metal oxides: from synthesis to device integration. Adv Mater 35, 2207774 (2023). doi: 10.1002/adma.202207774 |
[18] | Hong XT, Liu XQ, Liao L, Zou XM. Review on metal halide perovskite-based optoelectronic synapses. Photon Res 11, 787–807 (2023). doi: 10.1364/PRJ.480057 |
[19] | Shrivastava S, Keong LB, Pratik S, Lin AS, Tseng TY. Fully photon controlled synaptic memristor for neuro-inspired computing. Adv Electron Mater 9, 2201093 (2023). doi: 10.1002/aelm.202201093 |
[20] | Subramanian Periyal S, Jagadeeswararao M, Ng SE, John RA, Mathews N. Halide perovskite quantum dots photosensitized-amorphous oxide transistors for multimodal synapses. Adv Mater Technol 5, 2000514 (2020). doi: 10.1002/admt.202000514 |
[21] | Liu Y, Huang W, Wang XW, Liang RR, Wang J et al. A hybrid phototransistor neuromorphic synapse. IEEE J Electron Dev Soc 7, 13–17 (2018). |
[22] | Li Y, Shen GZ. Advances in optoelectronic artificial synapses. Cell Rep Phys Sci 3, 101037 (2022). doi: 10.1016/j.xcrp.2022.101037 |
[23] | Huang W, Hang PJ, Wang Y, Wang K, Han SH et al. Zero-power optoelectronic synaptic devices. Nano Energy 73, 104790 (2020). doi: 10.1016/j.nanoen.2020.104790 |
[24] | Hong S, Choi SH, Park J, Yoo H, Oh JY et al. Sensory adaptation and neuromorphic phototransistors based on CsPb (Br1–xIx)3 perovskite and MoS2 hybrid structure. ACS Nano 14, 9796–9806 (2020). doi: 10.1021/acsnano.0c01689 |
[25] | Hao DD, Zhang JY, Dai SL, Zhang JH, Huang J. Perovskite/organic semiconductor-based photonic synaptic transistor for artificial visual system. ACS Appl Mater Interfaces 12, 39487–39495 (2020). doi: 10.1021/acsami.0c10851 |
[26] | Kumar M, Kim J, Wong CP. Transparent and flexible photonic artificial synapse with piezo-phototronic modulator: Versatile memory capability and higher order learning algorithm. Nano Energy 63, 103843 (2019). doi: 10.1016/j.nanoen.2019.06.039 |
[27] | Zhai YB, Zhou Y, Yang XQ, Wang F, Ye WB et al. Near infrared neuromorphic computing via upconversion-mediated optogenetics. Nano Energy 67, 104262 (2020). doi: 10.1016/j.nanoen.2019.104262 |
[28] | Wang J, Shen H, Xia Y, Komarneni S. Light-activated room-temperature gas sensors based on metal oxide nanostructures: A review on recent advances. Ceramics international 47, 7353–7368 (2021). |
[29] | Benda J, Tabak J. Spike-frequency adaptation. In Jaeger D, Jung R. Encyclopedia of Computational Neuroscience 1–12 (Springer, New York, 2014);https://doi.org/10.1007/978-1-4614-7320-6_339-1. |
[30] | Indiveri G, Linares-Barranco B, Hamilton TJ, van Schaik A, Etienne-Cummings R et al. Neuromorphic silicon neuron circuits. Front Neurosci 5, 73 (2011). |
[31] | Aamir SA, Müller P, Kiene G, Kriener L, Stradmann Y et al. A mixed-signal structured adex neuron for accelerated neuromorphic cores. IEEE Trans Biomed Circ Syst 12, 1027–1037 (2018). doi: 10.1109/TBCAS.2018.2848203 |
[32] | Hille B. Ionic channels in excitable membranes. Current problems and biophysical approaches. Biophys J 22, 283–294 (1978). doi: 10.1016/S0006-3495(78)85489-7 |
[33] | Chizhov A, Rumyantseva M, Gaskov A. Light activation of nanocrystalline metal oxides for gas sensing: principles, achievements, challenges. Nanomaterials 11, 892 (2021). doi: 10.3390/nano11040892 |
[34] | Gurlo A. Insights into the mechanism of gas sensor operation. In Carpenter MA, Mathur S, Kolmakov A. Metal Oxide Nanomaterials for Chemical Sensors 3–34 (Springer, New York, 2012);https://doi.org/10.1007/978-1-4614-5395-6_1. |
[35] | Luo C, Kuner T, Kuner R. Synaptic plasticity in pathological pain. Trends Neurosci 37, 343–355 (2014). doi: 10.1016/j.tins.2014.04.002 |
[36] | Tao J, Sarkar D, Kale S, Singh PK, Kapadia R. Engineering complex synaptic behaviors in a single device: emulating consolidation of short-term memory to long-term memory in artificial synapses via dielectric band engineering. Nano Lett 20, 7793–7801 (2020). doi: 10.1021/acs.nanolett.0c03548 |
[37] | Zhang JY, Sun TL, Zeng S, Hao DD, Yang B et al. Tailoring neuroplasticity in flexible perovskite QDs-based optoelectronic synaptic transistors by dual modes modulation. Nano Energy 95, 106987 (2022). doi: 10.1016/j.nanoen.2022.106987 |
[38] | Subin PS, Midhun PS, Antony A, Saji KJ, Jayaraj MK. Optoelectronic synaptic plasticity mimicked in ZnO-based artificial synapse for neuromorphic image sensing application. Mater Today Commun 33, 104232 (2022). doi: 10.1016/j.mtcomm.2022.104232 |
[39] | Zhang JY, Dai SL, Zhao YW, Zhang JH, Huang J. Recent progress in photonic synapses for neuromorphic systems. Adv Intell Syst 2, 1900136 (2020). doi: 10.1002/aisy.201900136 |
[40] | Tetzlaff C, Kolodziejski C, Timme M, Tsodyks M, Wörgötter F. Synaptic scaling enables dynamically distinct short- and long-term memory formation. PLoS Comput Biol 9, e1003307 (2013). doi: 10.1371/journal.pcbi.1003307 |
[41] | Rosahl TW, Geppert M, Spitlane D, Herz J, Hammer RE et al. Short-term synaptic plasticity is altered in mice lacking synapsin I. Cell 75, 661–670 (1993). doi: 10.1016/0092-8674(93)90487-B |
[42] | Benda J. Neural adaptation. Curr Biol 31, R110–R116 (2021). doi: 10.1016/j.cub.2020.11.054 |
[43] | Glanzman DL. Habituation in Aplysia: the Cheshire cat of neurobiology. Neurobiol Learn Mem 92, 147–154 (2009). doi: 10.1016/j.nlm.2009.03.005 |
[44] | Gerstner W, Kistler WM, Naud R, Paninski L. Neuronal Dynamics: From Single Neurons to Networks and Models of Cognition. (Cambridge University Press, Cambridge, 2014). |
[45] | Zuo F, Panda P, Kotiuga M, Li JR, Kang MG et al. Habituation based synaptic plasticity and organismic learning in a quantum perovskite. Nat Commun 8, 240 (2017). doi: 10.1038/s41467-017-00248-6 |
[46] | Janotti A, van de Walle CG. Native point defects in ZnO. Phys Rev B 76, 165202 (2007). doi: 10.1103/PhysRevB.76.165202 |
[47] | Chizhov A, Kutukov P, Gulin A, Astafiev A, Rumyantseva M. Highly active nanocrystalline ZnO and its photo-oxidative properties towards acetone vapor. Micromachines 14, 912 (2023). doi: 10.3390/mi14050912 |
[48] | Markram H, Toledo-Rodriguez M, Wang Y, Gupta A, Silberberg G et al. Interneurons of the neocortical inhibitory system. Nat Rev Neurosci 5, 793–807 (2004). doi: 10.1038/nrn1519 |
[49] | Jolivet R, Lewis TJ, Gerstner W. Generalized integrate-and-fire models of neuronal activity approximate spike trains of a detailed model to a high degree of accuracy. J Neurophysiol 92, 959–976 (2004). doi: 10.1152/jn.00190.2004 |
[50] | Izhikevich EM. Simple model of spiking neurons. IEEE Trans Neural Netw 14, 1569–1572 (2003). doi: 10.1109/TNN.2003.820440 |
[51] | Brette R, Gerstner W. Adaptive exponential integrate-and-fire model as an effective description of neuronal activity. J Neurophysiol 94, 3637–3642 (2005). doi: 10.1152/jn.00686.2005 |
[52] | Tabas A, Mihai G, Kiebel S, Trampel R, von Kriegstein K. Abstract rules drive adaptation in the subcortical sensory pathway. eLife 9, e64501 (2020). doi: 10.7554/eLife.64501 |
[53] | Maravall M, Alenda A, Bale MR, Petersen RS. Transformation of adaptation and gain rescaling along the whisker sensory pathway. PLoS One 8, e82418 (2013). doi: 10.1371/journal.pone.0082418 |
[54] | Dhruv NT, Carandini M. Cascaded effects of spatial adaptation in the early visual system. Neuron 81, 529–535 (2014). doi: 10.1016/j.neuron.2013.11.025 |
[55] | Chizhov AS, Rumyantseva MM, Drozdov KA, Krylov IV, Batuk M et al. Photoresistive gas sensor based on nanocrystalline ZnO sensitized with colloidal perovskite CsPbBr3 nanocrystals. Sens Actuat B Chem 329, 129035 (2021). doi: 10.1016/j.snb.2020.129035 |
[56] | Brunauer S, Emmett PH, Teller E. Adsorption of gases in multimolecular layers. J Am Chem Soc 60, 309–319 (1938). doi: 10.1021/ja01269a023 |
(a) 3D schematic illustration of light-stimulated artificial synapse based on nanocrystalline ZnO film. (b) Postsynaptic conductivity modulation induced by light. (c) 3D schematic illustration of a biological synapse. (d, e) Energy level diagrams of an optoelectronic synapse for light stimulation and dark electrons recombination.
Nanocrystalline ZnO characterization. (a) X-ray diffraction pattern. (b) UV-vis absorbance spectrum, the inset is determination of Eg of nanocrystalline ZnO from optical absorption using a Tauc plot. (c,d) X-ray photoelectron spectra on the Zn2p (c) and O1s (d) regions.
(a) Optical microscopy images of Al2O3 substrate with Pt electrodes and (b) covered with ZnO layer. Scanning electron microscopy images: (c) the edge of ZnO layer obtained as the sample is tilted by 70° to measure its thickness; (d) the ZnO layer surface; (e) individual aggregates forming a ZnO layer.
Basic neuromorphic photoelectric properties. (a) Postsynaptic conductivity (black curve) for four pre-synaptic light pulses lasting 25 seconds with 50% duty cycle (purple). (b) Postsynaptic conductivity after 1200 seconds light exposure and dark conductivity decay approximation. (c) STM-to-LTM transition emerging by frequency increase. (d) PPF index defined as the ratio of the amplitude B1 of the response to the first light pulse the amplitude B2 corresponding to the second spike plotted as a function of time delay between two spikes.
Adaptation studies. (a) 100 light-pulses sequential irradiation for four conductivity change ranges, 2-hour continuous illumination of ZnO-based synapse (gray dashed curve). (b) Logarithmic dependence of illumination duration for each of 100 pulses. (c) Logarithmic dependence of the relaxation after each of 100 pulses.
Spike frequency as a function of spike number for different conductivity change ranges.
Integration of light-stimulated synapses with adaptation properties into computing platform. In the simplest way, the final artificial neuron firing rate is determined by its presynaptic inputs selectivity. The graph shows two types of response: S1 corresponds to a neuron without synaptic inputs adaptation, S2 is a response of a neuron with adaptation.