Citation: | Li Y, Huang XJ, Liu SX, Liang HW, Ling YY et al. Metasurfaces for near-eye display applications. Opto-Electron Sci 2, 230025 (2023). doi: 10.29026/oes.2023.230025 |
[1] | Morimoto T, Kobayashi T, Hirata H, Otani K, Sugimoto M et al. XR (extended reality: virtual reality, augmented reality, mixed reality) technology in spine medicine: status quo and quo Vadis. J Clin Med 11, 470 (2022). doi: 10.3390/jcm11020470 |
[2] | Azuma R, Baillot Y, Behringer R, Feiner S, Julier S et al. Recent advances in augmented reality. IEEE Comput Graph Appl 21, 34–47 (2001). |
[3] | Xiong JH, Hsiang EL, He ZQ, Zhan T, Wu ST. Augmented reality and virtual reality displays: emerging technologies and future perspectives. Light Sci Appl 10, 216 (2021). doi: 10.1038/s41377-021-00658-8 |
[4] | Chang CL, Bang K, Wetzstein G, Lee B, Gao L. Toward the next-generation VR/AR optics: a review of holographic near-eye displays from a human-centric perspective. Optica 7, 1563–1578 (2020). doi: 10.1364/OPTICA.406004 |
[5] | Xiong JH, Wu ST. Planar liquid crystal polarization optics for augmented reality and virtual reality: from fundamentals to applications. eLight 1, 3 (2021). doi: 10.1186/s43593-021-00003-x |
[6] | Qian YZ, Yang ZY, Huang YH, Lin KH, Wu ST. Directional high-efficiency nanowire LEDs with reduced angular color shift for AR and VR displays. Opto-Electron Sci 1, 220021 (2022). doi: 10.29026/oes.2022.220021 |
[7] | Shen XM, Gao J, Li MS, Zhou CH, Hu SS et al. Toward immersive communications in 6G. Front Comput Sci 4, 1068478 (2023). doi: 10.3389/fcomp.2022.1068478 |
[8] | Ahir K, Govani K, Gajera R, Shah M. Application on virtual reality for enhanced education learning, military training and sports. Augment Hum Res 5, 7 (2020). doi: 10.1007/s41133-019-0025-2 |
[9] | Livingston MA, Rosenblum LJ, Brown DG, Schmidt GS, Julier SJ et al. Military applications of augmented reality. In Furht B. Handbook of Augmented Reality (Springer, New York, USA, 2011). |
[10] | Siriwardhana Y, Porambage P, Liyanage M, Ylianttila M. A survey on mobile augmented reality with 5G mobile edge computing: architectures, applications, and technical aspects. IEEE Commun Surv Tutor 23, 1160–1192 (2021). doi: 10.1109/COMST.2021.3061981 |
[11] | Chi HL, Kang SC, Wang XY. Research trends and opportunities of augmented reality applications in architecture, engineering, and construction. Autom Constr 33, 116–122 (2013). doi: 10.1016/j.autcon.2012.12.017 |
[12] | Caudell TP, Mizell DW. Augmented reality: an application of heads-up display technology to manual manufacturing processes. In Proceedings of the Twenty-Fifth Hawaii International Conference on System Sciences (IEEE, 1992);http://doi.org/10.1109/HICSS.1992.183317. |
[13] | Yin K, He ZQ, Xiong JH, Zou JY, Li K et al. Virtual reality and augmented reality displays: advances and future perspectives. J Phys Photonics 3, 022010 (2021). doi: 10.1088/2515-7647/abf02e |
[14] | Chakravarthula P, Peng YF, Kollin J, Fuchs H, Heide F. Wirtinger holography for near-eye displays. ACM Trans Graph 38, 213 (2019). |
[15] | Lee S, Jo Y, Yoo D, Cho J, Lee D et al. Tomographic near-eye displays. Nat Commun 10, 2497 (2019). doi: 10.1038/s41467-019-10451-2 |
[16] | van Krevelen DWF, Poelman R. A survey of augmented reality technologies, applications and limitations. Int J Virtual Reality 9, 1–20 (2010). |
[17] | https://www.nasa.gov/ames/spinoff/new_continent_of_ideas/. |
[18] | Huang Q, Caulfield HJ. Waveguide holography and its applications. Proc SPIE 1461, 303–312 (1991). |
[19] | Hoshi H, Taniguchi N, Morishima H, Akiyama T, Yamazaki S et al. Off-axial HMD optical system consisting of aspherical surfaces without rotational symmetry. Proc SPIE 2653, 234–242 (1996). doi: 10.1117/12.237443 |
[20] | https://microoptical.net/Products/vga.html#SV6. |
[21] | https://en.wikipedia.org/wiki/Google_Glass. |
[22] | https://en.wikipedia.org/wiki/Oculus_Rift. |
[23] | https://en.wikipedia.org/wiki/Microsoft_HoloLens. |
[24] | https://en.wikipedia.org/wiki/Magic_Leap. |
[25] | Lee GY, Hong JY, Hwang S, Moon S, Kang H et al. Metasurface eyepiece for augmented reality. Nat Commun 9, 4562 (2018). doi: 10.1038/s41467-018-07011-5 |
[26] | https://www.apple.com.cn/newsroom/2023/06/introducing-apple-vision-pro/. |
[27] | McIntire JP, Havig PR, Geiselman EE. Stereoscopic 3D displays and human performance: a comprehensive review. Displays 35, 18–26 (2014). doi: 10.1016/j.displa.2013.10.004 |
[28] | Geng J. Three-dimensional display technologies. Adv Opt Photonics 5, 456–535 (2013). doi: 10.1364/AOP.5.000456 |
[29] | Liu Y, Guo X, Fan YB, Meng XF, Wang JH. Subjective assessment on visual fatigue versus stereoscopic disparities. J Soc Inf Disp 29, 497–504 (2021). doi: 10.1002/jsid.991 |
[30] | Hu J, Bandyopadhyay S, Liu YH, Shao LY. A review on metasurface: from principle to smart metadevices. Front Phys 8, 586087 (2021). doi: 10.3389/fphy.2020.586087 |
[31] | Hu J, Safir F, Chang K, Dagli S, Balch HB et al. Rapid genetic screening with high quality factor metasurfaces. Nat Commun 14, 4486 (2023). doi: 10.1038/s41467-023-39721-w |
[32] | Meinzer N, Barnes WL, Hooper IR. Plasmonic meta-atoms and metasurfaces. Nat photonics 8, 889–898 (2014). doi: 10.1038/nphoton.2014.247 |
[33] | Krasikov S, Tranter A, Bogdanov A, Kivshar Y. Intelligent metaphotonics empowered by machine learning. Opto-Electron Adv 5, 210147 (2022). doi: 10.29026/oea.2022.210147 |
[34] | Nikolov DK, Cheng F, Ding L, Bauer A, Vamivakas AN et al. See-through reflective metasurface diffraction grating. Opt Mater Express 9, 4070–4080 (2019). doi: 10.1364/OME.9.004070 |
[35] | Sell D, Yang JJ, Doshay S, Yang R, Fan JA. Large-angle, multifunctional metagratings based on freeform multimode geometries. Nano Lett 17, 3752–3757 (2017). doi: 10.1021/acs.nanolett.7b01082 |
[36] | Wang SM, Wu PC, Su VC, Lai YC, Chen MK et al. A broadband achromatic metalens in the visible. Nat Nanotechnol 13, 227–232 (2018). doi: 10.1038/s41565-017-0052-4 |
[37] | Pan MY, Fu YF, Zheng MJ, Chen H, Zang YJ et al. Dielectric metalens for miniaturized imaging systems: progress and challenges. Light Sci Appl 11, 195 (2022). doi: 10.1038/s41377-022-00885-7 |
[38] | Gao H, Fan XH, Wang YX, Liu YC, Wang XG et al. Multi-foci metalens for spectra and polarization ellipticity recognition and reconstruction. Opto-Electron Sci 2, 220026 (2023). doi: 10.29026/oes.2023.220026 |
[39] | Wan WW, Gao J, Yang XD. Metasurface holograms for holographic imaging. Adv Opt Mater 5, 1700541 (2017). doi: 10.1002/adom.201700541 |
[40] | Zhao RZ, Sain B, Wei QS, Tang CC, Li XW et al. Multichannel vectorial holographic display and encryption. Light Sci Appl 7, 95 (2018). doi: 10.1038/s41377-018-0091-0 |
[41] | Li X, Chen LW, Li Y, Zhang XH, Pu MB et al. Multicolor 3D meta-holography by broadband plasmonic modulation. Sci Adv 2, e1601102 (2016). doi: 10.1126/sciadv.1601102 |
[42] | Meng WJ, Hua YL, Cheng K, Li BL, Liu TT et al. 100 Hertz frame-rate switching three-dimensional orbital angular momentum multiplexing holography via cross convolution. Opto-Electron Sci 1, 220004 (2022). doi: 10.29026/oes.2022.220004 |
[43] | Li X, Chen QM, Zhang X, Zhao RZ, Xiao SM et al. Time-sequential color code division multiplexing holographic display with metasurface. Opto-Electron Adv 6, 220060 (2023). doi: 10.29026/oea.2023.220060 |
[44] | Joo WJ, Kyoung J, Esfandyarpour M, Lee SH, Koo H et al. Metasurface-driven OLED displays beyond 10, 000 pixels per inch. Science 370, 459–463 (2020). doi: 10.1126/science.abc8530 |
[45] | Li JX, Yu P, Zhang S, Liu N. Electrically-controlled digital metasurface device for light projection displays. Nat Commun 11, 3574 (2020). doi: 10.1038/s41467-020-17390-3 |
[46] | Wang Z, Zhang HR, Zhao HT, Cui TJ, Li LL. Intelligent electromagnetic metasurface camera: system design and experimental results. Nanophotonics 11, 2011–2024 (2022). doi: 10.1515/nanoph-2021-0665 |
[47] | Shen ZC, Zhao F, Jin CQ, Wang S, Cao LC et al. Monocular metasurface camera for passive single-shot 4D imaging. Nat Commun 14, 1035 (2023). doi: 10.1038/s41467-023-36812-6 |
[48] | Arbabi E, Arbabi A, Kamali SM, Horie Y, Faraji-Dana M et al. MEMS-tunable dielectric metasurface lens. Nat Commun 9, 812 (2018). doi: 10.1038/s41467-018-03155-6 |
[49] | Kwon H, Arbabi E, Kamali SM, Faraji-Dana M, Faraon A. Single-shot quantitative phase gradient microscopy using a system of multifunctional metasurfaces. Nat Photonics 14, 109–114 (2020). doi: 10.1038/s41566-019-0536-x |
[50] | Liu ZY, Wang DY, Gao H, Li MX, Zhou HX et al. Metasurface-enabled augmented reality display: a review. Adv Photonics 5, 034001 (2023). |
[51] | Liu WW, Li ZC, Cheng H, Chen SQ. Dielectric resonance-based optical metasurfaces: from fundamentals to applications. iScience 23, 101868 (2020). doi: 10.1016/j.isci.2020.101868 |
[52] | Khorasaninejad M, Crozier KB. Silicon nanofin grating as a miniature chirality-distinguishing beam-splitter. Nat Commun 5, 5386 (2014). doi: 10.1038/ncomms6386 |
[53] | Luo WJ, Sun SL, Xu HX, He Q, Zhou L. Transmissive ultrathin pancharatnam-berry metasurfaces with nearly 100% efficiency. Phys Rev Appl 7, 044033 (2017). doi: 10.1103/PhysRevApplied.7.044033 |
[54] | Zhang JC, Liang HW, Long Y, Zhou YL, Sun Q et al. Metalenses with polarization-insensitive adaptive Nano-antennas. Laser Photonics Rev 16, 2200268 (2022). doi: 10.1002/lpor.202200268 |
[55] | Li SY, Hsu CW. Transmission efficiency limit for nonlocal metalenses. Laser Photonics Rev 17, 2300201 (2023). doi: 10.1002/lpor.202300201 |
[56] | Ni XJ, Emani NK, Kildishev AV, Boltasseva A, Shalaev VM. Broadband light bending with plasmonic nanoantennas. Science 335, 427–427 (2012). doi: 10.1126/science.1214686 |
[57] | Sun SL, Yang KY, Wang CM, Juan TK, Chen WT et al. High-efficiency broadband anomalous reflection by gradient meta-surfaces. Nano Lett 12, 6223–6229 (2012). doi: 10.1021/nl3032668 |
[58] | Yu NF, Genevet P, Kats MA, Aieta F, Tetienne JP et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334, 333–337 (2011). doi: 10.1126/science.1210713 |
[59] | Yang QL, Kruk S, Xu YH, Wang QW, Srivastava YK et al. Mie-resonant membrane Huygens' metasurfaces. Adv Funct Mater 30, 1906851 (2020). doi: 10.1002/adfm.201906851 |
[60] | Wang SM, Wu PC, Su VC, Lai YC, Chu CH et al. Broadband achromatic optical metasurface devices. Nat Commun 8, 187 (2017). doi: 10.1038/s41467-017-00166-7 |
[61] | Yao J, Lin R, Chen MK, Tsai DP. Integrated-resonant metadevices: a review. Adv Photonics 5, 024001 (2023). |
[62] | Lalanne P, Astilean S, Chavel P, Cambril E, Launois H. Blazed binary subwavelength gratings with efficiencies larger than those of conventional échelette gratings. Opt Lett 23, 1081–1083 (1998). doi: 10.1364/OL.23.001081 |
[63] | Feng WB, Zhang JC, Wu QF, Martins A, Sun Q et al. RGB achromatic metalens doublet for digital imaging. Nano Lett 22, 3969–3975 (2022). doi: 10.1021/acs.nanolett.2c00486 |
[64] | Shen KH, Duan Y, Ju P, Xu ZJ, Chen X et al. On-chip optical levitation with a metalens in vacuum. Optica 8, 1359–1362 (2021). doi: 10.1364/OPTICA.438410 |
[65] | Khorasaninejad M, Chen WT, Devlin RC, Oh J, Zhu AY et al. Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging. Science 352, 1190–1194 (2016). doi: 10.1126/science.aaf6644 |
[66] | Liang HW, Lin QL, Xie XS, Sun Q, Wang Y et al. Ultrahigh numerical aperture metalens at visible wavelengths. Nano Lett 18, 4460–4466 (2018). doi: 10.1021/acs.nanolett.8b01570 |
[67] | Song JH, van de Groep J, Kim SJ, Brongersma ML. Non-local metasurfaces for spectrally decoupled wavefront manipulation and eye tracking. Nat Nanotechnol 16, 1224–1230 (2021). doi: 10.1038/s41565-021-00967-4 |
[68] | Yang JJ, Fan JA. Analysis of material selection on dielectric metasurface performance. Opt Express 25, 23899–23909 (2017). doi: 10.1364/OE.25.023899 |
[69] | Jiang JQ, Chen MK, Fan JA. Deep neural networks for the evaluation and design of photonic devices. Nat Rev Mater 6, 679–700 (2021). |
[70] | Choi C, Choi T, Yun JG, Yoo C, Lee B. Two-dimensional angular bandwidth broadening of metasurface grating. Adv Photonics Res 3, 2200158 (2022). doi: 10.1002/adpr.202200158 |
[71] | Goodsell J, Xiong P, Nikolov DK, Vamivakas AN, Rolland JP. Metagrating meets the geometry-based efficiency limit for AR waveguide in-couplers. Opt Express 31, 4599–4614 (2023). doi: 10.1364/OE.480092 |
[72] | Arbabi A, Horie Y, Bagheri M, Faraon A. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. Nat Nanotechnol 10, 937–943 (2015). doi: 10.1038/nnano.2015.186 |
[73] | Zeng C, Lu H, Mao D, Du YQ, Hua H et al. Graphene-empowered dynamic metasurfaces and metadevices. Opto-Electron Adv 5, 200098 (2022). doi: 10.29026/oea.2022.200098 |
[74] | Long Y, Zhang JC, Liu ZH, Feng WB, Guo SM et al. Metalens-based stereoscopic microscope. Photonics Res 10, 1501–1508 (2022). doi: 10.1364/PRJ.456638 |
[75] | Groever B, Rubin NA, Mueller JPB, Devlin RC, Capasso F. High-efficiency chiral meta-lens. Sci Rep 8, 7240 (2018). doi: 10.1038/s41598-018-25675-3 |
[76] | Bao YJ, Lin QL, Su RB, Zhou ZK, Song JD et al. On-demand spin-state manipulation of single-photon emission from quantum dot integrated with metasurface. Sci Adv 6, eaba8761 (2020). doi: 10.1126/sciadv.aba8761 |
[77] | Zhang YX, Pu MB, Jin JJ, Lu XJ, Guo YH et al. Crosstalk-free achromatic full Stokes imaging polarimetry metasurface enabled by polarization-dependent phase optimization. Opto-Electron Adv 5, 220058 (2022). doi: 10.29026/oea.2022.220058 |
[78] | Arbabi E, Arbabi A, Kamali S et al. Multiwavelength metasurfaces through spatial multiplexing. Sci Rep 6, 32803 (2016). |
[79] | Shi YY, Wan CW, Dai CJ, Wan S, Liu Y et al. On-chip meta-optics for semi-transparent screen display in sync with AR projection. Optica 9, 670–676 (2022). |
[80] | Liu ZY, Zhang C, Zhu WQ, Huang ZH, Lezec HJ et al. Compact stereo waveguide display based on a unidirectional polarization-multiplexed metagrating in-coupler. ACS Photonics 8, 1112–1119 (2021). doi: 10.1021/acsphotonics.0c01885 |
[81] | Narasimhan BA. Ultra-compact pancake optics based on ThinEyes® super-resolution technology for virtual reality headsets. Proc SPIE 10676, 106761G (2018). |
[82] | Wong TL, Yun ZS, Ambur G, Etter J. Folded optics with birefringent reflective polarizers. Proc SPIE 10335, 103350E (2017). |
[83] | Hsiang EL, Yang ZY, Yang Q, Lai PC, Lin CL et al. AR/VR light engines: perspectives and challenges. Adv Opt Photonics 14, 783–861 (2022). doi: 10.1364/AOP.468066 |
[84] | Zhan T, Yin K, Xiong JH, He ZQ, Wu ST. Augmented reality and virtual reality displays: perspectives and challenges. iScience 23, 101397 (2020). doi: 10.1016/j.isci.2020.101397 |
[85] | Wang YJ, Lin YH. Liquid crystal technology for vergence-accommodation conflicts in augmented reality and virtual reality systems: a review. Liq Cryst Rev 9, 35–64 (2021). doi: 10.1080/21680396.2021.1948927 |
[86] | Hua H. Enabling focus cues in head-mounted displays. Proc IEEE 105, 805–824 (2017). doi: 10.1109/JPROC.2017.2648796 |
[87] | Liu SX, Li Y, Su YK. Multiplane displays based on liquid crystals for AR applications. J Soc Inf Disp 28, 224–240 (2020). doi: 10.1002/jsid.875 |
[88] | Lee S, Jang C, Moon S, Cho J, Lee B. Additive light field displays: realization of augmented reality with holographic optical elements. ACM Trans Graph 35, 60 (2016). |
[89] | Zhang HL, Deng H, Li JJ, He MY, Li DH et al. Integral imaging-based 2D/3D convertible display system by using holographic optical element and polymer dispersed liquid crystal. Opt Lett 44, 387–390 (2019). doi: 10.1364/OL.44.000387 |
[90] | Hua H, Javidi B. A 3D integral imaging optical see-through head-mounted display. Opt Express 22, 13484–13491 (2014). doi: 10.1364/OE.22.013484 |
[91] | Shi L, Li BC, Kim C, Kellnhofer P, Matusik W. Towards real-time photorealistic 3D holography with deep neural networks. Nature 591, 234–239 (2021). doi: 10.1038/s41586-020-03152-0 |
[92] | Xiong JH, Yin K, Li K, Wu ST. Holographic optical elements for augmented reality: principles, present status, and future perspectives. Adv Photonics Res 2, 2000049 (2021). doi: 10.1002/adpr.202000049 |
[93] | Liu SX, Li Y, Zhou PC, Chen QM, Su YK. Reverse-mode PSLC multi-plane optical see-through display for AR applications. Opt Express 26, 3394–3403 (2018). doi: 10.1364/OE.26.003394 |
[94] | Smalley D, Nygaard E, Squire K et al. A photophoretic-trap volumetric display. Nature 553, 486–490 (2018). |
[95] | Carmigniani J, Furht B, Anisetti M, Ceravolo P, Damiani E et al. Augmented reality technologies, systems and applications. Multimed Tools Appl 51, 341–377 (2011). doi: 10.1007/s11042-010-0660-6 |
[96] | Cui W, Gao L. Optical mapping near-eye three-dimensional display with correct focus cues. Opt Lett 42, 2475–2478 (2017). doi: 10.1364/OL.42.002475 |
[97] | Cui W, Gao L. All-passive transformable optical mapping near-eye display. Sci Rep 9, 6064 (2019). doi: 10.1038/s41598-019-42507-0 |
[98] | Lee YH, Peng FL, Wu ST. Fast-response switchable lens for 3D and wearable displays. Opt Express 24, 1668–1675 (2016). doi: 10.1364/OE.24.001668 |
[99] | Hu XD, Hua H. Design and assessment of a depth-fused multi-focal-plane display prototype. J Disp Technol 10, 308–316 (2014). doi: 10.1109/JDT.2014.2300752 |
[100] | Xiong JH, Tan GJ, Zhan T, Wu ST. Breaking the field-of-view limit in augmented reality with a scanning waveguide display. OSA Contin 3, 2730–2740 (2020). doi: 10.1364/OSAC.400900 |
[101] | Wu CC, Shih KT, Huang JW, Chen HH. A novel birdbath eyepiece for light field AR glasses. Proc SPIE 12449, 124490N (2023). |
[102] | Li ZY, Lin P, Huang YW, Park JS, Chen WT et al. Meta-optics achieves RGB-achromatic focusing for virtual reality. Sci Adv 7, eabe4458 (2021). doi: 10.1126/sciadv.abe4458 |
[103] | Li ZY, Pestourie R, Park JS, Huang YW, Johnson SG et al. Inverse design enables large-scale high-performance meta-optics reshaping virtual reality. Nat Commun 13, 2409 (2022). doi: 10.1038/s41467-022-29973-3 |
[104] | Kim J, Seong J, Kim W, Lee GY, Kim S et al. Scalable manufacturing of high-index atomic layer-polymer hybrid metasurfaces for metaphotonics in the visible. Nat Mater 22, 474–481 (2023). doi: 10.1038/s41563-023-01485-5 |
[105] | Shi YY, Wan CW, Dai CJ, Wang ZJ, Wan S et al. Augmented reality enabled by on-chip meta-holography multiplexing. Laser Photonics Rev 16, 2100638 (2022). doi: 10.1002/lpor.202100638 |
[106] | Zhao RZ, Huang LL, Wang YT. Recent advances in multi-dimensional metasurfaces holographic technologies. PhotoniX 1, 20 (2020). doi: 10.1186/s43074-020-00020-y |
[107] | Bayati E, Wolfram A, Colburn S, Huang LC, Majumdar A. Design of achromatic augmented reality visors based on composite metasurfaces. Appl Opt 60, 844–850 (2021). doi: 10.1364/AO.410895 |
[108] | Meng Y, Liu ZT, Xie ZW, Wang RD, Qi TC et al. Versatile on-chip light coupling and (de)multiplexing from arbitrary polarizations to controlled waveguide modes using an integrated dielectric metasurface. Photonics Res 8, 564–576 (2020). doi: 10.1364/PRJ.384449 |
[109] | Chen WQ, Zhang DS, Long SY, Liu ZZ, Xiao JJ. Nearly dispersionless multicolor metasurface beam deflector for near eye display designed by a physics-driven deep neural network. Appl Opt 60, 3947–3953 (2021). doi: 10.1364/AO.421901 |
[110] | Xiao JS, Liu J, Han J, Wang YT. Design of achromatic surface microstructure for near-eye display with diffractive waveguide. Opt Commun 452, 411–416 (2019). doi: 10.1016/j.optcom.2019.04.004 |
[111] | Ditcovski R, Avayu O, Ellenbogen T. Full-color optical combiner based on multilayered metasurface design. Proc SPIE 10942, 109420S (2019). |
[112] | Tang J, Wan S, Shi YY, Wan CW, Wang ZJ et al. Dynamic augmented reality display by layer-folded metasurface via electrical-driven liquid crystal. Adv Opt Mater 10, 2200418 (2022). doi: 10.1002/adom.202200418 |
[113] | Shi ZJ, Chen WT, Capasso F. Wide field-of-view waveguide displays enabled by polarization-dependent metagratings. Proc SPIE 10676, 1067615 (2018). |
[114] | Boo H, Lee YS, Yang HB, Matthews B, Lee TG et al. Metasurface wavefront control for high-performance user-natural augmented reality waveguide glasses. Sci Rep 12, 5832 (2022). doi: 10.1038/s41598-022-09680-1 |
[115] | Luo XG, Zhang F, Pu MB, Xu MF. Catenary optics: a perspective of applications and challenges. J Phys Condens Matter 34, 381501 (2022). doi: 10.1088/1361-648X/ac808e |
[116] | Pu MB, Li X, Ma XL, Wang YQ, Zhao ZY et al. Catenary optics for achromatic generation of perfect optical angular momentum. Sci Adv 1, e1500396 (2015). doi: 10.1126/sciadv.1500396 |
[117] | Zhang XH, Liang GF, Feng DQ, Zhou L, Guo YC. Ultra-broadband metasurface holography via quasi-continuous Nano-slits. J Phys D Appl Phys 53, 104002 (2020). doi: 10.1088/1361-6463/ab5e44 |
[118] | Long SY, Li NY, Liu ZZ, Chen WQ, Zhang DS et al. Color near-eye display with high exit-pupil uniformity based on optimized meta-grating. Opt Eng 61, 065101 (2022). |
[119] | Liu Y, Shi YY, Wang ZJ, Li ZY. On-chip integrated metasystem with inverse-design wavelength demultiplexing for augmented reality. ACS Photonics 10, 1268–1274 (2023). doi: 10.1021/acsphotonics.2c01823 |
[120] | Hong CC, Colburn S, Majumdar A. Flat metaform near-eye visor. Appl Opt 56, 8822–8827 (2017). doi: 10.1364/AO.56.008822 |
[121] | Avayu O, Ditcovski R, Ellenbogen T. Ultrathin full color visor with large field of view based on multilayered metasurface design. Proc SPIE 10676, 1067612 (2018). |
[122] | Li Y, Chen SY, Liang HW, Ren XY, Luo LC et al. Ultracompact multifunctional metalens visor for augmented reality displays. PhotoniX 3, 29 (2022). doi: 10.1186/s43074-022-00075-z |
[123] | Luo LC, Wang ZY, Li JT, Liang HW. Wide-field-of-view trans-reflective RGB-achromatic metalens for augmented reality. Photonics 10, 590 (2023). doi: 10.3390/photonics10050590 |
[124] | Malek SC, Overvig AC, Alù A, Yu NF. Multifunctional resonant wavefront-shaping meta-optics based on multilayer and multi-perturbation nonlocal metasurfaces. Light Sci Appl 11, 246 (2022). doi: 10.1038/s41377-022-00905-6 |
[125] | Nikolov DK, Bauer A, Cheng F, Kato H, Vamivakas AN et al. Metaform optics: bridging nanophotonics and freeform optics. Sci Adv 7, eabe5112 (2021). doi: 10.1126/sciadv.abe5112 |
[126] | Song WT, Liang XN, Li SQ, Li DD, Paniagua-Domínguez R et al. Large-scale Huygens' metasurfaces for holographic 3D near-eye displays. Laser Photonics Rev 15, 2000538 (2021). doi: 10.1002/lpor.202000538 |
[127] | Song WT, Liang XA, Li SQ, Moitra P, Xu XW et al. Retinal projection near-eye displays with Huygens' metasurfaces. Adv Opt Mater 11, 2202348 (2023). doi: 10.1002/adom.202202348 |
[128] | Westheimer G. The maxwellian view. Vision Res 6, 669–682 (1966). doi: 10.1016/0042-6989(66)90078-2 |
[129] | Wang C, Yu ZQ, Zhang QB, Sun Y, Tao CN et al. Metalens eyepiece for 3D holographic near-eye display. Nanomaterials 11, 1920 (2021). doi: 10.3390/nano11081920 |
[130] | Fan ZB, Qiu HY, Zhang HL, Pang XN, Zhou LD et al. A broadband achromatic metalens array for integral imaging in the visible. Light Sci Appl 8, 67 (2019). doi: 10.1038/s41377-019-0178-2 |
[131] | Liu S, Hua H, Cheng DW. A novel prototype for an optical see-through head-mounted display with addressable focus cues. IEEE Trans Vis Comput Graph 16, 381–393 (2010). doi: 10.1109/TVCG.2009.95 |
[132] | Liu SX, Li Y, Zhou PC, Li X, Rong N et al. A multi-plane optical see-through head mounted display design for augmented reality applications. J Soc Inf Disp 24, 246–251 (2016). doi: 10.1002/jsid.435 |
[133] | Zhan T, Xiong JH, Zou JY, Wu ST. Multifocal displays: review and prospect. PhotoniX 1, 10 (2020). doi: 10.1186/s43074-020-00010-0 |
[134] | Chen SY, Lin JH, He ZQ, Li Y, Su YK et al. Planar Alvarez tunable lens based on polymetric liquid crystal Pancharatnam-Berry optical elements. Opt Express 30, 34655–34664 (2022). doi: 10.1364/OE.468647 |
[135] | Hu XD, Hua H. High-resolution optical see-through multi-focal-plane head-mounted display using freeform optics. Opt. Express 22, 13896–13903 (2014). |
[136] | Zhu SQ, Jiang Q, Wang YT, Huang LL. Nonmechanical varifocal metalens using nematic liquid crystal. Nanophotonics 12, 1169–1176 (2023). doi: 10.1515/nanoph-2023-0001 |
[137] | Park JS, Zhang SY, She AL, Chen WT, Lin P et al. All-glass, large metalens at visible wavelength using deep-ultraviolet projection lithography. Nano Lett 19, 8673–8682 (2019). doi: 10.1021/acs.nanolett.9b03333 |
[138] | Luo RQ, Luo XH, Zhao YH, Song Q, Yang X et al. Research on metasurface holographic imaging based on nanoimprint lithography. Proc SPIE 12307, 123070C (2022). |
[139] | Jiang JY, Cao Y, Zhou X, Xu HX, Ning KX et al. Colloidal self-assembly based ultrathin metasurface for perfect absorption across the entire visible spectrum. Nanophotonics 12, 1581–1590 (2023). doi: 10.1515/nanoph-2022-0686 |
[140] | Wang ZY, Hu B, Liu JY, Wang GC, Liu WG et al. 4f-Less terahertz optical pattern recognition enabled by complex amplitude modulating metasurface through laser direct writing. Adv Opt Mater 11, 2300575 (2023). doi: 10.1002/adom.202300575 |
[141] | Xiao XJ, Zhao YW, Ye X, Chen C, Lu XM et al. Large-scale achromatic flat lens by light frequency-domain coherence optimization. Light Sci Appl 11, 323 (2022). doi: 10.1038/s41377-022-01024-y |
[142] | Wu ZN, Ra'di Y, Grbic A. Tunable metasurfaces: a polarization rotator design. Phys Rev X 9, 011036 (2019). |
[143] | Yang JY, Gurung S, Bej S, Ni PN, Lee HWH. Active optical metasurfaces: comprehensive review on physics, mechanisms, and prospective applications. Rep Prog Phys 85, 036101 (2022). doi: 10.1088/1361-6633/ac2aaf |
[144] | Dorrah AH, Capasso F. Tunable structured light with flat optics. Science 376, eabi6860 (2022). doi: 10.1126/science.abi6860 |
[145] | Mueller JPB, Rubin NA, Devlin RC, Groever B, Capasso F. Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization. Phys Rev Lett 118, 113901 (2017). doi: 10.1103/PhysRevLett.118.113901 |
[146] | Xiong B, Liu Y, Xu YH, Deng L, Chen CW et al. Breaking the limitation of polarization multiplexing in optical metasurfaces with engineered noise. Science 379, 294–299 (2023). doi: 10.1126/science.ade5140 |
[147] | Ding F, Chang BD, Wei QS, Huang LL, Guan XW et al. Versatile polarization generation and manipulation using dielectric metasurfaces. Laser Photonics Rev 14, 2000116 (2020). doi: 10.1002/lpor.202000116 |
[148] | Gao H, Fan XH, Xiong W, Hong MH. Recent advances in optical dynamic meta-holography. Opto-Electron Adv 4, 210030 (2021). doi: 10.29026/oea.2021.210030 |
[149] | Badloe T, Kim I, Kim Y, Kim J, Rho J. Electrically tunable bifocal metalens with diffraction-limited focusing and imaging at visible wavelengths. Adv Sci 8, 2102646 (2021). doi: 10.1002/advs.202102646 |
[150] | Sharma M, Hendler N, Ellenbogen T. Electrically switchable color tags based on active liquid-crystal plasmonic metasurface platform. Adv Opt Mater 8, 1901182 (2020). doi: 10.1002/adom.201901182 |
[151] | Shen ZX, Zhou SH, Li XN, Ge SJ, Chen P et al. Liquid crystal integrated metalens with tunable chromatic aberration. Adv Photonics 2, 036002 (2020). |
[152] | Li SQ, Xu XW, Maruthiyodan Veetil R, Valuckas V, Paniagua-Domínguez R et al. Phase-only transmissive spatial light modulator based on tunable dielectric metasurface. Science 364, 1087–1090 (2019). doi: 10.1126/science.aaw6747 |
[153] | Mikheeva E, Kyrou C, Bentata F, Khadir S, Cueff S et al. Space and time modulations of light with metasurfaces: recent progress and future prospects. ACS Photonics 9, 1458–1482 (2022). doi: 10.1021/acsphotonics.1c01833 |
[154] | Ding F, Yang YQ, Bozhevolnyi SI. Dynamic metasurfaces using phase-change chalcogenides. Adv Opt Mater 7, 1801709 (2019). doi: 10.1002/adom.201801709 |
Roadmap of near-eye display development. First AR Head-Mounted Display (HMD) prototype, developed by Ivan Sutherland in 1968. Figure reproduced from ref.16, under a Creative Commons Attribution 4.0 International. VR HMD, National Aeronautics and Space Administration (NASA) Ames VIEW. Figure reproduced from ref.17, National Aeronautics and Space Administration. HMDs based on waveguide devices and freeform surfaces. First AR commercial glass-product, SV-6 PC viewer, developed by MicroOptical in 2003. Figure reproduced from ref.20, the MicroOptical Corporation. Monocular optical see-through smart glass, Google Glass, developed by Google in 2012. Figure reproduced from ref.21, Wikipedia. Representative modern VR HMD, Oculus Rift. Figure reproduced from ref.22, Wikipedia. Representative modern AR HMD, Microsoft HoloLens 1, based on optical waveguides in 2015. Figure reproduced from ref.23, Wikipedia. First commercial dual-focal AR display device, Magic Leap one, released by Magic Leap in 2018. Figure reproduced from ref.24, Wikipedia. First AR system based on a metasurface device proposed by Lee et al. in 2018. Figure reproduced from ref.25, Nature Publishing Group, under a Creative Commons Attribution 4.0 International. Video-see-through AR glass, Apple Vision Pro, developed by Apple in 2023. Figure reproduced from ref.26, Apple.
(a) VR display optical schematic diagram. (b) Consistent accommodation and vergence distances when observing the real-world scene. (c) Mismatch between accommodation and vergence distances when viewing with a stereoscopic 3D display.
Schematics of AR display architectures based on (a) a half mirror/BS combiner, (b) birdbath optics, (c) freeform prisms, and (d) a waveguide with grating couplers. (e) Schematic diagram of a video see-through AR display.
(a) Schematic of a multizone RGB-achromatic metalens. (b) Scanning electron microscope (SEM) image of a 2-mm-diameter achromatic metalens with NA=0.7. (c) Schematic of the VR mode employing the achromatic metalens. (d, e) VR display results with a 3D effect. (f, g) Full-color VR display results. The scale bar is 20 μm in (d–g). Figure reproduced with permission from ref.102, American Association for the Advancement of Science.
(a) Photograph of a 1-cm-diameter RGB-achromatic metalens. The inset is the SEM image of the nanostructures used in the metalens and the scale bar is 500 nm. (b) Measured focal intensity distribution in the XZ plane at RGB wavelengths of the achromatic metalens. (c) Photograph of VR imaging setup employing the achromatic metalens. (d–f) Binary VR imaging results at RGB wavelengths. (g) Simulated full-color VR imaging result by combining RGB image channels shown in (d-f). The scale bar is 100 μm in (d-g). Figure reproduced from ref.103, Nature Publishing Group, under a Creative Commons Attribution 4.0 International License.
Schematic of the mass production of metalenses using an ArF immersion scanner. ACL, amorphous carbon layer.
(a) Schematic of a see-through AR display system based on a chromatic transmissive metalens. (b) SEM image of the see-through metalens and (c) full-color AR image. (d) Schematic of a VR display system employing a 1-cm-diameter RGB-achromatic metalens and (e-g) AR display results. LCP, left-handed circular polarizer; RCP, right-handed circular polarizer; ML, metalens; DMs, dichroic mirrors. Figure reproduced with permission from: (a–c) ref.25, Nature Publishing Group, under a Creative Commons Attribution 4.0 International License; (d–g) ref.102, American Association for the Advancement of Science.
(a) Schematic of a polarization-dependent metagrating-based out-coupler. (b) Schematic of a large-FOV, full-color AR display prototype based on a single-layer metasurface optical element, (c) SEM image of an optimized full-color metasurface element, and (d) AR display result. (e) Schematic of an on-chip metasystem for AR display. (f) Schematic of the inverse-designed metagrating architecture with wavelength-demultiplexing functionality. (g) Simulated in-coupling efficiency of the metagrating at opposite ports in the visible regime. (h) AR display results. The scale bar is 5 μm in (c), and the inset in (d) is the original image. Figure reproduced with permission from: (b–d) ref.114, Nature Publishing Group, under a Creative Commons Attribution 4.0 International License; (e–h) ref.119, American Chemical Society.
(a) Schematic of the optical behavior of a see-through refective metalens-visor. (b) Schematic of a near-eye AR display system based on the metalens-visor. (c) Measured focal spot intensity profile of the fabricated metalens at the illumination wavelength of 633 nm. (d) Simulated and measured transmittance spectra of the metalens. (e) SEM image of the fabricated metalens. The scale bar is 400 nm. (f, g) Demonstration of multi-color AR imaging. Figure reproduced from with permission ref.122, Springer Nature, under a Creative Commons Attribution 4.0 International License.
(a) Schematics of 14 kinds of center-symmetrical nanostructures used in an RGB achromatic trans-reflective metalens. (b) Comparison of the ideal phase profile and the matched phase of the metalens at RGB wavelengths. Simulation focal intensity distribution in the XZ plane at RGB wavelengths of the achromatic metalens: (c) linear p- polarized incidence and (d) linear s-polarized incidence. Figure reproduced with permission from ref.123, MDPI, under an open-access Creative Common CC BY license.
(a) Schematic of an AR headset with a multifunctional nonlocal metasurfaces system as an optical see-through lens. (b) Schematic of a super-period of a nonlocal metasurface system implementing three distinct phase gradients at RGB wavelengths. (c) Simulated transmission and reflection spectra of the metasurface system shown in (a). (d) Schematic of an AR eyeglasses architecture based on a metaform imager used as an optical combiner. (e) Photo of a metaform and an SEM image of a set of the fabricated nano-tokens. (f) Set of different regions of the resolution target imaged via the metaform. Figure reproduced with permission from: (a–c) ref.124, Nature Publishing Group, under a Creative Commons Attribution 4.0 International License; (d–f) ref.125, American Association for the Advancement of Science.
(a) Schematic of a Maxwellian-viewing near-eye display using a metasurface hologram. (b) Source engine of the AR display system. (c) Compact and light wearable prototype of the Maxwellian-viewing near-eye display. Displayed AR images when the camera is focused at (d) 0.5 m and (e) 2 m, respectively. Figure reproduced with permission from ref.127, John Wiley and Sons.
(a) Schematic of a holographic near-eye display based on a metalens eyepiece. (b) Photo of the metalens eyepiece. (c) Phase distribution of the metalens eyepiece. (d) Original layered model of letters “ZJU”. (e-f) Reconstructed virtual images when the camera is focused on “Z” “J” and “U”, respectively. Figure reproduced with permission from ref.129, MDPI, under an open-access Creative Common CC BY license.
(a) Schematic of an integral imaging display based on a metalens array. (b) SEM image of a portion of the metalens array. (c) Optical image of a single metalens in the array. (d) SEM photo of the silicon nitride nanostructures. (e) Optical setup of the integral imaging display based on the metalens array. Reconstructed virtual 3D images illuminated by blue, green, red, and white light when virtual letters “3” and “D” are rendered at (f) the same distance and (g, h) different distances. CCD, charge-coupled device. Figure reproduced with permission from ref.130, Nature Publishing Group, under a Creative Commons Attribution 4.0 International License.