Yang YQ, Forbes A, Cao LC. A review of liquid crystal spatial light modulators: devices and applications. Opto-Electron Sci 2, 230026 (2023). doi: 10.29026/oes.2023.230026
Citation: Yang YQ, Forbes A, Cao LC. A review of liquid crystal spatial light modulators: devices and applications. Opto-Electron Sci 2, 230026 (2023). doi: 10.29026/oes.2023.230026

Review Open Access

A review of liquid crystal spatial light modulators: devices and applications

More Information
  • Spatial light modulators, as dynamic flat-panel optical devices, have witnessed rapid development over the past two decades, concomitant with the advancements in micro- and opto-electronic integration technology. In particular, liquid-crystal spatial light modulator (LC-SLM) technologies have been regarded as versatile tools for generating arbitrary optical fields and tailoring all degrees of freedom beyond just phase and amplitude. These devices have gained significant interest in the nascent field of structured light in space and time, facilitated by their ease of use and real-time light manipulation, fueling both fundamental research and practical applications. Here we provide an overview of the key working principles of LC-SLMs and review the significant progress made to date in their deployment for various applications, covering topics as diverse as beam shaping and steering, holography, optical trapping and tweezers, measurement, wavefront coding, optical vortex, and quantum optics. Finally, we conclude with an outlook on the potential opportunities and technical challenges in this rapidly developing field.
  • 加载中
  • [1] Forbes A, de Oliveira M, Dennis MR. Structured light. Nat Photonics 15, 253–262 (2021). doi: 10.1038/s41566-021-00780-4

    CrossRef Google Scholar

    [2] He C, Shen YJ, Forbes A. Towards higher-dimensional structured light. Light Sci Appl 11, 205 (2022). doi: 10.1038/s41377-022-00897-3

    CrossRef Google Scholar

    [3] Buono WT, Forbes A. Nonlinear optics with structured light. Opto-Electron Adv 5, 210174 (2022). doi: 10.29026/oea.2022.210174

    CrossRef Google Scholar

    [4] Dickey FM, Lizotte TE. Laser Beam Shaping Applications (CRC Press, Boca Raton, 2006).

    Google Scholar

    [5] Dickey FM. Laser Beam Shaping: Theory and Techniques 2nd ed (CRC Press, Boca Raton, 2014).

    Google Scholar

    [6] Dickey FM. Laser beam shaping. Opt Photonics News 14, 30–35 (2003).

    Google Scholar

    [7] Rhodes PW, Shealy DL. Refractive optical systems for irradiance redistribution of collimated radiation: their design and analysis. Appl Opti 19, 3545–3553 (1980). doi: 10.1364/AO.19.003545

    CrossRef Google Scholar

    [8] Lohmann AW. A pre-history of computer-generated holography. Opt Photonics News 19, 36–47 (2008).

    Google Scholar

    [9] Soifer AV, Kotlar V, Doskolovich L. Iteractive Methods for Diffractive Optical Elements Computation (London, CRC Press, 1997).

    Google Scholar

    [10] Soifer VA, Golub MA. Laser Beam Mode Selection by Computer Generated Holograms (Boca Raton, CRC Press, 1994).

    Google Scholar

    [11] Soifer VA. Methods for Computer Design of Diffractive Optical Elements (Willey, New York, 2002).

    Google Scholar

    [12] Soifer VA. Diffractive Optics and Nanophotonics (CRC Press, Boca Raton, 2017).

    Google Scholar

    [13] Lazarev G, Chen PJ, Strauss J, Fontaine N, Forbes A. Beyond the display: phase-only liquid crystal on silicon devices and their applications in photonics [Invited]. Opt Express 27, 16206–16249 (2019). doi: 10.1364/OE.27.016206

    CrossRef Google Scholar

    [14] Zhang ZC, You Z, Chu DP. Fundamentals of phase-only liquid crystal on silicon (LCOS) devices. Light Sci Appl 3, e213 (2014). doi: 10.1038/lsa.2014.94

    CrossRef Google Scholar

    [15] Huang YG, Liao E, Chen R, Wu ST. Liquid-crystal-on-silicon for augmented reality displays. Appl Sci 8, 2366 (2018). doi: 10.3390/app8122366

    CrossRef Google Scholar

    [16] Xiong JH, Wu ST. Planar liquid crystal polarization optics for augmented reality and virtual reality: from fundamentals to applications. eLight 1, 3 (2021). doi: 10.1186/s43593-021-00003-x

    CrossRef Google Scholar

    [17] Lu YQ, Li Y. Planar liquid crystal polarization optics for near-eye displays. Light Sci Appl 10, 122 (2021). doi: 10.1038/s41377-021-00567-w

    CrossRef Google Scholar

    [18] Berto P, Philippet L, Osmond J, Liu CF, Afridi A et al. Tunable and free-form planar optics. Nat Photonics 13, 649–656 (2019). doi: 10.1038/s41566-019-0486-3

    CrossRef Google Scholar

    [19] Sui XM, He ZH, Cao LC, Jin GF. Recent progress in complex-modulated holographic display based on liquid crystal spatial light modulators. Chin J Liq Cryst Dis 36, 797–809 (2021).

    Google Scholar

    [20] Li RJ, Cao LC. Progress in phase calibration for liquid crystal spatial light modulators. Appl Sci 9, 2012 (2019). doi: 10.3390/app9102012

    CrossRef Google Scholar

    [21] Rosales-Guzmán C, Forbes A. How to Shape Light with Spatial Light Modulators (SPIE, 2017).

    Google Scholar

    [22] Forbes A, Dudley A, McLaren M. Creation and detection of optical modes with spatial light modulators. Adv Opt Photonics 8, 200–227 (2016). doi: 10.1364/AOP.8.000200

    CrossRef Google Scholar

    [23] Weiner AM. Femtosecond pulse shaping using spatial light modulators. Rev Sci Instrum 71, 1929–1960 (2000). doi: 10.1063/1.1150614

    CrossRef Google Scholar

    [24] Weiner AM. Ultrafast optical pulse shaping: a tutorial review. Opt Commun 284, 3669–3692 (2011). doi: 10.1016/j.optcom.2011.03.084

    CrossRef Google Scholar

    [25] Szuniewicz J, Kurdziałek S, Kundu S, Zwolinski W, Chrapkiewicz R et al. Noise-resistant phase imaging with intensity correlation. Science Advances 9, eadh5396 (2023). doi: 10.1126/sciadv.adh5396

    CrossRef Google Scholar

    [26] Yao E, Franke-Arnold S, Courtial J, Padgett MJ, Barnett SM. Observation of quantum entanglement using spatial light modulators. Opt Express 14, 13089–13094 (2006). doi: 10.1364/OE.14.013089

    CrossRef Google Scholar

    [27] Kong LJ, Sun YF, Zhang FR, Zhang JF, Zhang XD. High-dimensional entanglement-enabled holography. Physical Review Letters 130, 053602 (2023).

    Google Scholar

    [28] Maurer C, Jesacher A, Bernet S, Ritsch-Marte M. What spatial light modulators can do for optical microscopy. Laser Photonics Rev 5, 81–101 (2011). doi: 10.1002/lpor.200900047

    CrossRef Google Scholar

    [29] Shapiro JH. Computational ghost imaging. Phys Rev A 78, 061802 (2008). doi: 10.1103/PhysRevA.78.061802

    CrossRef Google Scholar

    [30] Moreau PA, Toninelli E, Gregory T, Padgett MJ. Ghost imaging using optical correlations. Laser Photonics Rev 12, 1700143 (2018). doi: 10.1002/lpor.201700143

    CrossRef Google Scholar

    [31] Padgett M, Bowman R. Tweezers with a twist. Nat Photonics 5, 343–348 (2011). doi: 10.1038/nphoton.2011.81

    CrossRef Google Scholar

    [32] Grier DG. A revolution in optical manipulation. Nature 424, 810–816 (2003). doi: 10.1038/nature01935

    CrossRef Google Scholar

    [33] Sun BS, Salter PS, Roider C, Jesacher A, Strauss J et al. Four-dimensional light shaping: manipulating ultrafast spatiotemporal foci in space and time. Light Sci Appl 7, 17117 (2018).

    Google Scholar

    [34] Jesacher A, Maurer C, Schwaighofer A, Bernet S, Ritsch-Marte M. Near-perfect hologram reconstruction with a spatial light modulator. Opt Express 16, 2597–2603 (2008). doi: 10.1364/OE.16.002597

    CrossRef Google Scholar

    [35] Meng XS, Qiu XY, Li GQ, Ye WJ, Lin YQ et al. Study of optical rotation generated by the twisted nematic liquid crystal film: based on circular birefringence effect. Appl Opt 58, 5301–5309 (2019). doi: 10.1364/AO.58.005301

    CrossRef Google Scholar

    [36] Hua H, Liu Y, Yong K. The effect of pretilt and twisted angle on twisted nematic liquid crystal filter. Opt Spectrosc 125, 275–280 (2018). doi: 10.1134/S0030400X1808009X

    CrossRef Google Scholar

    [37] Lagerwall JPF, Scalia G. A new era for liquid crystal research: applications of liquid crystals in soft matter nano-, bio- and microtechnology. Curr Appl Phys 12, 1387–1412 (2012). doi: 10.1016/j.cap.2012.03.019

    CrossRef Google Scholar

    [38] Efron U, Wu ST, Bates TD. Nematic liquid crystals for spatial light modulators: recent studies. J Opt Soc Am B 3, 247–252 (1986). doi: 10.1364/JOSAB.3.000247

    CrossRef Google Scholar

    [39] Konforti N, Marom E, Wu ST. Phase-only modulation with twisted nematic liquid-crystal spatial light modulators. Opt Lett 13, 251–253 (1988). doi: 10.1364/OL.13.000251

    CrossRef Google Scholar

    [40] Wen L, Nan XH, Li JX, Cumming DRS, Hu X et al. Broad-band spatial light modulation with dual epsilon-near-zero modes. Opto-Electron Adv 5, 200093 (2022). doi: 10.29026/oea.2022.200093

    CrossRef Google Scholar

    [41] Tang DL, Shao ZL, Xie X, Zhou YJ, Zhang XH et al. Flat multifunctional liquid crystal elements through multi-dimensional information multiplexing. Opto-Electron Adv 6, 220063 (2023). doi: 10.29026/oea.2023.220063

    CrossRef Google Scholar

    [42] Chen HMP, Yang JP, Yen HT, Hsu ZN, Huang YG et al. Pursuing high quality phase-only liquid crystal on silicon (LCoS) devices. Appl Sci 8, 2323 (2018). doi: 10.3390/app8112323

    CrossRef Google Scholar

    [43] Tabiryan NV, Roberts DE, Liao Z, Hwang JY, Moran M et al. Advances in transparent planar optics: enabling large aperture, ultrathin lenses. Adv Opt Mater 9, 2001692 (2021). doi: 10.1002/adom.202001692

    CrossRef Google Scholar

    [44] Wen YF, Zhang Q, He Q, Zhang FF, Xiong LX et al. Shortening focal length of 100-mm aperture flat lens based on improved sagnac interferometer and bifacial liquid crystal. Adv Opt Mater 11, 2300127 (2023). doi: 10.1002/adom.202300127

    CrossRef Google Scholar

    [45] Nassiri MG, Brasselet E. Multispectral management of the photon orbital angular momentum. Phys Rev Lett 121, 213901 (2018). doi: 10.1103/PhysRevLett.121.213901

    CrossRef Google Scholar

    [46] Brasselet E. Tunable high-resolution macroscopic self-engineered geometric phase optical elements. Phys Rev Lett 121, 033901 (2018). doi: 10.1103/PhysRevLett.121.033901

    CrossRef Google Scholar

    [47] McGloin D, Dholakia K. Bessel beams: diffraction in a new light. Contemp Phys 46, 15–28 (2005). doi: 10.1080/0010751042000275259

    CrossRef Google Scholar

    [48] Siviloglou GA, Broky J, Dogariu A, Christodoulides DN. Observation of accelerating Airy beams. Phys Rev Lett 99, 213901 (2007). doi: 10.1103/PhysRevLett.99.213901

    CrossRef Google Scholar

    [49] Carter WH. Spot size and divergence for Hermite Gaussian beams of any order. Appl Opt 19, 1027–1029 (1980). doi: 10.1364/AO.19.001027

    CrossRef Google Scholar

    [50] Zauderer E. Complex argument Hermite–Gaussian and Laguerre–Gaussian beams. J Opt Soc Am A 3, 465–469 (1986). doi: 10.1364/JOSAA.3.000465

    CrossRef Google Scholar

    [51] Allen L, Beijersbergen MW, Spreeuw RJC, Woerdman JP. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys Rev A 45, 8185–8189 (1992). doi: 10.1103/PhysRevA.45.8185

    CrossRef Google Scholar

    [52] Yang YQ, Kang XW, Cao LC. Robust propagation of a steady optical beam through turbulence with extended depth of focus based on spatial light modulator. J Phys Photonics 5, 035002 (2023). doi: 10.1088/2515-7647/acd28c

    CrossRef Google Scholar

    [53] Göröcs Z, Erdei G, Sarkadi T, Ujhelyi F, Reményi J et al. Hybrid multinary modulation using a phase modulating spatial light modulator and a low-pass spatial filter. Opt Lett 32, 2336–2338 (2007). doi: 10.1364/OL.32.002336

    CrossRef Google Scholar

    [54] Frumker E, Silberberg Y. Phase and amplitude pulse shaping with two-dimensional phase-only spatial light modulators. J Opt Soc Am B 24, 2940–2947 (2007). doi: 10.1364/JOSAB.24.002940

    CrossRef Google Scholar

    [55] Supradeepa VR, Huang CB, Leaird DE, Weiner AM. Femtosecond pulse shaping in two dimensions: towards higher complexity optical waveforms. Opt Express 16, 11878–11887 (2008). doi: 10.1364/OE.16.011878

    CrossRef Google Scholar

    [56] Paurisse M, Hanna M, Druon F, Georges P, Bellanger C et al. Phase and amplitude control of a multimode LMA fiber beam by use of digital holography. Opt Express 17, 13000–13008 (2009). doi: 10.1364/OE.17.013000

    CrossRef Google Scholar

    [57] Karimi E, Zito G, Piccirillo B, Marrucci L, Santamato E. Hypergeometric-Gaussian modes. Opt Lett 32, 3053–3055 (2007). doi: 10.1364/OL.32.003053

    CrossRef Google Scholar

    [58] Spangenberg DM, Dudley A, Neethling PH, Rohwer EG, Forbes A. White light wavefront control with a spatial light modulator. Opt Express 22, 13870–13879 (2014). doi: 10.1364/OE.22.013870

    CrossRef Google Scholar

    [59] Zacharias T, Hadad B, Bahabad A, Eliezer Y. Axial sub-Fourier focusing of an optical beam. Opt Lett 42, 3205–3208 (2017). doi: 10.1364/OL.42.003205

    CrossRef Google Scholar

    [60] Zhu LW, Yang R, Zhang DW, Yu JJ, Chen JN. Dynamic three-dimensional multifocal spots in high numerical-aperture objectives. Opt Express 25, 24756–24766 (2017). doi: 10.1364/OE.25.024756

    CrossRef Google Scholar

    [61] Zeng TT, Chang CL, Chen ZZ, Wang HY, Ding JP. Three-dimensional vectorial multifocal arrays created by pseudo-period encoding. J Opt 20, 065605 (2018). doi: 10.1088/2040-8986/aac1de

    CrossRef Google Scholar

    [62] Vellekoop IM, van Putten EG, Lagendijk A, Mosk AP. Demixing light paths inside disordered metamaterials. Opt Express 16, 67–80 (2008). doi: 10.1364/OE.16.000067

    CrossRef Google Scholar

    [63] Vellekoop IM, Mosk AP. Universal optimal transmission of light through disordered materials. Phys Rev Lett 101, 120601 (2008). doi: 10.1103/PhysRevLett.101.120601

    CrossRef Google Scholar

    [64] Hsieh CL, Pu Y, Grange R, Psaltis D. Digital phase conjugation of second harmonic radiation emitted by nanoparticles in turbid media. Opt Express 18, 12283–12290 (2010). doi: 10.1364/OE.18.012283

    CrossRef Google Scholar

    [65] Popoff SM, Lerosey G, Carminati R, Fink M, Boccara AC et al. Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media. Phys Rev Lett 104, 100601 (2010). doi: 10.1103/PhysRevLett.104.100601

    CrossRef Google Scholar

    [66] Popoff S, Lerosey G, Fink M, Boccara AC, Gigan S. Image transmission through an opaque material. Nat Commun 1, 81 (2010). doi: 10.1038/ncomms1078

    CrossRef Google Scholar

    [67] Mazilu M, Baumgartl J, Kosmeier S, Dholakia K. Optical eigenmodes; exploiting the quadratic nature of the energy flux and of scattering interactions. Opt Express 19, 933–945 (2011). doi: 10.1364/OE.19.000933

    CrossRef Google Scholar

    [68] Madan I, Leccese V, Mazur A, Barantani F, LaGrange T et al. Ultrafast transverse modulation of free electrons by interaction with shaped optical fields. ACS Photonics 9, 3215–3224 (2022). doi: 10.1021/acsphotonics.2c00850

    CrossRef Google Scholar

    [69] Fu SY, Zhang SK, Gao CQ. Bessel beams with spatial oscillating polarization. Sci Rep 6, 30765 (2016). doi: 10.1038/srep30765

    CrossRef Google Scholar

    [70] Fu SY, Wang TL, Zhang ZY, Zhai YW, Gao CQ. Non-diffractive Bessel-Gauss beams for the detection of rotating object free of obstructions. Opt Express 25, 20098–20108 (2017). doi: 10.1364/OE.25.020098

    CrossRef Google Scholar

    [71] Wang F, Li J, Martinez-Piedra G, Korotkova O. Propagation dynamics of partially coherent crescent-like optical beams in free space and turbulent atmosphere. Opt Express 25, 26055–26066 (2017). doi: 10.1364/OE.25.026055

    CrossRef Google Scholar

    [72] Zhu GX, Wen YH, Wu X, Chen YJ, Liu J et al. Obstacle evasion in free-space optical communications utilizing Airy beams. Opt Lett 43, 1203–1206 (2018). doi: 10.1364/OL.43.001203

    CrossRef Google Scholar

    [73] Lin H, Jia BH, Gu M. Dynamic generation of Debye diffraction-limited multifocal arrays for direct laser printing nanofabrication. Opt Lett 36, 406–408 (2011). doi: 10.1364/OL.36.000406

    CrossRef Google Scholar

    [74] Lightman S, Hurvitz G, Gvishi R, Arie A. Miniature wide-spectrum mode sorter for vortex beams produced by 3D laser printing. Optica 4, 605–610 (2017). doi: 10.1364/OPTICA.4.000605

    CrossRef Google Scholar

    [75] Okada T, Tanaka K. Photo-designed terahertz devices. Sci Rep 1, 121 (2011). doi: 10.1038/srep00121

    CrossRef Google Scholar

    [76] Trichili A, Mhlanga T, Ismail Y, Roux FS, McLaren M et al. Detection of Bessel beams with digital axicons. Opt Express 22, 7553–17560 (2014).

    Google Scholar

    [77] Jenness NJ, Wu YQ, Clark RL. Fabrication of three-dimensional electrospun microstructures using phase modulated femtosecond laser pulses. Mater Lett 66, 360–363 (2012). doi: 10.1016/j.matlet.2011.09.015

    CrossRef Google Scholar

    [78] Yang L, Ji SY, Xie KA, Du WQ, Liu BJ et al. High efficiency fabrication of complex microtube arrays by scanning focused femtosecond laser Bessel beam for trapping/releasing biological cells. Opt Express 25, 8144–8157 (2017). doi: 10.1364/OE.25.008144

    CrossRef Google Scholar

    [79] Sun XY, Dong ZL, Cheng KF, Chu DK, Kong DJ et al. Fabrication of oil–water separation copper filter by spatial light modulated femtosecond laser. J Micromech Microeng 30, 065007 (2020). doi: 10.1088/1361-6439/ab870d

    CrossRef Google Scholar

    [80] Pan D, Xu B, Liu SL, Li JW, Hu YL et al. Amplitude-phase optimized long depth of focus femtosecond axilens beam for single-exposure fabrication of high-aspect-ratio microstructures. Opt Lett 45, 2584–2587 (2020). doi: 10.1364/OL.389946

    CrossRef Google Scholar

    [81] Xavier J, Boguslawski M, Rose P, Joseph J, Denz C. Reconfigurable optically induced quasicrystallographic three-dimensional complex nonlinear photonic lattice structures. Adv Mater 22, 356–360 (2010). doi: 10.1002/adma.200901792

    CrossRef Google Scholar

    [82] Yuan YJ, Jiang L, Li X, Zuo P, Xu CY et al. Laser photonic-reduction stamping for graphene-based micro-supercapacitors ultrafast fabrication. Nat Commun 11, 6185 (2020). doi: 10.1038/s41467-020-19985-2

    CrossRef Google Scholar

    [83] Kelner R, Rosen J. Methods of single-channel digital holography for three-dimensional imaging. IEEE Trans Ind Inf 12, 220–230 (2016). doi: 10.1109/TII.2015.2475247

    CrossRef Google Scholar

    [84] Reicherter M, Zwick S, Haist T, Kohler C, Tiziani H et al. Fast digital hologram generation and adaptive force measurement in liquid-crystal-display-based holographic tweezers. Appl Opt 45, 888–896 (2006). doi: 10.1364/AO.45.000888

    CrossRef Google Scholar

    [85] Euser TG, Whyte G, Scharrer M, Chen JSY, Abdolvand A et al. Dynamic control of higher-order modes in hollow-core photonic crystal fibers. Opt Express 16, 17972–17981 (2008). doi: 10.1364/OE.16.017972

    CrossRef Google Scholar

    [86] Katz B, Wulich D, Rosen J. Optimal noise suppression in Fresnel incoherent correlation holography (FINCH) configured for maximum imaging resolution. Appl Opt 49, 5757–5763 (2010). doi: 10.1364/AO.49.005757

    CrossRef Google Scholar

    [87] Shimobaba T, Kakue T, Yamamoto Y, Hoshi I, Shiomi H et al. Hologram generation via Hilbert transform. OSA Continuum 3, 1498–1503 (2020). doi: 10.1364/OSAC.395003

    CrossRef Google Scholar

    [88] Zhao Y, Cao LC, Zhang H, Kong DZ, Jin GF. Accurate calculation of computer-generated holograms using angular-spectrum layer-oriented method. Opt Express 23, 25440–25449 (2015). doi: 10.1364/OE.23.025440

    CrossRef Google Scholar

    [89] Shi L, Li BC, Kim C, Kellnhofer P, Matusik W. Towards real-time photorealistic 3D holography with deep neural networks. Nature 591, 234–239 (2021). doi: 10.1038/s41586-020-03152-0

    CrossRef Google Scholar

    [90] Sui XM, He ZH, Zhang H, Cao LC, Jin GF. Spatiotemporal double-phase hologram for complex-amplitude holographic displays. Chin Opt Lett 18, 100901 (2020). doi: 10.3788/COL202018.100901

    CrossRef Google Scholar

    [91] Christenson CW, Blanche PA, Tay S, Voorakaranam R, Gu T et al. Materials for an updatable holographic 3D display. J Disp Technol 6, 510–516 (2010). doi: 10.1109/JDT.2010.2046620

    CrossRef Google Scholar

    [92] Kim J, Gopakumar M, Choi S, Peng YF, Lopes W et al. Holographic glasses for virtual reality. In Proceedings of ACM SIGGRAPH 2022 Conference Proceedings 33 (ACM, 2022);https://doi.org/10.1145/3528233.3530739.

    Google Scholar

    [93] Sato H, Kakue T, Ichihashi Y, Endo Y, Wakunami K et al. Real-time colour hologram generation based on ray-sampling plane with multi-GPU acceleration. Sci Rep 8, 1500 (2018). doi: 10.1038/s41598-018-19361-7

    CrossRef Google Scholar

    [94] Cao HK, Lin SF, Kim ES. Accelerated generation of holographic videos of 3-D objects in rotational motion using a curved hologram-based rotational-motion compensation method. Opt Express 26, 21279–21300 (2018). doi: 10.1364/OE.26.021279

    CrossRef Google Scholar

    [95] Derzhypolskyi AG, Gnatovskyi OV, Derzhypolska LA. Reduction of speckle noise in laser energy distribution on the target by means of modified fourier hologram and incoherent averaging technique. Semicond Phys Quantum Electron Optoelectron 21, 429–433 (2018). doi: 10.15407/spqeo21.04.429

    CrossRef Google Scholar

    [96] Choi S, Gopakumar M, Peng YF, Kim J, O'Toole M et al. Time-multiplexed neural holography: a flexible framework for holographic near-eye displays with fast heavily-quantized spatial light modulators. In Proceedings of ACM SIGGRAPH 2022 Conference Proceedings 32 (ACM, 2022);https://doi.org/10.1145/3528233.3530734.

    Google Scholar

    [97] Lee JS, Kim YK, Won YH. Time multiplexing technique of holographic view and Maxwellian view using a liquid lens in the optical see-through head mounted display. Opt Express 26, 2149–2159 (2018). doi: 10.1364/OE.26.002149

    CrossRef Google Scholar

    [98] Tsutsumi N, Kinashi K, Sakai W, Nishide J, Kawabe Y et al. Real-time three-dimensional holographic display using a monolithic organic compound dispersed film. Opt Mater Express 2, 1003–1010 (2012). doi: 10.1364/OME.2.001003

    CrossRef Google Scholar

    [99] Yeom HJ, Kim HJ, Kim SB, Zhang HJ, Li BN et al. 3D holographic head mounted display using holographic optical elements with astigmatism aberration compensation. Opt Express 23, 32025–32034 (2015). doi: 10.1364/OE.23.032025

    CrossRef Google Scholar

    [100] Choi MH, Ju YG, Park JH. Holographic near-eye display with continuously expanded eyebox using two-dimensional replication and angular spectrum wrapping. Opt Express 28, 533–547 (2020). doi: 10.1364/OE.381277

    CrossRef Google Scholar

    [101] Rostykus M, Moser C. Compact lensless off-axis transmission digital holographic microscope. Opt Express 25, 16652–16659 (2017). doi: 10.1364/OE.25.016652

    CrossRef Google Scholar

    [102] Kim D, Nam SW, Lee B, Seo JM, Lee B. Accommodative holography: improving accommodation response for perceptually realistic holographic displays. ACM Trans Graph 41, 111 (2022).

    Google Scholar

    [103] Zhou PC, Li Y, Liu SX, Su YK. Compact design for optical-see-through holographic displays employing holographic optical elements. Opt Express 26, 22866–22876 (2018). doi: 10.1364/OE.26.022866

    CrossRef Google Scholar

    [104] Park JH, Kim SB. Optical see-through holographic near-eye-display with eyebox steering and depth of field control. Opt Express 26, 27076–27088 (2018). doi: 10.1364/OE.26.027076

    CrossRef Google Scholar

    [105] Chang CL, Qi YJ, Wu J, Xia J, Nie SP. Speckle reduced lensless holographic projection from phase-only computer-generated hologram. Opt Express 25, 6568–6580 (2017). doi: 10.1364/OE.25.006568

    CrossRef Google Scholar

    [106] Maimone A, Georgiou A, Kollin JS. Holographic near-eye displays for virtual and augmented reality. ACM Trans Graph 36, 85 (2017).

    Google Scholar

    [107] Shi L, Huang FC, Lopes W, Matusik W, Luebke D. Near-eye light field holographic rendering with spherical waves for wide field of view interactive 3D computer graphics. ACM Trans Graph 36, 236 (2017).

    Google Scholar

    [108] Yamada S, Kakue T, Shimobaba T, Ito T. Interactive holographic display based on finger gestures. Sci Rep 8, 2010 (2018). doi: 10.1038/s41598-018-20454-6

    CrossRef Google Scholar

    [109] Jordan P, Leach J, Padgett M, Blackburn P, Isaacs N et al. Creating permanent 3D arrangements of isolated cells using holographic optical tweezers. Lab Chip 5, 1224–1228 (2005). doi: 10.1039/b509218c

    CrossRef Google Scholar

    [110] Burnham DR, McGloin D. Holographic optical trapping of aerosol droplets. Opt Express 14, 4175–4181 (2006). doi: 10.1364/OE.14.004175

    CrossRef Google Scholar

    [111] Chapin SC, Germain V, Dufresne ER. Automated trapping, assembly, and sorting with holographic optical tweezers. Opt Express 14, 13095–13100 (2006). doi: 10.1364/OE.14.013095

    CrossRef Google Scholar

    [112] He XD, Xu P, Wang J, Zhan MS. Rotating single atoms in a ring lattice generated by a spatial light modulator. Opt Express 17, 21007–21014 (2009). doi: 10.1364/OE.17.021007

    CrossRef Google Scholar

    [113] Hörner F, Woerdemann M, Müller S, Maier B, Denz C. Full 3D translational and rotational optical control of multiple rod-shaped bacteria. J Biophoton 3, 468–475 (2010). doi: 10.1002/jbio.201000033

    CrossRef Google Scholar

    [114] Thalhammer G, Steiger R, Bernet S, Ritsch-Marte M. Optical macro-tweezers: trapping of highly motile micro-organisms. J Opt 13, 044024 (2011). doi: 10.1088/2040-8978/13/4/044024

    CrossRef Google Scholar

    [115] Liang YS, Lei M, Yan SH, Li MM, Cai YA et al. Rotating of low-refractive-index microparticles with a quasi-perfect optical vortex. Appl Opt 57, 79–84 (2018). doi: 10.1364/AO.57.000079

    CrossRef Google Scholar

    [116] Hadad B, Froim S, Nagar H, Admon T, Eliezer Y et al. Particle trapping and conveying using an optical Archimedes’ screw. Optica 5, 551–556 (2018). doi: 10.1364/OPTICA.5.000551

    CrossRef Google Scholar

    [117] Wen JS, Gao BJ, Zhu GY, Liu DD, Wang LG. Precise position and angular control of optical trapping and manipulation via a single vortex-pair beam. Opt Lasers Eng 148, 106773 (2022). doi: 10.1016/j.optlaseng.2021.106773

    CrossRef Google Scholar

    [118] Sainis SK, Germain V, Mejean CO, Dufresne ER. Electrostatic interactions of colloidal particles in nonpolar solvents: role of surface chemistry and charge control agents. Langmuir 24, 1160–1164 (2008). doi: 10.1021/la702432u

    CrossRef Google Scholar

    [119] Di Leonardo R, Keen S, Leach J, Saunter CD, Love GD et al. Eigenmodes of a hydrodynamically coupled micron-size multiple-particle ring. Phys Rev E 76, 061402 (2007).

    Google Scholar

    [120] Di Leonardo R, Saglimbeni F, Ruocco G. Very-long-range nature of capillary interactions in liquid films. Phys Rev Lett 100, 106103 (2008). doi: 10.1103/PhysRevLett.100.106103

    CrossRef Google Scholar

    [121] van der Horst A, Forde NR. Calibration of dynamic holographic optical tweezers for force measurements on biomaterials. Opt Express 16, 20987–21003 (2008). doi: 10.1364/OE.16.020987

    CrossRef Google Scholar

    [122] Mejean CO, Schaefer AW, Millman EA, Forscher P, Dufresne ER. Multiplexed force measurements on live cells with holographic optical tweezers. Opt Express 17, 6209–6217 (2009). doi: 10.1364/OE.17.006209

    CrossRef Google Scholar

    [123] Di Leonardo R, Leach J, Mushfique H, Cooper JM, Ruocco G et al. Multipoint holographic optical velocimetry in microfluidic systems. Phys Rev Lett 96, 134502 (2006). doi: 10.1103/PhysRevLett.96.134502

    CrossRef Google Scholar

    [124] Mushfique H, Leach J, Di Leonardo R, Padgett MJ, Cooper JM. Optically driven pumps and flow sensors for microfluidic systems. Proc Inst Mech Eng Part C J Mech Eng Sci 222, 829–837 (2008).

    Google Scholar

    [125] Woerdemann M, Alpmann C, Hörner F, Devaux A, De Cola L et al. Optical control and dynamic patterning of zeolites. Proc SPIE 7762, 77622E (2010). doi: 10.1117/12.863610

    CrossRef Google Scholar

    [126] Ghadiri R, Surbek M, Esen C, Ostendorf A. Optically based manufacturing with polymer particles. Phys Procedia 5, 47–51 (2010).

    Google Scholar

    [127] Cojoc D, Emiliani V, Ferrari E, Malureanu R, Cabrini S et al. Multiple optical trapping by means of diffractive optical elements. Jpn J Appl Phys 43, 3910–3915 (2004). doi: 10.1143/JJAP.43.3910

    CrossRef Google Scholar

    [128] Jesacher A, Fürhapter S, Bernet S, Ritsch-Marte M. Size selective trapping with optical “cogwheel” tweezers. Opt Express 12, 4129–4135 (2004). doi: 10.1364/OPEX.12.004129

    CrossRef Google Scholar

    [129] Hermerschmidt A, Krüger S, Haist T, Zwick S, Warber M et al. Holographic optical tweezers with real-time hologram calculation using a phase-only modulating LCOS-based SLM at 1064 nm. Proc SPIE 6905, 690508 (2008). doi: 10.1117/12.764649

    CrossRef Google Scholar

    [130] Zwick S, Haist T, Miyamoto Y, He L, Warber M et al. Holographic twin traps. J Opt A Pure Appl Opt 11, 034011 (2009). doi: 10.1088/1464-4258/11/3/034011

    CrossRef Google Scholar

    [131] Jesacher A, Maurer C, Fürhapter S, Schwaighofer A, Bernet S et al. Optical tweezers of programmable shape with transverse scattering forces. Opt Commun 281, 2207–2212 (2008). doi: 10.1016/j.optcom.2007.12.042

    CrossRef Google Scholar

    [132] Kim H, Lee W, Lee HG, Jo H, Song Y et al. In situ single-atom array synthesis using dynamic holographic optical tweezers. Nat Commun 7, 13317 (2016). doi: 10.1038/ncomms13317

    CrossRef Google Scholar

    [133] Montes-Usategui M, Pleguezuelos E, Andilla J, Martín-Badosa E. Fast generation of holographic optical tweezers by random mask encoding of Fourier components. Opt Express 14, 2101–2107 (2006). doi: 10.1364/OE.14.002101

    CrossRef Google Scholar

    [134] Lizana A, Zhang HL, Turpin A, Van Eeckhout A, Torres-Ruiz FA et al. Generation of reconfigurable optical traps for microparticles spatial manipulation through dynamic split lens inspired light structures. Sci Rep 8, 11263 (2018). doi: 10.1038/s41598-018-29540-1

    CrossRef Google Scholar

    [135] Schonbrun E, Piestun R, Jordan P, Cooper J, Wulff KD et al. 3D interferometric optical tweezers using a single spatial light modulator. Opt Express 13, 3777–3786 (2005). doi: 10.1364/OPEX.13.003777

    CrossRef Google Scholar

    [136] Köhler J, Ruschke J, Ferenz KB, Esen C, Kirsch M et al. Investigation of albumin-derived perfluorocarbon-based capsules by holographic optical trapping. Biomed Opt Express 9, 743–754 (2018). doi: 10.1364/BOE.9.000743

    CrossRef Google Scholar

    [137] Suarez RAB, Ambrosio LA, Neves AAR, Zamboni-Rached M, Gesualdi MRR. Experimental optical trapping with frozen waves. Opt Lett 45, 2514–2517 (2020). doi: 10.1364/OL.390909

    CrossRef Google Scholar

    [138] Lamperska W, Drobczyński S, Nawrot M, Wasylczyk P, Masajada J. Micro-dumbbells—A versatile tool for optical tweezers. Micromachines 9, 277 (2018). doi: 10.3390/mi9060277

    CrossRef Google Scholar

    [139] Ashkin A, Dziedzic JM, Bjorkholm JE, Chu S. Observation of a single-beam gradient force optical trap for dielectric particles. Opt Lett 11, 288–290 (1986). doi: 10.1364/OL.11.000288

    CrossRef Google Scholar

    [140] Jesacher A, Fürhapter S, Bernet S, Ritsch-Marte M. Diffractive optical tweezers in the Fresnel regime. Opt Express 12, 2243–2250 (2004). doi: 10.1364/OPEX.12.002243

    CrossRef Google Scholar

    [141] López-Quesada C, Andilla J, Martín-Badosa E. Correction of aberration in holographic optical tweezers using a Shack-Hartmann sensor. Appl Opt 48, 1084–1090 (2009). doi: 10.1364/AO.48.001084

    CrossRef Google Scholar

    [142] Farré A, Shayegan M, López-Quesada C, Blab GA, Montes-Usategui M et al. Positional stability of holographic optical traps. Opt Express 19, 21370–21384 (2011). doi: 10.1364/OE.19.021370

    CrossRef Google Scholar

    [143] Martinez JL, Fernandez EJ, Prieto PM, Artal P. Chromatic aberration control with liquid crystal spatial phase modulators. Opt Express 25, 9793–9801 (2017). doi: 10.1364/OE.25.009793

    CrossRef Google Scholar

    [144] Chen J, Kong LJ, Zhan QW. Demonstration of a vectorial optical field generator with adaptive close loop control. Rev Sci Instrum 88, 125111 (2017). doi: 10.1063/1.4999656

    CrossRef Google Scholar

    [145] Wang LW, Yan W, Li RZ, Weng XY, Zhang J et al. Aberration correction for improving the image quality in STED microscopy using the genetic algorithm. Nanophotonics 7, 1971–1980 (2018). doi: 10.1515/nanoph-2018-0133

    CrossRef Google Scholar

    [146] Chandra AD, Banerjee A. Rapid phase calibration of a spatial light modulator using novel phase masks and optimization of its efficiency using an iterative algorithm. J Mod Opt 67, 628–637 (2020). doi: 10.1080/09500340.2020.1760954

    CrossRef Google Scholar

    [147] Khorin PA, Porfirev AP, Khonina SN. Adaptive detection of wave aberrations based on the multichannel filter. Photonics 9, 204 (2022). doi: 10.3390/photonics9030204

    CrossRef Google Scholar

    [148] Zeylikovich I, Sztul HI, Kartazaev V, Le T, Alfano RR. Ultrashort Laguerre-Gaussian pulses with angular and group velocity dispersion compensation. Opt Letters 32, 2025–2027 (2007). doi: 10.1364/OL.32.002025

    CrossRef Google Scholar

    [149] Hahn J, Kim H, Choi K, Lee B. Real-time digital holographic beam-shaping system with a genetic feedback tuning loop. Appl Opt 45, 915–924 (2006). doi: 10.1364/AO.45.000915

    CrossRef Google Scholar

    [150] Frumker E, Silberberg Y. Femtosecond pulse shaping using a two-dimensional liquid-crystal spatial light modulator. Opt Lett 32, 1384–1386 (2007). doi: 10.1364/OL.32.001384

    CrossRef Google Scholar

    [151] Li RJ, Gao YH, Cao LC. In situ calibration for a phase-only spatial light modulator based on digital holography. Opt Eng 59, 053101 (2020).

    Google Scholar

    [152] Jesacher A, Schwaighofer A, Fürhapter S, Maurer C, Bernet S et al. Wavefront correction of spatial light modulators using an optical vortex image. Opt Express 15, 5801–5808 (2007). doi: 10.1364/OE.15.005801

    CrossRef Google Scholar

    [153] Jiang Wenhan. Overview of adaptive optics development. Opto-Electronic Eng 45, 170489 (2018). doi: 10.12086/oee.2018.170489

    CrossRef Google Scholar

    [154] Mu QQ, Cao ZL, Hu LF, Li DY, Xuan L. Adaptive optics imaging system based on a high-resolution liquid crystal on silicon device. Opt Express 14, 8013–8018 (2006). doi: 10.1364/OE.14.008013

    CrossRef Google Scholar

    [155] Mu QQ, Cao ZL, Li DY, Hu LF, Xuan L. Liquid crystal based adaptive optics system to compensate both low and high order aberrations in a model eye. Opt Express 15, 1946–1953 (2007). doi: 10.1364/OE.15.001946

    CrossRef Google Scholar

    [156] Liu TL, Upadhyayula S, Milkie DE, Singh V, Wang K et al. Observing the cell in its native state: Imaging subcellular dynamics in multicellular organisms. Science 360, eaaq1392 (2018). doi: 10.1126/science.aaq1392

    CrossRef Google Scholar

    [157] Ji N, Milkie DE, Betzig E. Adaptive optics via pupil segmentation for high-resolution imaging in biological tissues. Nat Methods 7, 141–147 (2010). doi: 10.1038/nmeth.1411

    CrossRef Google Scholar

    [158] Xavier J, Dasgupta R, Ahlawat S, Joseph J, Gupta PK. Three dimensional optical twisters-driven helically stacked multi-layered microrotors. Appl Phys Lett 100, 121101 (2012). doi: 10.1063/1.3693413

    CrossRef Google Scholar

    [159] Yan W, Yang YL, Tan Y, Chen X, Li Y et al. Coherent optical adaptive technique improves the spatial resolution of STED microscopy in thick samples. Photonics Res 5, 176–181 (2017). doi: 10.1364/PRJ.5.000176

    CrossRef Google Scholar

    [160] Fürhapter S, Jesacher A, Bernet S, Ritsch-Marte M. Spiral interferometry. Opt Lett 30, 1953–1955 (2005). doi: 10.1364/OL.30.001953

    CrossRef Google Scholar

    [161] Zhao SA, Chung PS. Digital speckle shearing interferometer using a liquid-crystal spatial light modulator. Opt Eng 45, 105606 (2006). doi: 10.1117/1.2360940

    CrossRef Google Scholar

    [162] Maurer C, Bernet S, Ritsch-Marte M. Refining common path interferometry with a spiral phase Fourier filter. J Opt A Pure Appl Opt 11, 094023 (2009). doi: 10.1088/1464-4258/11/9/094023

    CrossRef Google Scholar

    [163] Jesacher A, Fürhapter S, Bernet S, Ritsch-Marte M. Spiral interferogram analysis. J Opt Soc Am A 23, 1400–1409 (2006). doi: 10.1364/JOSAA.23.001400

    CrossRef Google Scholar

    [164] Hai N, Rosen J. Single-plane and multiplane quantitative phase imaging by self-reference on-axis holography with a phase-shifting method. Opt Express 29, 24210–24225 (2021). doi: 10.1364/OE.431529

    CrossRef Google Scholar

    [165] Leach J, Keen S, Padgett MJ, Saunter C, Love GD. Direct measurement of the skew angle of the Poynting vector in a helically phased beam. Opt Express 14, 11919–11924 (2006). doi: 10.1364/OE.14.011919

    CrossRef Google Scholar

    [166] Mateo MP, Garcia CC, Hergenröder R. Depth analysis of polymer-coated steel samples using near-infrared femtosecond laser ablation inductively coupled plasma mass spectrometry. Anal Chem 79, 4908–4914 (2007). doi: 10.1021/ac070241q

    CrossRef Google Scholar

    [167] Xue S, Chen SY, Fan ZB, Zhai DD. Adaptive wavefront interferometry for unknown free-form surfaces. Opt Express 26, 21910–21928 (2018). doi: 10.1364/OE.26.021910

    CrossRef Google Scholar

    [168] van Putten EG, Lagendijk A, Mosk AP. Nonimaging speckle interferometry for high-speed nanometer-scale position detection. Opt Letters 37, 1070–1072 (2012). doi: 10.1364/OL.37.001070

    CrossRef Google Scholar

    [169] Dorrah AH, Zamboni-Rached M, Mojahedi M. Experimental demonstration of tunable refractometer based on orbital angular momentum of longitudinally structured light. Light Sci Appl 7, 40 (2018). doi: 10.1038/s41377-018-0034-9

    CrossRef Google Scholar

    [170] Büttner L, Thümmler M, Czarske J. Velocity measurements with structured light transmitted through a multimode optical fiber using digital optical phase conjugation. Opt Express 28, 8064–8075 (2020). doi: 10.1364/OE.386047

    CrossRef Google Scholar

    [171] Huang GQ, Wu DX, Luo JW, Huang Y, Shen YC. Retrieving the optical transmission matrix of a multimode fiber using the extended Kalman filter. Opt Express 28, 9487–9500 (2020). doi: 10.1364/OE.389133

    CrossRef Google Scholar

    [172] Vijayakumar A, Rosen J. Interferenceless coded aperture correlation holography–a new technique for recording incoherent digital holograms without two-wave interference. Opt Express 25, 13883–13896 (2017). doi: 10.1364/OE.25.013883

    CrossRef Google Scholar

    [173] Vijayakumar A, Rosen J. Spectrum and space resolved 4D imaging by coded aperture correlation holography (COACH) with diffractive objective lens. Opt Lett 42, 947–950 (2017). doi: 10.1364/OL.42.000947

    CrossRef Google Scholar

    [174] Dubey N, Rosen J, Gannot I. High-resolution imaging system with an annular aperture of coded phase masks for endoscopic applications. Opt Express 28, 15122–15137 (2020). doi: 10.1364/OE.391713

    CrossRef Google Scholar

    [175] Vellekoop IM, Mosk AP. Focusing coherent light through opaque strongly scattering media. Opt Lett 32, 2309–2311 (2007). doi: 10.1364/OL.32.002309

    CrossRef Google Scholar

    [176] Van Beijnum F, Van Putten EG, Lagendijk A, Mosk AP. Frequency bandwidth of light focused through turbid media. Opt Lett 36, 373–375 (2011). doi: 10.1364/OL.36.000373

    CrossRef Google Scholar

    [177] Kashter Y, Vijayakumar A, Rosen J. Resolving images by blurring: superresolution method with a scattering mask between the observed objects and the hologram recorder. Optica 4, 932–939 (2017). doi: 10.1364/OPTICA.4.000932

    CrossRef Google Scholar

    [178] Chen L, Chen ZY, Singh RK, Pu JX. Imaging of polarimetric-phase object through scattering medium by phase shifting. Opt Express 28, 8145–8155 (2020). doi: 10.1364/OE.382551

    CrossRef Google Scholar

    [179] Singh D, Singh RK. Lensless Stokes holography with the Hanbury Brown-Twiss approach. Opt Express 26, 10801–10812 (2018). doi: 10.1364/OE.26.010801

    CrossRef Google Scholar

    [180] Funamizu H, Uozumi J. Generation of fractal speckles by means of a spatial light modulator. Opt Express 15, 7415–7422 (2007). doi: 10.1364/OE.15.007415

    CrossRef Google Scholar

    [181] Carbonell-Leal M, Mínguez-Vega G, Lancis J, Mendoza-Yero M. Encoding of arbitrary micrometric complex illumination patterns with reduced speckle. Opt Express 27, 19788–19801 (2019). doi: 10.1364/OE.27.019788

    CrossRef Google Scholar

    [182] Cui M, Yang CH. Implementation of a digital optical phase conjugation system and its application to study the robustness of turbidity suppression by phase conjugation. Opt Express 18, 3444–3455 (2010). doi: 10.1364/OE.18.003444

    CrossRef Google Scholar

    [183] Fan WR, Hu XS, Zhaxi BM, Chen ZY, Pu JX. Generation of focal pattern with controllable polarization and intensity for laser beam passing through a multi-mode fiber. Opt Express 26, 7693–7700 (2018). doi: 10.1364/OE.26.007693

    CrossRef Google Scholar

    [184] Li DY, Sahoo SK, Lam HQ, Wang D, Dang C. Non-invasive optical focusing inside strongly scattering media with linear fluorescence. Appl Phys Lett 116, 241104 (2020). doi: 10.1063/5.0004071

    CrossRef Google Scholar

    [185] Zhang K, Wang ZY, Zhao HH, Liu C, Zhang HY et al. Implementation of an off-axis digital optical phase conjugation system for turbidity suppression on scattering medium. Appl Sci 10, 875 (2020). doi: 10.3390/app10030875

    CrossRef Google Scholar

    [186] Cheng ZT, Wang LV. Focusing light into scattering media with ultrasound-induced field perturbation. Light Sci Appl 10, 159 (2021). doi: 10.1038/s41377-021-00605-7

    CrossRef Google Scholar

    [187] Wu P, Zhang DJ, Yuan J, Zeng SQ, Gong H et al. Large depth-of-field fluorescence microscopy based on deep learning supported by Fresnel incoherent correlation holography. Opt Express 30, 5177–5191 (2022). doi: 10.1364/OE.451409

    CrossRef Google Scholar

    [188] Chen HK, Wu XJ, Zhang YQ, Yang Y, Min CJ et al. Wide-field in situ multiplexed Raman imaging with superresolution. Photonics Res 6, 530–534 (2018). doi: 10.1364/PRJ.6.000530

    CrossRef Google Scholar

    [189] Paterson L, Agate B, Comrie M, Ferguson R, Lake TK et al. Photoporation and cell transfection using a violet diode laser. Opt Express 13, 595–600 (2005). doi: 10.1364/OPEX.13.000595

    CrossRef Google Scholar

    [190] Ng JW, Chatenay D, Robert J, Poirier MG. Plasmid copy number noise in monoclonal populations of bacteria. Phys Rev E 81, 011909 (2010). doi: 10.1103/PhysRevE.81.011909

    CrossRef Google Scholar

    [191] Wang P, Slipchenko MN, Mitchell J, Yang C, Potma EO et al. Far-field imaging of non-fluorescent species with subdiffraction resolution. Nat Photonics 7, 449–453 (2013). doi: 10.1038/nphoton.2013.97

    CrossRef Google Scholar

    [192] Reda F, Salvatore M, Borbone F, Maddalena P, Ambrosio A et al. Varifocal diffractive lenses for multi-depth microscope imaging. Opt Express 30, 12695–12711 (2022). doi: 10.1364/OE.455520

    CrossRef Google Scholar

    [193] Buckley C, Carvalho MT, Young LK, Rider SA, McFadden C et al. Precise spatio-temporal control of rapid optogenetic cell ablation with mem-KillerRed in Zebrafish. Sci Rep 7, 5096 (2017). doi: 10.1038/s41598-017-05028-2

    CrossRef Google Scholar

    [194] Rodrigo JA, Soto JM, Alieva T. Fast label-free microscopy technique for 3D dynamic quantitative imaging of living cells. Biomed Opt Express 8, 5507–5517 (2017). doi: 10.1364/BOE.8.005507

    CrossRef Google Scholar

    [195] Wang ZJ, Cai YA, Liang YS, Zhou X, Yan SH et al. Single shot, three-dimensional fluorescence microscopy with a spatially rotating point spread function. Biomed Opt Express 8, 5493–5506 (2017). doi: 10.1364/BOE.8.005493

    CrossRef Google Scholar

    [196] Leach J, Yao E, Padgett MJ. Observation of the vortex structure of a non-integer vortex beam. New J Phys 6, 71 (2004). doi: 10.1088/1367-2630/6/1/071

    CrossRef Google Scholar

    [197] Leach J, Dennis MR, Courtial J, Padgett MJ. Knotted threads of darkness. Nature 432, 165 (2004).

    Google Scholar

    [198] Leach J, Dennis MR, Courtial J, Padgett MJ. Vortex knots in light. New J Phys 7, 55 (2005). doi: 10.1088/1367-2630/7/1/055

    CrossRef Google Scholar

    [199] Tao SH, Yuan XC, Lin J, Peng X, Niu HB. Fractional optical vortex beam induced rotation of particles. Opt Express 13, 7726–7731 (2005). doi: 10.1364/OPEX.13.007726

    CrossRef Google Scholar

    [200] Hu JT, Tai YP, Zhu LH, Long ZX, Tang MM et al. Optical vortex with multi-fractional orders. Appl Phys Lett 116, 201107 (2020). doi: 10.1063/5.0004692

    CrossRef Google Scholar

    [201] Hu XB, Perez-Garcia B, Rodríguez-Fajardo V, Hernandez-Aranda RI, Forbes A et al. Free-space local nonseparability dynamics of vector modes. Photonics Res 9, 439–445 (2021). doi: 10.1364/PRJ.416342

    CrossRef Google Scholar

    [202] Shen YJ, Nape I, Yang XL, Fu X, Gong ML et al. Creation and control of high-dimensional multi-partite classically entangled light. Light Sci Appl 10, 50 (2021). doi: 10.1038/s41377-021-00493-x

    CrossRef Google Scholar

    [203] Malik M, Mirhosseini M, Lavery MPJ, Leach J, Padgett MJ et al. Direct measurement of a 27-dimensional orbital-angular-momentum state vector. Nat Commun 5, 3115 (2014). doi: 10.1038/ncomms4115

    CrossRef Google Scholar

    [204] Zhang J, Huang SJ, Zhu FQ, Shao W, Chen MS. Dimensional properties of Laguerre–Gaussian vortex beams. Appl Opt 56, 3556–3561 (2017). doi: 10.1364/AO.56.003556

    CrossRef Google Scholar

    [205] Shao ZK, Zhu JB, Chen YJ, Zhang YF, Yu SY. Spin-orbit interaction of light induced by transverse spin angular momentum engineering. Nat Commun 9, 926 (2018). doi: 10.1038/s41467-018-03237-5

    CrossRef Google Scholar

    [206] Pan SZ, Pei CY, Liu S, Wei J, Wu D et al. Measuring orbital angular momentums of light based on petal interference patterns. OSA Continuum 1, 451–461 (2018). doi: 10.1364/OSAC.1.000451

    CrossRef Google Scholar

    [207] Li XZ, Zhang H. Anomalous ring-connected optical vortex array. Opt Express 28, 13775–13785 (2020). doi: 10.1364/OE.390985

    CrossRef Google Scholar

    [208] Lu JN, Cao CY, Zhu ZQ, Gu B. Flexible measurement of high-order optical orbital angular momentum with a variable cylindrical lens pair. Appl Phys Lett 116, 201105 (2020). doi: 10.1063/5.0002756

    CrossRef Google Scholar

    [209] Klug A, Peters C, Forbes A. Robust structured light in atmospheric turbulence. Adv Photonics 5, 016006–016006 (2023).

    Google Scholar

    [210] Emile O, Emile J, Brousseau C. Rotational Doppler shift upon reflection from a right angle prism. Appl Phys Lett 116, 221102 (2020). doi: 10.1063/5.0009396

    CrossRef Google Scholar

    [211] Li DH, Bongiovanni D, Goutsoulas M, Xia SQ, Zhang Z et al. Direct comparison of anti-diffracting optical pin beams and abruptly autofocusing beams. OSA Continuum 3, 1525–1535 (2020). doi: 10.1364/OSAC.391878

    CrossRef Google Scholar

    [212] Xu YQ, Li X, Zhou L, Zhou YM, Wang F et al. Experimental investigation in Airy transform of Gaussian beams with optical vortex. Results Phys 28, 104588 (2021). doi: 10.1016/j.rinp.2021.104588

    CrossRef Google Scholar

    [213] Fu SY, Hai L, Song R, Gao CQ, Zhang XD. Representation of total angular momentum states of beams through a four-parameter notation. New J Phys 23, 083015 (2021). doi: 10.1088/1367-2630/ac1695

    CrossRef Google Scholar

    [214] Kesarwani R, Simbulan KB, Huang TD, Chiang YF, Yeh NC et al. Control of trion-to-exciton conversion in monolayer WS2 by orbital angular momentum of light. Sci Adv 8, eabm0100 (2022). doi: 10.1126/sciadv.abm0100

    CrossRef Google Scholar

    [215] Li XZ, Ma HX, Yin CL, Tang J, Li HH et al. Controllable mode transformation in perfect optical vortices. Opt Express 26, 651–662 (2018). doi: 10.1364/OE.26.000651

    CrossRef Google Scholar

    [216] Li L, Chang CL, Yuan XZ, Yuan CJ, Feng ST et al. Generation of optical vortex array along arbitrary curvilinear arrangement. Opt Express 26, 9798–9812 (2018). doi: 10.1364/OE.26.009798

    CrossRef Google Scholar

    [217] Szatkowski M, Masajada J, Augustyniak I, Nowacka K. Generation of composite vortex beams by independent Spatial Light Modulator pixel addressing. Opt Commun 463, 125341 (2020). doi: 10.1016/j.optcom.2020.125341

    CrossRef Google Scholar

    [218] Kumar P, Pal SK, Nishchal NK, Senthilkumaran P. Non-interferometric technique to realize vector beams embedded with polarization singularities. J Opt Soc Am A 37, 1043–1052 (2020). doi: 10.1364/JOSAA.393027

    CrossRef Google Scholar

    [219] Meng WJ, Hua YL, Cheng K, Li BL, Liu TT et al. 100 Hertz frame-rate switching three-dimensional orbital angular momentum multiplexing holography via cross convolution. Opto-Electron Sci 1, 220004 (2022). doi: 10.29026/oes.2022.220004

    CrossRef Google Scholar

    [220] Lochab P, Senthilkumaran P, Khare K. Robust laser beam engineering using polarization and angular momentum diversity. Opt Express 25, 17524–17529 (2017). doi: 10.1364/OE.25.017524

    CrossRef Google Scholar

    [221] Wu Y, Ni R, Xu Z, Wu YD, Fang XY et al. Tunable third harmonic generation of vortex beams in an optical superlattice. Opt Express 25, 30820–30826 (2017). doi: 10.1364/OE.25.030820

    CrossRef Google Scholar

    [222] Li H, Liu HG, Chen XF. Nonlinear generation of Airy vortex beam. Opt Express 26, 21204–21209 (2018). doi: 10.1364/OE.26.021204

    CrossRef Google Scholar

    [223] Otte E, Tekce K, Lamping S, Ravoo BJ, Denz C. Polarization nano-tomography of tightly focused light landscapes by self-assembled monolayers. Nat Commun 10, 4308 (2019). doi: 10.1038/s41467-019-12127-3

    CrossRef Google Scholar

    [224] Bernet S, Jesacher A, Fürhapter S, Maurer C, Ritsch-Marte M. Quantitative imaging of complex samples by spiral phase contrast microscopy. Opt Express 14, 3792–3805 (2006). doi: 10.1364/OE.14.003792

    CrossRef Google Scholar

    [225] Situ GH, Pedrini G, Osten W. Spiral phase filtering and orientation-selective edge detection/enhancement. J Opt Soc Am A 26, 1788–1797 (2009). doi: 10.1364/JOSAA.26.001788

    CrossRef Google Scholar

    [226] Tao SH, Yuan XC, Lin J, Burge RE. Residue orbital angular momentum in interferenced double vortex beams with unequal topological charges. Opt Express 14, 535–541 (2006). doi: 10.1364/OPEX.14.000535

    CrossRef Google Scholar

    [227] Forbes A, Ramachandran S, Zhan QW. Photonic angular momentum: progress and perspectives. Nanophotonics 11, 625–631 (2022). doi: 10.1515/nanoph-2022-0035

    CrossRef Google Scholar

    [228] Chen J, Chen X, Li T, Zhu SN. On‐chip detection of orbital angular momentum beam by plasmonic nanogratings. Laser Photonics Rev 12, 1700331 (2018). doi: 10.1002/lpor.201700331

    CrossRef Google Scholar

    [229] Stütz M, Gröblacher S, Jennewein T, Zeilinger A. How to create and detect N-dimensional entangled photons with an active phase hologram. Appl Phys Lett 90, 261114 (2007). doi: 10.1063/1.2752728

    CrossRef Google Scholar

    [230] Zhu FQ, Huang SJ, Shao W, Zhang J, Chen MS et al. Free-space optical communication link using perfect vortex beams carrying orbital angular momentum (OAM). Opt Commun 396, 50–57 (2017). doi: 10.1016/j.optcom.2017.03.023

    CrossRef Google Scholar

    [231] Shao W, Huang SJ, Liu XP, Chen MS. Free-space optical communication with perfect optical vortex beams multiplexing. Opt Commun 427, 545–550 (2018). doi: 10.1016/j.optcom.2018.06.079

    CrossRef Google Scholar

    [232] Malik M, O’Sullivan M, Rodenburg B, Mirhosseini M, Leach J et al. Influence of atmospheric turbulence on optical communications using orbital angular momentum for encoding. Opt Express 20, 13195–13200 (2012). doi: 10.1364/OE.20.013195

    CrossRef Google Scholar

    [233] Wang LX, Nejad RM, Corsi A, Lin JC, Messaddeq Y et al. Linearly polarized vector modes: enabling MIMO-free mode-division multiplexing. Opt Express 25, 11736–11749 (2017). doi: 10.1364/OE.25.011736

    CrossRef Google Scholar

    [234] Jing GQ, Chen LZ, Wang PP, Xiong WJ, Huang ZB et al. Recognizing fractional orbital angular momentum using feed forward neural network. Results Phys 28, 104619 (2021). doi: 10.1016/j.rinp.2021.104619

    CrossRef Google Scholar

    [235] Trichili A, Rosales-Guzmán C, Dudley A, Ndagano B, Ben Salem A et al. Optical communication beyond orbital angular momentum. Sci Rep 6, 27674 (2016). doi: 10.1038/srep27674

    CrossRef Google Scholar

    [236] Erhard M, Fickler R, Krenn M, Zeilinger A. Twisted photons: new quantum perspectives in high dimensions. Light Sci Appl 7, 17146 (2018).

    Google Scholar

    [237] Forbes A, Nape I. Quantum mechanics with patterns of light: progress in high dimensional and multidimensional entanglement with structured light. AVS Quantum Sci 1, 011701 (2019). doi: 10.1116/1.5112027

    CrossRef Google Scholar

    [238] Mair A, Vaziri A, Weihs G, Zeilinger A. Entanglement of the orbital angular momentum states of photons. Nature 412, 313–316 (2001). doi: 10.1038/35085529

    CrossRef Google Scholar

    [239] Jack B, Leach J, Ritsch H, Barnett M, Padgett MJ et al. Precise quantum tomography of photon pairs with entangled orbital angular momentum. New J Phys 11, 103024 (2009). doi: 10.1088/1367-2630/11/10/103024

    CrossRef Google Scholar

    [240] Agnew M, Leach J, McLaren M, Stef Roux F, Boyd RW. Tomography of the quantum state of photons entangled in high dimensions. Phys Rev A 84, 062101 (2011). doi: 10.1103/PhysRevA.84.062101

    CrossRef Google Scholar

    [241] Dada AC, Leach J, Buller GS, Padgett MJ, Andersson E. Experimental high-dimensional two-photon entanglement and violations of generalized Bell inequalities. Nat Phys 7, 677–680 (2011). doi: 10.1038/nphys1996

    CrossRef Google Scholar

    [242] Leach J, Jack B, Romero J, jha AK, Yao AM et al. Quantum correlations in optical angle–orbital angular momentum variables. Science 329, 662–665 (2010). doi: 10.1126/science.1190523

    CrossRef Google Scholar

    [243] Nape I, Rodríguez-Fajardo V, Zhu F, Huang HC, Leach J et al. Measuring dimensionality and purity of high-dimensional entangled states. Nat Commun 12, 5159 (2021). doi: 10.1038/s41467-021-25447-0

    CrossRef Google Scholar

    [244] Bavaresco J, Herrera Valencia N, Klöckl C, Pivoluska M, Erker P et al. Measurements in two bases are sufficient for certifying high-dimensional entanglement. Nat Phys 14, 1032–1037 (2018). doi: 10.1038/s41567-018-0203-z

    CrossRef Google Scholar

    [245] Kovlakov EV, Straupe SS, Kulik SP. Quantum state engineering with twisted photons via adaptive shaping of the pump beam. Phys Rev A 98, 060301(R) (2018).

    Google Scholar

    [246] Walborn SP, de Oliveira AN, Pádua S, Monken CH. Multimode hong-ou-mandel interference. Phys Rev Lett 90, 143601 (2003). doi: 10.1103/PhysRevLett.90.143601

    CrossRef Google Scholar

    [247] Bornman N, Tavares Buono W, Lovemore M, Forbes A. Optimal pump shaping for entanglement control in any countable basis. Adv Quantum Technol 4, 2100066 (2021). doi: 10.1002/qute.202100066

    CrossRef Google Scholar

    [248] McLaren M, Mhlanga T, Padgett MJ, Roux FS, Forbes A. Self-healing of quantum entanglement after an obstruction. Nat Commun 5, 3248 (2014). doi: 10.1038/ncomms4248

    CrossRef Google Scholar

    [249] Zhang YW, Roux FS, Konrad T, Agnew M, Leach J et al. Engineering two-photon high-dimensional states through quantum interference. Sci Adv 2, e1501165 (2016). doi: 10.1126/sciadv.1501165

    CrossRef Google Scholar

    [250] De Oliveira M, Bornman N, Forbes A. Holographically controlled random numbers from entangled twisted photons. Phys Rev A 102, 032620 (2020). doi: 10.1103/PhysRevA.102.032620

    CrossRef Google Scholar

    [251] Mafu M, Dudley A, Goyal S, Giovannini D, McLaren M et al. Higher-dimensional orbital-angular-momentum-based quantum key distribution with mutually unbiased bases. Phys Rev A 88, 032305 (2013). doi: 10.1103/PhysRevA.88.032305

    CrossRef Google Scholar

    [252] Mirhosseini M, Magaña-Loaiza OS, O’Sullivan MN, Rodenburg B, Malik M et al. High-dimensional quantum cryptography with twisted light. New J Phys 17, 033033 (2015). doi: 10.1088/1367-2630/17/3/033033

    CrossRef Google Scholar

    [253] Sit A, Bouchard F, Fickler R, Gagnon-Bischoff J, Larocque H et al. High-dimensional intracity quantum cryptography with structured photons. Optica 4, 1006–1010 (2017). doi: 10.1364/OPTICA.4.001006

    CrossRef Google Scholar

    [254] Cozzolino D, Bacco D, Da Lio B, Ingerslev K, Ding YH et al. Orbital angular momentum states enabling fiber-based high-dimensional quantum communication. Phys Rev Appl 11, 064058 (2019). doi: 10.1103/PhysRevApplied.11.064058

    CrossRef Google Scholar

    [255] Pinnell J, Nape I, de Oliveira M, TabeBordbar N, Forbes A. Experimental demonstration of 11-dimensional 10-party quantum secret sharing. Laser Photonics Rev 14, 2000012 (2020). doi: 10.1002/lpor.202000012

    CrossRef Google Scholar

    [256] Zhang YW, Agnew M, Roger T, Roux FS, Konrad T et al. Simultaneous entanglement swapping of multiple orbital angular momentum states of light. Nat Commun 8, 632 (2017). doi: 10.1038/s41467-017-00706-1

    CrossRef Google Scholar

    [257] Sephton B, Vallés A, Nape I, Cox MA, Steinlechner F et al. Stimulated teleportation of high-dimensional information with a nonlinear spatial mode detector. arXiv: 2111.13624 (2021).

    Google Scholar

    [258] Krenn M, Huber M, Fickler R, Lapkiewicz R, Ramelow S et al. Generation and confirmation of a (100× 100)-dimensional entangled quantum system. Proc Natl Acad Sci USA 111, 6243–6247 (2014). doi: 10.1073/pnas.1402365111

    CrossRef Google Scholar

    [259] Shapiro JH, Boyd RW. The physics of ghost imaging. Quantum Inf Process 11, 949–993 (2012). doi: 10.1007/s11128-011-0356-5

    CrossRef Google Scholar

    [260] Padgett MJ, Boyd RW. An introduction to ghost imaging: quantum and classical. Philos Trans Roy Soc A Math Phys Eng Sci 375, 20160233 (2017).

    Google Scholar

    [261] Gatti A, Brambilla E, Lugiato L. Quantum imaging. Prog Opt 51, 251–348 (2008).

    Google Scholar

    [262] Edgar MP, Gibson GM, Padgett MJ. Principles and prospects for single-pixel imaging. Nat Photonics 13, 13–20 (2019). doi: 10.1038/s41566-018-0300-7

    CrossRef Google Scholar

    [263] Mansha S, Moitra P, Xu XW, Mass TWW, Veetil RM et al. High resolution multispectral spatial light modulators based on tunable Fabry-Perot nanocavities. Light Sci Appl 11, 141 (2022). doi: 10.1038/s41377-022-00832-6

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(12)

Tables(1)

Article Metrics

Article views(6990) PDF downloads(958) Cited by(0)

Access History

Other Articles By Authors

Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint