Citation: | Yang YQ, Forbes A, Cao LC. A review of liquid crystal spatial light modulators: devices and applications. Opto-Electron Sci 2, 230026 (2023). doi: 10.29026/oes.2023.230026 |
[1] | Forbes A, de Oliveira M, Dennis MR. Structured light. Nat Photonics 15, 253–262 (2021). doi: 10.1038/s41566-021-00780-4 |
[2] | He C, Shen YJ, Forbes A. Towards higher-dimensional structured light. Light Sci Appl 11, 205 (2022). doi: 10.1038/s41377-022-00897-3 |
[3] | Buono WT, Forbes A. Nonlinear optics with structured light. Opto-Electron Adv 5, 210174 (2022). doi: 10.29026/oea.2022.210174 |
[4] | Dickey FM, Lizotte TE. Laser Beam Shaping Applications (CRC Press, Boca Raton, 2006). |
[5] | Dickey FM. Laser Beam Shaping: Theory and Techniques 2nd ed (CRC Press, Boca Raton, 2014). |
[6] | Dickey FM. Laser beam shaping. Opt Photonics News 14, 30–35 (2003). |
[7] | Rhodes PW, Shealy DL. Refractive optical systems for irradiance redistribution of collimated radiation: their design and analysis. Appl Opti 19, 3545–3553 (1980). doi: 10.1364/AO.19.003545 |
[8] | Lohmann AW. A pre-history of computer-generated holography. Opt Photonics News 19, 36–47 (2008). |
[9] | Soifer AV, Kotlar V, Doskolovich L. Iteractive Methods for Diffractive Optical Elements Computation (London, CRC Press, 1997). |
[10] | Soifer VA, Golub MA. Laser Beam Mode Selection by Computer Generated Holograms (Boca Raton, CRC Press, 1994). |
[11] | Soifer VA. Methods for Computer Design of Diffractive Optical Elements (Willey, New York, 2002). |
[12] | Soifer VA. Diffractive Optics and Nanophotonics (CRC Press, Boca Raton, 2017). |
[13] | Lazarev G, Chen PJ, Strauss J, Fontaine N, Forbes A. Beyond the display: phase-only liquid crystal on silicon devices and their applications in photonics [Invited]. Opt Express 27, 16206–16249 (2019). doi: 10.1364/OE.27.016206 |
[14] | Zhang ZC, You Z, Chu DP. Fundamentals of phase-only liquid crystal on silicon (LCOS) devices. Light Sci Appl 3, e213 (2014). doi: 10.1038/lsa.2014.94 |
[15] | Huang YG, Liao E, Chen R, Wu ST. Liquid-crystal-on-silicon for augmented reality displays. Appl Sci 8, 2366 (2018). doi: 10.3390/app8122366 |
[16] | Xiong JH, Wu ST. Planar liquid crystal polarization optics for augmented reality and virtual reality: from fundamentals to applications. eLight 1, 3 (2021). doi: 10.1186/s43593-021-00003-x |
[17] | Lu YQ, Li Y. Planar liquid crystal polarization optics for near-eye displays. Light Sci Appl 10, 122 (2021). doi: 10.1038/s41377-021-00567-w |
[18] | Berto P, Philippet L, Osmond J, Liu CF, Afridi A et al. Tunable and free-form planar optics. Nat Photonics 13, 649–656 (2019). doi: 10.1038/s41566-019-0486-3 |
[19] | Sui XM, He ZH, Cao LC, Jin GF. Recent progress in complex-modulated holographic display based on liquid crystal spatial light modulators. Chin J Liq Cryst Dis 36, 797–809 (2021). |
[20] | Li RJ, Cao LC. Progress in phase calibration for liquid crystal spatial light modulators. Appl Sci 9, 2012 (2019). doi: 10.3390/app9102012 |
[21] | Rosales-Guzmán C, Forbes A. How to Shape Light with Spatial Light Modulators (SPIE, 2017). |
[22] | Forbes A, Dudley A, McLaren M. Creation and detection of optical modes with spatial light modulators. Adv Opt Photonics 8, 200–227 (2016). doi: 10.1364/AOP.8.000200 |
[23] | Weiner AM. Femtosecond pulse shaping using spatial light modulators. Rev Sci Instrum 71, 1929–1960 (2000). doi: 10.1063/1.1150614 |
[24] | Weiner AM. Ultrafast optical pulse shaping: a tutorial review. Opt Commun 284, 3669–3692 (2011). doi: 10.1016/j.optcom.2011.03.084 |
[25] | Szuniewicz J, Kurdziałek S, Kundu S, Zwolinski W, Chrapkiewicz R et al. Noise-resistant phase imaging with intensity correlation. Science Advances 9, eadh5396 (2023). doi: 10.1126/sciadv.adh5396 |
[26] | Yao E, Franke-Arnold S, Courtial J, Padgett MJ, Barnett SM. Observation of quantum entanglement using spatial light modulators. Opt Express 14, 13089–13094 (2006). doi: 10.1364/OE.14.013089 |
[27] | Kong LJ, Sun YF, Zhang FR, Zhang JF, Zhang XD. High-dimensional entanglement-enabled holography. Physical Review Letters 130, 053602 (2023). |
[28] | Maurer C, Jesacher A, Bernet S, Ritsch-Marte M. What spatial light modulators can do for optical microscopy. Laser Photonics Rev 5, 81–101 (2011). doi: 10.1002/lpor.200900047 |
[29] | Shapiro JH. Computational ghost imaging. Phys Rev A 78, 061802 (2008). doi: 10.1103/PhysRevA.78.061802 |
[30] | Moreau PA, Toninelli E, Gregory T, Padgett MJ. Ghost imaging using optical correlations. Laser Photonics Rev 12, 1700143 (2018). doi: 10.1002/lpor.201700143 |
[31] | Padgett M, Bowman R. Tweezers with a twist. Nat Photonics 5, 343–348 (2011). doi: 10.1038/nphoton.2011.81 |
[32] | Grier DG. A revolution in optical manipulation. Nature 424, 810–816 (2003). doi: 10.1038/nature01935 |
[33] | Sun BS, Salter PS, Roider C, Jesacher A, Strauss J et al. Four-dimensional light shaping: manipulating ultrafast spatiotemporal foci in space and time. Light Sci Appl 7, 17117 (2018). |
[34] | Jesacher A, Maurer C, Schwaighofer A, Bernet S, Ritsch-Marte M. Near-perfect hologram reconstruction with a spatial light modulator. Opt Express 16, 2597–2603 (2008). doi: 10.1364/OE.16.002597 |
[35] | Meng XS, Qiu XY, Li GQ, Ye WJ, Lin YQ et al. Study of optical rotation generated by the twisted nematic liquid crystal film: based on circular birefringence effect. Appl Opt 58, 5301–5309 (2019). doi: 10.1364/AO.58.005301 |
[36] | Hua H, Liu Y, Yong K. The effect of pretilt and twisted angle on twisted nematic liquid crystal filter. Opt Spectrosc 125, 275–280 (2018). doi: 10.1134/S0030400X1808009X |
[37] | Lagerwall JPF, Scalia G. A new era for liquid crystal research: applications of liquid crystals in soft matter nano-, bio- and microtechnology. Curr Appl Phys 12, 1387–1412 (2012). doi: 10.1016/j.cap.2012.03.019 |
[38] | Efron U, Wu ST, Bates TD. Nematic liquid crystals for spatial light modulators: recent studies. J Opt Soc Am B 3, 247–252 (1986). doi: 10.1364/JOSAB.3.000247 |
[39] | Konforti N, Marom E, Wu ST. Phase-only modulation with twisted nematic liquid-crystal spatial light modulators. Opt Lett 13, 251–253 (1988). doi: 10.1364/OL.13.000251 |
[40] | Wen L, Nan XH, Li JX, Cumming DRS, Hu X et al. Broad-band spatial light modulation with dual epsilon-near-zero modes. Opto-Electron Adv 5, 200093 (2022). doi: 10.29026/oea.2022.200093 |
[41] | Tang DL, Shao ZL, Xie X, Zhou YJ, Zhang XH et al. Flat multifunctional liquid crystal elements through multi-dimensional information multiplexing. Opto-Electron Adv 6, 220063 (2023). doi: 10.29026/oea.2023.220063 |
[42] | Chen HMP, Yang JP, Yen HT, Hsu ZN, Huang YG et al. Pursuing high quality phase-only liquid crystal on silicon (LCoS) devices. Appl Sci 8, 2323 (2018). doi: 10.3390/app8112323 |
[43] | Tabiryan NV, Roberts DE, Liao Z, Hwang JY, Moran M et al. Advances in transparent planar optics: enabling large aperture, ultrathin lenses. Adv Opt Mater 9, 2001692 (2021). doi: 10.1002/adom.202001692 |
[44] | Wen YF, Zhang Q, He Q, Zhang FF, Xiong LX et al. Shortening focal length of 100-mm aperture flat lens based on improved sagnac interferometer and bifacial liquid crystal. Adv Opt Mater 11, 2300127 (2023). doi: 10.1002/adom.202300127 |
[45] | Nassiri MG, Brasselet E. Multispectral management of the photon orbital angular momentum. Phys Rev Lett 121, 213901 (2018). doi: 10.1103/PhysRevLett.121.213901 |
[46] | Brasselet E. Tunable high-resolution macroscopic self-engineered geometric phase optical elements. Phys Rev Lett 121, 033901 (2018). doi: 10.1103/PhysRevLett.121.033901 |
[47] | McGloin D, Dholakia K. Bessel beams: diffraction in a new light. Contemp Phys 46, 15–28 (2005). doi: 10.1080/0010751042000275259 |
[48] | Siviloglou GA, Broky J, Dogariu A, Christodoulides DN. Observation of accelerating Airy beams. Phys Rev Lett 99, 213901 (2007). doi: 10.1103/PhysRevLett.99.213901 |
[49] | Carter WH. Spot size and divergence for Hermite Gaussian beams of any order. Appl Opt 19, 1027–1029 (1980). doi: 10.1364/AO.19.001027 |
[50] | Zauderer E. Complex argument Hermite–Gaussian and Laguerre–Gaussian beams. J Opt Soc Am A 3, 465–469 (1986). doi: 10.1364/JOSAA.3.000465 |
[51] | Allen L, Beijersbergen MW, Spreeuw RJC, Woerdman JP. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys Rev A 45, 8185–8189 (1992). doi: 10.1103/PhysRevA.45.8185 |
[52] | Yang YQ, Kang XW, Cao LC. Robust propagation of a steady optical beam through turbulence with extended depth of focus based on spatial light modulator. J Phys Photonics 5, 035002 (2023). doi: 10.1088/2515-7647/acd28c |
[53] | Göröcs Z, Erdei G, Sarkadi T, Ujhelyi F, Reményi J et al. Hybrid multinary modulation using a phase modulating spatial light modulator and a low-pass spatial filter. Opt Lett 32, 2336–2338 (2007). doi: 10.1364/OL.32.002336 |
[54] | Frumker E, Silberberg Y. Phase and amplitude pulse shaping with two-dimensional phase-only spatial light modulators. J Opt Soc Am B 24, 2940–2947 (2007). doi: 10.1364/JOSAB.24.002940 |
[55] | Supradeepa VR, Huang CB, Leaird DE, Weiner AM. Femtosecond pulse shaping in two dimensions: towards higher complexity optical waveforms. Opt Express 16, 11878–11887 (2008). doi: 10.1364/OE.16.011878 |
[56] | Paurisse M, Hanna M, Druon F, Georges P, Bellanger C et al. Phase and amplitude control of a multimode LMA fiber beam by use of digital holography. Opt Express 17, 13000–13008 (2009). doi: 10.1364/OE.17.013000 |
[57] | Karimi E, Zito G, Piccirillo B, Marrucci L, Santamato E. Hypergeometric-Gaussian modes. Opt Lett 32, 3053–3055 (2007). doi: 10.1364/OL.32.003053 |
[58] | Spangenberg DM, Dudley A, Neethling PH, Rohwer EG, Forbes A. White light wavefront control with a spatial light modulator. Opt Express 22, 13870–13879 (2014). doi: 10.1364/OE.22.013870 |
[59] | Zacharias T, Hadad B, Bahabad A, Eliezer Y. Axial sub-Fourier focusing of an optical beam. Opt Lett 42, 3205–3208 (2017). doi: 10.1364/OL.42.003205 |
[60] | Zhu LW, Yang R, Zhang DW, Yu JJ, Chen JN. Dynamic three-dimensional multifocal spots in high numerical-aperture objectives. Opt Express 25, 24756–24766 (2017). doi: 10.1364/OE.25.024756 |
[61] | Zeng TT, Chang CL, Chen ZZ, Wang HY, Ding JP. Three-dimensional vectorial multifocal arrays created by pseudo-period encoding. J Opt 20, 065605 (2018). doi: 10.1088/2040-8986/aac1de |
[62] | Vellekoop IM, van Putten EG, Lagendijk A, Mosk AP. Demixing light paths inside disordered metamaterials. Opt Express 16, 67–80 (2008). doi: 10.1364/OE.16.000067 |
[63] | Vellekoop IM, Mosk AP. Universal optimal transmission of light through disordered materials. Phys Rev Lett 101, 120601 (2008). doi: 10.1103/PhysRevLett.101.120601 |
[64] | Hsieh CL, Pu Y, Grange R, Psaltis D. Digital phase conjugation of second harmonic radiation emitted by nanoparticles in turbid media. Opt Express 18, 12283–12290 (2010). doi: 10.1364/OE.18.012283 |
[65] | Popoff SM, Lerosey G, Carminati R, Fink M, Boccara AC et al. Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media. Phys Rev Lett 104, 100601 (2010). doi: 10.1103/PhysRevLett.104.100601 |
[66] | Popoff S, Lerosey G, Fink M, Boccara AC, Gigan S. Image transmission through an opaque material. Nat Commun 1, 81 (2010). doi: 10.1038/ncomms1078 |
[67] | Mazilu M, Baumgartl J, Kosmeier S, Dholakia K. Optical eigenmodes; exploiting the quadratic nature of the energy flux and of scattering interactions. Opt Express 19, 933–945 (2011). doi: 10.1364/OE.19.000933 |
[68] | Madan I, Leccese V, Mazur A, Barantani F, LaGrange T et al. Ultrafast transverse modulation of free electrons by interaction with shaped optical fields. ACS Photonics 9, 3215–3224 (2022). doi: 10.1021/acsphotonics.2c00850 |
[69] | Fu SY, Zhang SK, Gao CQ. Bessel beams with spatial oscillating polarization. Sci Rep 6, 30765 (2016). doi: 10.1038/srep30765 |
[70] | Fu SY, Wang TL, Zhang ZY, Zhai YW, Gao CQ. Non-diffractive Bessel-Gauss beams for the detection of rotating object free of obstructions. Opt Express 25, 20098–20108 (2017). doi: 10.1364/OE.25.020098 |
[71] | Wang F, Li J, Martinez-Piedra G, Korotkova O. Propagation dynamics of partially coherent crescent-like optical beams in free space and turbulent atmosphere. Opt Express 25, 26055–26066 (2017). doi: 10.1364/OE.25.026055 |
[72] | Zhu GX, Wen YH, Wu X, Chen YJ, Liu J et al. Obstacle evasion in free-space optical communications utilizing Airy beams. Opt Lett 43, 1203–1206 (2018). doi: 10.1364/OL.43.001203 |
[73] | Lin H, Jia BH, Gu M. Dynamic generation of Debye diffraction-limited multifocal arrays for direct laser printing nanofabrication. Opt Lett 36, 406–408 (2011). doi: 10.1364/OL.36.000406 |
[74] | Lightman S, Hurvitz G, Gvishi R, Arie A. Miniature wide-spectrum mode sorter for vortex beams produced by 3D laser printing. Optica 4, 605–610 (2017). doi: 10.1364/OPTICA.4.000605 |
[75] | Okada T, Tanaka K. Photo-designed terahertz devices. Sci Rep 1, 121 (2011). doi: 10.1038/srep00121 |
[76] | Trichili A, Mhlanga T, Ismail Y, Roux FS, McLaren M et al. Detection of Bessel beams with digital axicons. Opt Express 22, 7553–17560 (2014). |
[77] | Jenness NJ, Wu YQ, Clark RL. Fabrication of three-dimensional electrospun microstructures using phase modulated femtosecond laser pulses. Mater Lett 66, 360–363 (2012). doi: 10.1016/j.matlet.2011.09.015 |
[78] | Yang L, Ji SY, Xie KA, Du WQ, Liu BJ et al. High efficiency fabrication of complex microtube arrays by scanning focused femtosecond laser Bessel beam for trapping/releasing biological cells. Opt Express 25, 8144–8157 (2017). doi: 10.1364/OE.25.008144 |
[79] | Sun XY, Dong ZL, Cheng KF, Chu DK, Kong DJ et al. Fabrication of oil–water separation copper filter by spatial light modulated femtosecond laser. J Micromech Microeng 30, 065007 (2020). doi: 10.1088/1361-6439/ab870d |
[80] | Pan D, Xu B, Liu SL, Li JW, Hu YL et al. Amplitude-phase optimized long depth of focus femtosecond axilens beam for single-exposure fabrication of high-aspect-ratio microstructures. Opt Lett 45, 2584–2587 (2020). doi: 10.1364/OL.389946 |
[81] | Xavier J, Boguslawski M, Rose P, Joseph J, Denz C. Reconfigurable optically induced quasicrystallographic three-dimensional complex nonlinear photonic lattice structures. Adv Mater 22, 356–360 (2010). doi: 10.1002/adma.200901792 |
[82] | Yuan YJ, Jiang L, Li X, Zuo P, Xu CY et al. Laser photonic-reduction stamping for graphene-based micro-supercapacitors ultrafast fabrication. Nat Commun 11, 6185 (2020). doi: 10.1038/s41467-020-19985-2 |
[83] | Kelner R, Rosen J. Methods of single-channel digital holography for three-dimensional imaging. IEEE Trans Ind Inf 12, 220–230 (2016). doi: 10.1109/TII.2015.2475247 |
[84] | Reicherter M, Zwick S, Haist T, Kohler C, Tiziani H et al. Fast digital hologram generation and adaptive force measurement in liquid-crystal-display-based holographic tweezers. Appl Opt 45, 888–896 (2006). doi: 10.1364/AO.45.000888 |
[85] | Euser TG, Whyte G, Scharrer M, Chen JSY, Abdolvand A et al. Dynamic control of higher-order modes in hollow-core photonic crystal fibers. Opt Express 16, 17972–17981 (2008). doi: 10.1364/OE.16.017972 |
[86] | Katz B, Wulich D, Rosen J. Optimal noise suppression in Fresnel incoherent correlation holography (FINCH) configured for maximum imaging resolution. Appl Opt 49, 5757–5763 (2010). doi: 10.1364/AO.49.005757 |
[87] | Shimobaba T, Kakue T, Yamamoto Y, Hoshi I, Shiomi H et al. Hologram generation via Hilbert transform. OSA Continuum 3, 1498–1503 (2020). doi: 10.1364/OSAC.395003 |
[88] | Zhao Y, Cao LC, Zhang H, Kong DZ, Jin GF. Accurate calculation of computer-generated holograms using angular-spectrum layer-oriented method. Opt Express 23, 25440–25449 (2015). doi: 10.1364/OE.23.025440 |
[89] | Shi L, Li BC, Kim C, Kellnhofer P, Matusik W. Towards real-time photorealistic 3D holography with deep neural networks. Nature 591, 234–239 (2021). doi: 10.1038/s41586-020-03152-0 |
[90] | Sui XM, He ZH, Zhang H, Cao LC, Jin GF. Spatiotemporal double-phase hologram for complex-amplitude holographic displays. Chin Opt Lett 18, 100901 (2020). doi: 10.3788/COL202018.100901 |
[91] | Christenson CW, Blanche PA, Tay S, Voorakaranam R, Gu T et al. Materials for an updatable holographic 3D display. J Disp Technol 6, 510–516 (2010). doi: 10.1109/JDT.2010.2046620 |
[92] | Kim J, Gopakumar M, Choi S, Peng YF, Lopes W et al. Holographic glasses for virtual reality. In Proceedings of ACM SIGGRAPH 2022 Conference Proceedings 33 (ACM, 2022);https://doi.org/10.1145/3528233.3530739. |
[93] | Sato H, Kakue T, Ichihashi Y, Endo Y, Wakunami K et al. Real-time colour hologram generation based on ray-sampling plane with multi-GPU acceleration. Sci Rep 8, 1500 (2018). doi: 10.1038/s41598-018-19361-7 |
[94] | Cao HK, Lin SF, Kim ES. Accelerated generation of holographic videos of 3-D objects in rotational motion using a curved hologram-based rotational-motion compensation method. Opt Express 26, 21279–21300 (2018). doi: 10.1364/OE.26.021279 |
[95] | Derzhypolskyi AG, Gnatovskyi OV, Derzhypolska LA. Reduction of speckle noise in laser energy distribution on the target by means of modified fourier hologram and incoherent averaging technique. Semicond Phys Quantum Electron Optoelectron 21, 429–433 (2018). doi: 10.15407/spqeo21.04.429 |
[96] | Choi S, Gopakumar M, Peng YF, Kim J, O'Toole M et al. Time-multiplexed neural holography: a flexible framework for holographic near-eye displays with fast heavily-quantized spatial light modulators. In Proceedings of ACM SIGGRAPH 2022 Conference Proceedings 32 (ACM, 2022);https://doi.org/10.1145/3528233.3530734. |
[97] | Lee JS, Kim YK, Won YH. Time multiplexing technique of holographic view and Maxwellian view using a liquid lens in the optical see-through head mounted display. Opt Express 26, 2149–2159 (2018). doi: 10.1364/OE.26.002149 |
[98] | Tsutsumi N, Kinashi K, Sakai W, Nishide J, Kawabe Y et al. Real-time three-dimensional holographic display using a monolithic organic compound dispersed film. Opt Mater Express 2, 1003–1010 (2012). doi: 10.1364/OME.2.001003 |
[99] | Yeom HJ, Kim HJ, Kim SB, Zhang HJ, Li BN et al. 3D holographic head mounted display using holographic optical elements with astigmatism aberration compensation. Opt Express 23, 32025–32034 (2015). doi: 10.1364/OE.23.032025 |
[100] | Choi MH, Ju YG, Park JH. Holographic near-eye display with continuously expanded eyebox using two-dimensional replication and angular spectrum wrapping. Opt Express 28, 533–547 (2020). doi: 10.1364/OE.381277 |
[101] | Rostykus M, Moser C. Compact lensless off-axis transmission digital holographic microscope. Opt Express 25, 16652–16659 (2017). doi: 10.1364/OE.25.016652 |
[102] | Kim D, Nam SW, Lee B, Seo JM, Lee B. Accommodative holography: improving accommodation response for perceptually realistic holographic displays. ACM Trans Graph 41, 111 (2022). |
[103] | Zhou PC, Li Y, Liu SX, Su YK. Compact design for optical-see-through holographic displays employing holographic optical elements. Opt Express 26, 22866–22876 (2018). doi: 10.1364/OE.26.022866 |
[104] | Park JH, Kim SB. Optical see-through holographic near-eye-display with eyebox steering and depth of field control. Opt Express 26, 27076–27088 (2018). doi: 10.1364/OE.26.027076 |
[105] | Chang CL, Qi YJ, Wu J, Xia J, Nie SP. Speckle reduced lensless holographic projection from phase-only computer-generated hologram. Opt Express 25, 6568–6580 (2017). doi: 10.1364/OE.25.006568 |
[106] | Maimone A, Georgiou A, Kollin JS. Holographic near-eye displays for virtual and augmented reality. ACM Trans Graph 36, 85 (2017). |
[107] | Shi L, Huang FC, Lopes W, Matusik W, Luebke D. Near-eye light field holographic rendering with spherical waves for wide field of view interactive 3D computer graphics. ACM Trans Graph 36, 236 (2017). |
[108] | Yamada S, Kakue T, Shimobaba T, Ito T. Interactive holographic display based on finger gestures. Sci Rep 8, 2010 (2018). doi: 10.1038/s41598-018-20454-6 |
[109] | Jordan P, Leach J, Padgett M, Blackburn P, Isaacs N et al. Creating permanent 3D arrangements of isolated cells using holographic optical tweezers. Lab Chip 5, 1224–1228 (2005). doi: 10.1039/b509218c |
[110] | Burnham DR, McGloin D. Holographic optical trapping of aerosol droplets. Opt Express 14, 4175–4181 (2006). doi: 10.1364/OE.14.004175 |
[111] | Chapin SC, Germain V, Dufresne ER. Automated trapping, assembly, and sorting with holographic optical tweezers. Opt Express 14, 13095–13100 (2006). doi: 10.1364/OE.14.013095 |
[112] | He XD, Xu P, Wang J, Zhan MS. Rotating single atoms in a ring lattice generated by a spatial light modulator. Opt Express 17, 21007–21014 (2009). doi: 10.1364/OE.17.021007 |
[113] | Hörner F, Woerdemann M, Müller S, Maier B, Denz C. Full 3D translational and rotational optical control of multiple rod-shaped bacteria. J Biophoton 3, 468–475 (2010). doi: 10.1002/jbio.201000033 |
[114] | Thalhammer G, Steiger R, Bernet S, Ritsch-Marte M. Optical macro-tweezers: trapping of highly motile micro-organisms. J Opt 13, 044024 (2011). doi: 10.1088/2040-8978/13/4/044024 |
[115] | Liang YS, Lei M, Yan SH, Li MM, Cai YA et al. Rotating of low-refractive-index microparticles with a quasi-perfect optical vortex. Appl Opt 57, 79–84 (2018). doi: 10.1364/AO.57.000079 |
[116] | Hadad B, Froim S, Nagar H, Admon T, Eliezer Y et al. Particle trapping and conveying using an optical Archimedes’ screw. Optica 5, 551–556 (2018). doi: 10.1364/OPTICA.5.000551 |
[117] | Wen JS, Gao BJ, Zhu GY, Liu DD, Wang LG. Precise position and angular control of optical trapping and manipulation via a single vortex-pair beam. Opt Lasers Eng 148, 106773 (2022). doi: 10.1016/j.optlaseng.2021.106773 |
[118] | Sainis SK, Germain V, Mejean CO, Dufresne ER. Electrostatic interactions of colloidal particles in nonpolar solvents: role of surface chemistry and charge control agents. Langmuir 24, 1160–1164 (2008). doi: 10.1021/la702432u |
[119] | Di Leonardo R, Keen S, Leach J, Saunter CD, Love GD et al. Eigenmodes of a hydrodynamically coupled micron-size multiple-particle ring. Phys Rev E 76, 061402 (2007). |
[120] | Di Leonardo R, Saglimbeni F, Ruocco G. Very-long-range nature of capillary interactions in liquid films. Phys Rev Lett 100, 106103 (2008). doi: 10.1103/PhysRevLett.100.106103 |
[121] | van der Horst A, Forde NR. Calibration of dynamic holographic optical tweezers for force measurements on biomaterials. Opt Express 16, 20987–21003 (2008). doi: 10.1364/OE.16.020987 |
[122] | Mejean CO, Schaefer AW, Millman EA, Forscher P, Dufresne ER. Multiplexed force measurements on live cells with holographic optical tweezers. Opt Express 17, 6209–6217 (2009). doi: 10.1364/OE.17.006209 |
[123] | Di Leonardo R, Leach J, Mushfique H, Cooper JM, Ruocco G et al. Multipoint holographic optical velocimetry in microfluidic systems. Phys Rev Lett 96, 134502 (2006). doi: 10.1103/PhysRevLett.96.134502 |
[124] | Mushfique H, Leach J, Di Leonardo R, Padgett MJ, Cooper JM. Optically driven pumps and flow sensors for microfluidic systems. Proc Inst Mech Eng Part C J Mech Eng Sci 222, 829–837 (2008). |
[125] | Woerdemann M, Alpmann C, Hörner F, Devaux A, De Cola L et al. Optical control and dynamic patterning of zeolites. Proc SPIE 7762, 77622E (2010). doi: 10.1117/12.863610 |
[126] | Ghadiri R, Surbek M, Esen C, Ostendorf A. Optically based manufacturing with polymer particles. Phys Procedia 5, 47–51 (2010). |
[127] | Cojoc D, Emiliani V, Ferrari E, Malureanu R, Cabrini S et al. Multiple optical trapping by means of diffractive optical elements. Jpn J Appl Phys 43, 3910–3915 (2004). doi: 10.1143/JJAP.43.3910 |
[128] | Jesacher A, Fürhapter S, Bernet S, Ritsch-Marte M. Size selective trapping with optical “cogwheel” tweezers. Opt Express 12, 4129–4135 (2004). doi: 10.1364/OPEX.12.004129 |
[129] | Hermerschmidt A, Krüger S, Haist T, Zwick S, Warber M et al. Holographic optical tweezers with real-time hologram calculation using a phase-only modulating LCOS-based SLM at 1064 nm. Proc SPIE 6905, 690508 (2008). doi: 10.1117/12.764649 |
[130] | Zwick S, Haist T, Miyamoto Y, He L, Warber M et al. Holographic twin traps. J Opt A Pure Appl Opt 11, 034011 (2009). doi: 10.1088/1464-4258/11/3/034011 |
[131] | Jesacher A, Maurer C, Fürhapter S, Schwaighofer A, Bernet S et al. Optical tweezers of programmable shape with transverse scattering forces. Opt Commun 281, 2207–2212 (2008). doi: 10.1016/j.optcom.2007.12.042 |
[132] | Kim H, Lee W, Lee HG, Jo H, Song Y et al. In situ single-atom array synthesis using dynamic holographic optical tweezers. Nat Commun 7, 13317 (2016). doi: 10.1038/ncomms13317 |
[133] | Montes-Usategui M, Pleguezuelos E, Andilla J, Martín-Badosa E. Fast generation of holographic optical tweezers by random mask encoding of Fourier components. Opt Express 14, 2101–2107 (2006). doi: 10.1364/OE.14.002101 |
[134] | Lizana A, Zhang HL, Turpin A, Van Eeckhout A, Torres-Ruiz FA et al. Generation of reconfigurable optical traps for microparticles spatial manipulation through dynamic split lens inspired light structures. Sci Rep 8, 11263 (2018). doi: 10.1038/s41598-018-29540-1 |
[135] | Schonbrun E, Piestun R, Jordan P, Cooper J, Wulff KD et al. 3D interferometric optical tweezers using a single spatial light modulator. Opt Express 13, 3777–3786 (2005). doi: 10.1364/OPEX.13.003777 |
[136] | Köhler J, Ruschke J, Ferenz KB, Esen C, Kirsch M et al. Investigation of albumin-derived perfluorocarbon-based capsules by holographic optical trapping. Biomed Opt Express 9, 743–754 (2018). doi: 10.1364/BOE.9.000743 |
[137] | Suarez RAB, Ambrosio LA, Neves AAR, Zamboni-Rached M, Gesualdi MRR. Experimental optical trapping with frozen waves. Opt Lett 45, 2514–2517 (2020). doi: 10.1364/OL.390909 |
[138] | Lamperska W, Drobczyński S, Nawrot M, Wasylczyk P, Masajada J. Micro-dumbbells—A versatile tool for optical tweezers. Micromachines 9, 277 (2018). doi: 10.3390/mi9060277 |
[139] | Ashkin A, Dziedzic JM, Bjorkholm JE, Chu S. Observation of a single-beam gradient force optical trap for dielectric particles. Opt Lett 11, 288–290 (1986). doi: 10.1364/OL.11.000288 |
[140] | Jesacher A, Fürhapter S, Bernet S, Ritsch-Marte M. Diffractive optical tweezers in the Fresnel regime. Opt Express 12, 2243–2250 (2004). doi: 10.1364/OPEX.12.002243 |
[141] | López-Quesada C, Andilla J, Martín-Badosa E. Correction of aberration in holographic optical tweezers using a Shack-Hartmann sensor. Appl Opt 48, 1084–1090 (2009). doi: 10.1364/AO.48.001084 |
[142] | Farré A, Shayegan M, López-Quesada C, Blab GA, Montes-Usategui M et al. Positional stability of holographic optical traps. Opt Express 19, 21370–21384 (2011). doi: 10.1364/OE.19.021370 |
[143] | Martinez JL, Fernandez EJ, Prieto PM, Artal P. Chromatic aberration control with liquid crystal spatial phase modulators. Opt Express 25, 9793–9801 (2017). doi: 10.1364/OE.25.009793 |
[144] | Chen J, Kong LJ, Zhan QW. Demonstration of a vectorial optical field generator with adaptive close loop control. Rev Sci Instrum 88, 125111 (2017). doi: 10.1063/1.4999656 |
[145] | Wang LW, Yan W, Li RZ, Weng XY, Zhang J et al. Aberration correction for improving the image quality in STED microscopy using the genetic algorithm. Nanophotonics 7, 1971–1980 (2018). doi: 10.1515/nanoph-2018-0133 |
[146] | Chandra AD, Banerjee A. Rapid phase calibration of a spatial light modulator using novel phase masks and optimization of its efficiency using an iterative algorithm. J Mod Opt 67, 628–637 (2020). doi: 10.1080/09500340.2020.1760954 |
[147] | Khorin PA, Porfirev AP, Khonina SN. Adaptive detection of wave aberrations based on the multichannel filter. Photonics 9, 204 (2022). doi: 10.3390/photonics9030204 |
[148] | Zeylikovich I, Sztul HI, Kartazaev V, Le T, Alfano RR. Ultrashort Laguerre-Gaussian pulses with angular and group velocity dispersion compensation. Opt Letters 32, 2025–2027 (2007). doi: 10.1364/OL.32.002025 |
[149] | Hahn J, Kim H, Choi K, Lee B. Real-time digital holographic beam-shaping system with a genetic feedback tuning loop. Appl Opt 45, 915–924 (2006). doi: 10.1364/AO.45.000915 |
[150] | Frumker E, Silberberg Y. Femtosecond pulse shaping using a two-dimensional liquid-crystal spatial light modulator. Opt Lett 32, 1384–1386 (2007). doi: 10.1364/OL.32.001384 |
[151] | Li RJ, Gao YH, Cao LC. In situ calibration for a phase-only spatial light modulator based on digital holography. Opt Eng 59, 053101 (2020). |
[152] | Jesacher A, Schwaighofer A, Fürhapter S, Maurer C, Bernet S et al. Wavefront correction of spatial light modulators using an optical vortex image. Opt Express 15, 5801–5808 (2007). doi: 10.1364/OE.15.005801 |
[153] | Jiang Wenhan. Overview of adaptive optics development. Opto-Electronic Eng 45, 170489 (2018). doi: 10.12086/oee.2018.170489 |
[154] | Mu QQ, Cao ZL, Hu LF, Li DY, Xuan L. Adaptive optics imaging system based on a high-resolution liquid crystal on silicon device. Opt Express 14, 8013–8018 (2006). doi: 10.1364/OE.14.008013 |
[155] | Mu QQ, Cao ZL, Li DY, Hu LF, Xuan L. Liquid crystal based adaptive optics system to compensate both low and high order aberrations in a model eye. Opt Express 15, 1946–1953 (2007). doi: 10.1364/OE.15.001946 |
[156] | Liu TL, Upadhyayula S, Milkie DE, Singh V, Wang K et al. Observing the cell in its native state: Imaging subcellular dynamics in multicellular organisms. Science 360, eaaq1392 (2018). doi: 10.1126/science.aaq1392 |
[157] | Ji N, Milkie DE, Betzig E. Adaptive optics via pupil segmentation for high-resolution imaging in biological tissues. Nat Methods 7, 141–147 (2010). doi: 10.1038/nmeth.1411 |
[158] | Xavier J, Dasgupta R, Ahlawat S, Joseph J, Gupta PK. Three dimensional optical twisters-driven helically stacked multi-layered microrotors. Appl Phys Lett 100, 121101 (2012). doi: 10.1063/1.3693413 |
[159] | Yan W, Yang YL, Tan Y, Chen X, Li Y et al. Coherent optical adaptive technique improves the spatial resolution of STED microscopy in thick samples. Photonics Res 5, 176–181 (2017). doi: 10.1364/PRJ.5.000176 |
[160] | Fürhapter S, Jesacher A, Bernet S, Ritsch-Marte M. Spiral interferometry. Opt Lett 30, 1953–1955 (2005). doi: 10.1364/OL.30.001953 |
[161] | Zhao SA, Chung PS. Digital speckle shearing interferometer using a liquid-crystal spatial light modulator. Opt Eng 45, 105606 (2006). doi: 10.1117/1.2360940 |
[162] | Maurer C, Bernet S, Ritsch-Marte M. Refining common path interferometry with a spiral phase Fourier filter. J Opt A Pure Appl Opt 11, 094023 (2009). doi: 10.1088/1464-4258/11/9/094023 |
[163] | Jesacher A, Fürhapter S, Bernet S, Ritsch-Marte M. Spiral interferogram analysis. J Opt Soc Am A 23, 1400–1409 (2006). doi: 10.1364/JOSAA.23.001400 |
[164] | Hai N, Rosen J. Single-plane and multiplane quantitative phase imaging by self-reference on-axis holography with a phase-shifting method. Opt Express 29, 24210–24225 (2021). doi: 10.1364/OE.431529 |
[165] | Leach J, Keen S, Padgett MJ, Saunter C, Love GD. Direct measurement of the skew angle of the Poynting vector in a helically phased beam. Opt Express 14, 11919–11924 (2006). doi: 10.1364/OE.14.011919 |
[166] | Mateo MP, Garcia CC, Hergenröder R. Depth analysis of polymer-coated steel samples using near-infrared femtosecond laser ablation inductively coupled plasma mass spectrometry. Anal Chem 79, 4908–4914 (2007). doi: 10.1021/ac070241q |
[167] | Xue S, Chen SY, Fan ZB, Zhai DD. Adaptive wavefront interferometry for unknown free-form surfaces. Opt Express 26, 21910–21928 (2018). doi: 10.1364/OE.26.021910 |
[168] | van Putten EG, Lagendijk A, Mosk AP. Nonimaging speckle interferometry for high-speed nanometer-scale position detection. Opt Letters 37, 1070–1072 (2012). doi: 10.1364/OL.37.001070 |
[169] | Dorrah AH, Zamboni-Rached M, Mojahedi M. Experimental demonstration of tunable refractometer based on orbital angular momentum of longitudinally structured light. Light Sci Appl 7, 40 (2018). doi: 10.1038/s41377-018-0034-9 |
[170] | Büttner L, Thümmler M, Czarske J. Velocity measurements with structured light transmitted through a multimode optical fiber using digital optical phase conjugation. Opt Express 28, 8064–8075 (2020). doi: 10.1364/OE.386047 |
[171] | Huang GQ, Wu DX, Luo JW, Huang Y, Shen YC. Retrieving the optical transmission matrix of a multimode fiber using the extended Kalman filter. Opt Express 28, 9487–9500 (2020). doi: 10.1364/OE.389133 |
[172] | Vijayakumar A, Rosen J. Interferenceless coded aperture correlation holography–a new technique for recording incoherent digital holograms without two-wave interference. Opt Express 25, 13883–13896 (2017). doi: 10.1364/OE.25.013883 |
[173] | Vijayakumar A, Rosen J. Spectrum and space resolved 4D imaging by coded aperture correlation holography (COACH) with diffractive objective lens. Opt Lett 42, 947–950 (2017). doi: 10.1364/OL.42.000947 |
[174] | Dubey N, Rosen J, Gannot I. High-resolution imaging system with an annular aperture of coded phase masks for endoscopic applications. Opt Express 28, 15122–15137 (2020). doi: 10.1364/OE.391713 |
[175] | Vellekoop IM, Mosk AP. Focusing coherent light through opaque strongly scattering media. Opt Lett 32, 2309–2311 (2007). doi: 10.1364/OL.32.002309 |
[176] | Van Beijnum F, Van Putten EG, Lagendijk A, Mosk AP. Frequency bandwidth of light focused through turbid media. Opt Lett 36, 373–375 (2011). doi: 10.1364/OL.36.000373 |
[177] | Kashter Y, Vijayakumar A, Rosen J. Resolving images by blurring: superresolution method with a scattering mask between the observed objects and the hologram recorder. Optica 4, 932–939 (2017). doi: 10.1364/OPTICA.4.000932 |
[178] | Chen L, Chen ZY, Singh RK, Pu JX. Imaging of polarimetric-phase object through scattering medium by phase shifting. Opt Express 28, 8145–8155 (2020). doi: 10.1364/OE.382551 |
[179] | Singh D, Singh RK. Lensless Stokes holography with the Hanbury Brown-Twiss approach. Opt Express 26, 10801–10812 (2018). doi: 10.1364/OE.26.010801 |
[180] | Funamizu H, Uozumi J. Generation of fractal speckles by means of a spatial light modulator. Opt Express 15, 7415–7422 (2007). doi: 10.1364/OE.15.007415 |
[181] | Carbonell-Leal M, Mínguez-Vega G, Lancis J, Mendoza-Yero M. Encoding of arbitrary micrometric complex illumination patterns with reduced speckle. Opt Express 27, 19788–19801 (2019). doi: 10.1364/OE.27.019788 |
[182] | Cui M, Yang CH. Implementation of a digital optical phase conjugation system and its application to study the robustness of turbidity suppression by phase conjugation. Opt Express 18, 3444–3455 (2010). doi: 10.1364/OE.18.003444 |
[183] | Fan WR, Hu XS, Zhaxi BM, Chen ZY, Pu JX. Generation of focal pattern with controllable polarization and intensity for laser beam passing through a multi-mode fiber. Opt Express 26, 7693–7700 (2018). doi: 10.1364/OE.26.007693 |
[184] | Li DY, Sahoo SK, Lam HQ, Wang D, Dang C. Non-invasive optical focusing inside strongly scattering media with linear fluorescence. Appl Phys Lett 116, 241104 (2020). doi: 10.1063/5.0004071 |
[185] | Zhang K, Wang ZY, Zhao HH, Liu C, Zhang HY et al. Implementation of an off-axis digital optical phase conjugation system for turbidity suppression on scattering medium. Appl Sci 10, 875 (2020). doi: 10.3390/app10030875 |
[186] | Cheng ZT, Wang LV. Focusing light into scattering media with ultrasound-induced field perturbation. Light Sci Appl 10, 159 (2021). doi: 10.1038/s41377-021-00605-7 |
[187] | Wu P, Zhang DJ, Yuan J, Zeng SQ, Gong H et al. Large depth-of-field fluorescence microscopy based on deep learning supported by Fresnel incoherent correlation holography. Opt Express 30, 5177–5191 (2022). doi: 10.1364/OE.451409 |
[188] | Chen HK, Wu XJ, Zhang YQ, Yang Y, Min CJ et al. Wide-field in situ multiplexed Raman imaging with superresolution. Photonics Res 6, 530–534 (2018). doi: 10.1364/PRJ.6.000530 |
[189] | Paterson L, Agate B, Comrie M, Ferguson R, Lake TK et al. Photoporation and cell transfection using a violet diode laser. Opt Express 13, 595–600 (2005). doi: 10.1364/OPEX.13.000595 |
[190] | Ng JW, Chatenay D, Robert J, Poirier MG. Plasmid copy number noise in monoclonal populations of bacteria. Phys Rev E 81, 011909 (2010). doi: 10.1103/PhysRevE.81.011909 |
[191] | Wang P, Slipchenko MN, Mitchell J, Yang C, Potma EO et al. Far-field imaging of non-fluorescent species with subdiffraction resolution. Nat Photonics 7, 449–453 (2013). doi: 10.1038/nphoton.2013.97 |
[192] | Reda F, Salvatore M, Borbone F, Maddalena P, Ambrosio A et al. Varifocal diffractive lenses for multi-depth microscope imaging. Opt Express 30, 12695–12711 (2022). doi: 10.1364/OE.455520 |
[193] | Buckley C, Carvalho MT, Young LK, Rider SA, McFadden C et al. Precise spatio-temporal control of rapid optogenetic cell ablation with mem-KillerRed in Zebrafish. Sci Rep 7, 5096 (2017). doi: 10.1038/s41598-017-05028-2 |
[194] | Rodrigo JA, Soto JM, Alieva T. Fast label-free microscopy technique for 3D dynamic quantitative imaging of living cells. Biomed Opt Express 8, 5507–5517 (2017). doi: 10.1364/BOE.8.005507 |
[195] | Wang ZJ, Cai YA, Liang YS, Zhou X, Yan SH et al. Single shot, three-dimensional fluorescence microscopy with a spatially rotating point spread function. Biomed Opt Express 8, 5493–5506 (2017). doi: 10.1364/BOE.8.005493 |
[196] | Leach J, Yao E, Padgett MJ. Observation of the vortex structure of a non-integer vortex beam. New J Phys 6, 71 (2004). doi: 10.1088/1367-2630/6/1/071 |
[197] | Leach J, Dennis MR, Courtial J, Padgett MJ. Knotted threads of darkness. Nature 432, 165 (2004). |
[198] | Leach J, Dennis MR, Courtial J, Padgett MJ. Vortex knots in light. New J Phys 7, 55 (2005). doi: 10.1088/1367-2630/7/1/055 |
[199] | Tao SH, Yuan XC, Lin J, Peng X, Niu HB. Fractional optical vortex beam induced rotation of particles. Opt Express 13, 7726–7731 (2005). doi: 10.1364/OPEX.13.007726 |
[200] | Hu JT, Tai YP, Zhu LH, Long ZX, Tang MM et al. Optical vortex with multi-fractional orders. Appl Phys Lett 116, 201107 (2020). doi: 10.1063/5.0004692 |
[201] | Hu XB, Perez-Garcia B, Rodríguez-Fajardo V, Hernandez-Aranda RI, Forbes A et al. Free-space local nonseparability dynamics of vector modes. Photonics Res 9, 439–445 (2021). doi: 10.1364/PRJ.416342 |
[202] | Shen YJ, Nape I, Yang XL, Fu X, Gong ML et al. Creation and control of high-dimensional multi-partite classically entangled light. Light Sci Appl 10, 50 (2021). doi: 10.1038/s41377-021-00493-x |
[203] | Malik M, Mirhosseini M, Lavery MPJ, Leach J, Padgett MJ et al. Direct measurement of a 27-dimensional orbital-angular-momentum state vector. Nat Commun 5, 3115 (2014). doi: 10.1038/ncomms4115 |
[204] | Zhang J, Huang SJ, Zhu FQ, Shao W, Chen MS. Dimensional properties of Laguerre–Gaussian vortex beams. Appl Opt 56, 3556–3561 (2017). doi: 10.1364/AO.56.003556 |
[205] | Shao ZK, Zhu JB, Chen YJ, Zhang YF, Yu SY. Spin-orbit interaction of light induced by transverse spin angular momentum engineering. Nat Commun 9, 926 (2018). doi: 10.1038/s41467-018-03237-5 |
[206] | Pan SZ, Pei CY, Liu S, Wei J, Wu D et al. Measuring orbital angular momentums of light based on petal interference patterns. OSA Continuum 1, 451–461 (2018). doi: 10.1364/OSAC.1.000451 |
[207] | Li XZ, Zhang H. Anomalous ring-connected optical vortex array. Opt Express 28, 13775–13785 (2020). doi: 10.1364/OE.390985 |
[208] | Lu JN, Cao CY, Zhu ZQ, Gu B. Flexible measurement of high-order optical orbital angular momentum with a variable cylindrical lens pair. Appl Phys Lett 116, 201105 (2020). doi: 10.1063/5.0002756 |
[209] | Klug A, Peters C, Forbes A. Robust structured light in atmospheric turbulence. Adv Photonics 5, 016006–016006 (2023). |
[210] | Emile O, Emile J, Brousseau C. Rotational Doppler shift upon reflection from a right angle prism. Appl Phys Lett 116, 221102 (2020). doi: 10.1063/5.0009396 |
[211] | Li DH, Bongiovanni D, Goutsoulas M, Xia SQ, Zhang Z et al. Direct comparison of anti-diffracting optical pin beams and abruptly autofocusing beams. OSA Continuum 3, 1525–1535 (2020). doi: 10.1364/OSAC.391878 |
[212] | Xu YQ, Li X, Zhou L, Zhou YM, Wang F et al. Experimental investigation in Airy transform of Gaussian beams with optical vortex. Results Phys 28, 104588 (2021). doi: 10.1016/j.rinp.2021.104588 |
[213] | Fu SY, Hai L, Song R, Gao CQ, Zhang XD. Representation of total angular momentum states of beams through a four-parameter notation. New J Phys 23, 083015 (2021). doi: 10.1088/1367-2630/ac1695 |
[214] | Kesarwani R, Simbulan KB, Huang TD, Chiang YF, Yeh NC et al. Control of trion-to-exciton conversion in monolayer WS2 by orbital angular momentum of light. Sci Adv 8, eabm0100 (2022). doi: 10.1126/sciadv.abm0100 |
[215] | Li XZ, Ma HX, Yin CL, Tang J, Li HH et al. Controllable mode transformation in perfect optical vortices. Opt Express 26, 651–662 (2018). doi: 10.1364/OE.26.000651 |
[216] | Li L, Chang CL, Yuan XZ, Yuan CJ, Feng ST et al. Generation of optical vortex array along arbitrary curvilinear arrangement. Opt Express 26, 9798–9812 (2018). doi: 10.1364/OE.26.009798 |
[217] | Szatkowski M, Masajada J, Augustyniak I, Nowacka K. Generation of composite vortex beams by independent Spatial Light Modulator pixel addressing. Opt Commun 463, 125341 (2020). doi: 10.1016/j.optcom.2020.125341 |
[218] | Kumar P, Pal SK, Nishchal NK, Senthilkumaran P. Non-interferometric technique to realize vector beams embedded with polarization singularities. J Opt Soc Am A 37, 1043–1052 (2020). doi: 10.1364/JOSAA.393027 |
[219] | Meng WJ, Hua YL, Cheng K, Li BL, Liu TT et al. 100 Hertz frame-rate switching three-dimensional orbital angular momentum multiplexing holography via cross convolution. Opto-Electron Sci 1, 220004 (2022). doi: 10.29026/oes.2022.220004 |
[220] | Lochab P, Senthilkumaran P, Khare K. Robust laser beam engineering using polarization and angular momentum diversity. Opt Express 25, 17524–17529 (2017). doi: 10.1364/OE.25.017524 |
[221] | Wu Y, Ni R, Xu Z, Wu YD, Fang XY et al. Tunable third harmonic generation of vortex beams in an optical superlattice. Opt Express 25, 30820–30826 (2017). doi: 10.1364/OE.25.030820 |
[222] | Li H, Liu HG, Chen XF. Nonlinear generation of Airy vortex beam. Opt Express 26, 21204–21209 (2018). doi: 10.1364/OE.26.021204 |
[223] | Otte E, Tekce K, Lamping S, Ravoo BJ, Denz C. Polarization nano-tomography of tightly focused light landscapes by self-assembled monolayers. Nat Commun 10, 4308 (2019). doi: 10.1038/s41467-019-12127-3 |
[224] | Bernet S, Jesacher A, Fürhapter S, Maurer C, Ritsch-Marte M. Quantitative imaging of complex samples by spiral phase contrast microscopy. Opt Express 14, 3792–3805 (2006). doi: 10.1364/OE.14.003792 |
[225] | Situ GH, Pedrini G, Osten W. Spiral phase filtering and orientation-selective edge detection/enhancement. J Opt Soc Am A 26, 1788–1797 (2009). doi: 10.1364/JOSAA.26.001788 |
[226] | Tao SH, Yuan XC, Lin J, Burge RE. Residue orbital angular momentum in interferenced double vortex beams with unequal topological charges. Opt Express 14, 535–541 (2006). doi: 10.1364/OPEX.14.000535 |
[227] | Forbes A, Ramachandran S, Zhan QW. Photonic angular momentum: progress and perspectives. Nanophotonics 11, 625–631 (2022). doi: 10.1515/nanoph-2022-0035 |
[228] | Chen J, Chen X, Li T, Zhu SN. On‐chip detection of orbital angular momentum beam by plasmonic nanogratings. Laser Photonics Rev 12, 1700331 (2018). doi: 10.1002/lpor.201700331 |
[229] | Stütz M, Gröblacher S, Jennewein T, Zeilinger A. How to create and detect N-dimensional entangled photons with an active phase hologram. Appl Phys Lett 90, 261114 (2007). doi: 10.1063/1.2752728 |
[230] | Zhu FQ, Huang SJ, Shao W, Zhang J, Chen MS et al. Free-space optical communication link using perfect vortex beams carrying orbital angular momentum (OAM). Opt Commun 396, 50–57 (2017). doi: 10.1016/j.optcom.2017.03.023 |
[231] | Shao W, Huang SJ, Liu XP, Chen MS. Free-space optical communication with perfect optical vortex beams multiplexing. Opt Commun 427, 545–550 (2018). doi: 10.1016/j.optcom.2018.06.079 |
[232] | Malik M, O’Sullivan M, Rodenburg B, Mirhosseini M, Leach J et al. Influence of atmospheric turbulence on optical communications using orbital angular momentum for encoding. Opt Express 20, 13195–13200 (2012). doi: 10.1364/OE.20.013195 |
[233] | Wang LX, Nejad RM, Corsi A, Lin JC, Messaddeq Y et al. Linearly polarized vector modes: enabling MIMO-free mode-division multiplexing. Opt Express 25, 11736–11749 (2017). doi: 10.1364/OE.25.011736 |
[234] | Jing GQ, Chen LZ, Wang PP, Xiong WJ, Huang ZB et al. Recognizing fractional orbital angular momentum using feed forward neural network. Results Phys 28, 104619 (2021). doi: 10.1016/j.rinp.2021.104619 |
[235] | Trichili A, Rosales-Guzmán C, Dudley A, Ndagano B, Ben Salem A et al. Optical communication beyond orbital angular momentum. Sci Rep 6, 27674 (2016). doi: 10.1038/srep27674 |
[236] | Erhard M, Fickler R, Krenn M, Zeilinger A. Twisted photons: new quantum perspectives in high dimensions. Light Sci Appl 7, 17146 (2018). |
[237] | Forbes A, Nape I. Quantum mechanics with patterns of light: progress in high dimensional and multidimensional entanglement with structured light. AVS Quantum Sci 1, 011701 (2019). doi: 10.1116/1.5112027 |
[238] | Mair A, Vaziri A, Weihs G, Zeilinger A. Entanglement of the orbital angular momentum states of photons. Nature 412, 313–316 (2001). doi: 10.1038/35085529 |
[239] | Jack B, Leach J, Ritsch H, Barnett M, Padgett MJ et al. Precise quantum tomography of photon pairs with entangled orbital angular momentum. New J Phys 11, 103024 (2009). doi: 10.1088/1367-2630/11/10/103024 |
[240] | Agnew M, Leach J, McLaren M, Stef Roux F, Boyd RW. Tomography of the quantum state of photons entangled in high dimensions. Phys Rev A 84, 062101 (2011). doi: 10.1103/PhysRevA.84.062101 |
[241] | Dada AC, Leach J, Buller GS, Padgett MJ, Andersson E. Experimental high-dimensional two-photon entanglement and violations of generalized Bell inequalities. Nat Phys 7, 677–680 (2011). doi: 10.1038/nphys1996 |
[242] | Leach J, Jack B, Romero J, jha AK, Yao AM et al. Quantum correlations in optical angle–orbital angular momentum variables. Science 329, 662–665 (2010). doi: 10.1126/science.1190523 |
[243] | Nape I, Rodríguez-Fajardo V, Zhu F, Huang HC, Leach J et al. Measuring dimensionality and purity of high-dimensional entangled states. Nat Commun 12, 5159 (2021). doi: 10.1038/s41467-021-25447-0 |
[244] | Bavaresco J, Herrera Valencia N, Klöckl C, Pivoluska M, Erker P et al. Measurements in two bases are sufficient for certifying high-dimensional entanglement. Nat Phys 14, 1032–1037 (2018). doi: 10.1038/s41567-018-0203-z |
[245] | Kovlakov EV, Straupe SS, Kulik SP. Quantum state engineering with twisted photons via adaptive shaping of the pump beam. Phys Rev A 98, 060301(R) (2018). |
[246] | Walborn SP, de Oliveira AN, Pádua S, Monken CH. Multimode hong-ou-mandel interference. Phys Rev Lett 90, 143601 (2003). doi: 10.1103/PhysRevLett.90.143601 |
[247] | Bornman N, Tavares Buono W, Lovemore M, Forbes A. Optimal pump shaping for entanglement control in any countable basis. Adv Quantum Technol 4, 2100066 (2021). doi: 10.1002/qute.202100066 |
[248] | McLaren M, Mhlanga T, Padgett MJ, Roux FS, Forbes A. Self-healing of quantum entanglement after an obstruction. Nat Commun 5, 3248 (2014). doi: 10.1038/ncomms4248 |
[249] | Zhang YW, Roux FS, Konrad T, Agnew M, Leach J et al. Engineering two-photon high-dimensional states through quantum interference. Sci Adv 2, e1501165 (2016). doi: 10.1126/sciadv.1501165 |
[250] | De Oliveira M, Bornman N, Forbes A. Holographically controlled random numbers from entangled twisted photons. Phys Rev A 102, 032620 (2020). doi: 10.1103/PhysRevA.102.032620 |
[251] | Mafu M, Dudley A, Goyal S, Giovannini D, McLaren M et al. Higher-dimensional orbital-angular-momentum-based quantum key distribution with mutually unbiased bases. Phys Rev A 88, 032305 (2013). doi: 10.1103/PhysRevA.88.032305 |
[252] | Mirhosseini M, Magaña-Loaiza OS, O’Sullivan MN, Rodenburg B, Malik M et al. High-dimensional quantum cryptography with twisted light. New J Phys 17, 033033 (2015). doi: 10.1088/1367-2630/17/3/033033 |
[253] | Sit A, Bouchard F, Fickler R, Gagnon-Bischoff J, Larocque H et al. High-dimensional intracity quantum cryptography with structured photons. Optica 4, 1006–1010 (2017). doi: 10.1364/OPTICA.4.001006 |
[254] | Cozzolino D, Bacco D, Da Lio B, Ingerslev K, Ding YH et al. Orbital angular momentum states enabling fiber-based high-dimensional quantum communication. Phys Rev Appl 11, 064058 (2019). doi: 10.1103/PhysRevApplied.11.064058 |
[255] | Pinnell J, Nape I, de Oliveira M, TabeBordbar N, Forbes A. Experimental demonstration of 11-dimensional 10-party quantum secret sharing. Laser Photonics Rev 14, 2000012 (2020). doi: 10.1002/lpor.202000012 |
[256] | Zhang YW, Agnew M, Roger T, Roux FS, Konrad T et al. Simultaneous entanglement swapping of multiple orbital angular momentum states of light. Nat Commun 8, 632 (2017). doi: 10.1038/s41467-017-00706-1 |
[257] | Sephton B, Vallés A, Nape I, Cox MA, Steinlechner F et al. Stimulated teleportation of high-dimensional information with a nonlinear spatial mode detector. arXiv: 2111.13624 (2021). |
[258] | Krenn M, Huber M, Fickler R, Lapkiewicz R, Ramelow S et al. Generation and confirmation of a (100× 100)-dimensional entangled quantum system. Proc Natl Acad Sci USA 111, 6243–6247 (2014). doi: 10.1073/pnas.1402365111 |
[259] | Shapiro JH, Boyd RW. The physics of ghost imaging. Quantum Inf Process 11, 949–993 (2012). doi: 10.1007/s11128-011-0356-5 |
[260] | Padgett MJ, Boyd RW. An introduction to ghost imaging: quantum and classical. Philos Trans Roy Soc A Math Phys Eng Sci 375, 20160233 (2017). |
[261] | Gatti A, Brambilla E, Lugiato L. Quantum imaging. Prog Opt 51, 251–348 (2008). |
[262] | Edgar MP, Gibson GM, Padgett MJ. Principles and prospects for single-pixel imaging. Nat Photonics 13, 13–20 (2019). doi: 10.1038/s41566-018-0300-7 |
[263] | Mansha S, Moitra P, Xu XW, Mass TWW, Veetil RM et al. High resolution multispectral spatial light modulators based on tunable Fabry-Perot nanocavities. Light Sci Appl 11, 141 (2022). doi: 10.1038/s41377-022-00832-6 |
Working principle of liquid crystals. In the electro-optic birefringent effect, (a) no light is outputted when the voltage is off, while (b) polarized light is outputted when the voltage is on. In the twisted nematic effect, (c) the molecular orientations of the upper and lower crystal planes of the liquid crystal are different. Molecules rotate uniformly along the crystal direction without voltage. (d) Molecules deviate from the original direction and align towards the electric field when the voltage is on.
Models of liquid crystal cells. (a) Model of VA-LC cell. Under the application of an electric field, the liquid crystal molecules tilt at 45 degrees relative to the axes of the polarizer. (b) Model of IPS-LC cell. Under the application of an electric field to the liquid crystal cell in the X-Y plane, the liquid crystal molecules align in the direction of the field. (c) Model of TN-LC cell with a twist angle of 90 degrees in total. The liquid crystal vectors of the area between the glass plates undergo a continuous and uniform distortion of 90 degrees without voltage. (d) Model of STN-LC cell with a twist angle of 180 degrees in total. V represents the voltage, Vth represents the threshold voltage of the liquid crystal cell.
The performances of LC-SLMs have significantly improved with continuous advancements in material research and significant investments in advanced manufacturing technologies. These led to a decrease in the pixel pitch to the micrometer level and an increase in the number of pixels to tens of millions.
Apparatus of LC-SLM and SLM holograms that produce different types of beams. (a) LC-SLM can be designed or calculated to replace typical analytic and numeric elements to realize the modulation of the light field in (b) amplitude, phase and polarization. (c) Various types of beams, such as Bessel beams, finite-energy Airy beams, Hermite-Gauss beams, Laguerre-Gauss beams, and optical vortex beams, can be obtained by uploading holograms into the LC-SLM. (d) Different types of structured lights detected by a CCD.
LC-SLMs are versatile and powerful devices that find diverse applications, including beam shaping and steering, holography, optical trapping and tweezers, measurement, wavefront coding, optical vortex, and quantum applications. The unique properties, such as high resolution, high speed, and dynamic control, make them well-suited for use as dynamic optical devices in a wide range of applications.
Applications of LC-SLMs in beam shaping and steering. (a) Generating 3D vectorial multifocal arrays by pseudo-period encoding. (b) Ultrafast fabrication of micro-supercapacitors using laser photonic-reduction stamping. Figure reproduced with permission from: (a) ref.61, IOPscience; (b) ref.82, Springer Nature.
Applications of LC-SLMs in holography. (a) High-accuracy generation of CGHs by angular-spectrum layer-oriented method. (b) Real-time photorealistic 3D holography with deep neural networks. Figure reproduced with permission from: (a) ref.88, OSA Publishing; (b) ref.89, Springer Nature.
Applications of LC-SLMs in optical trapping and tweezers. (a) An optical analog of Archimedes’ screw for particle trapping and conveying. (b) The first optical trapping experimental demonstration of microparticles with frozen waves. Figure reproduced from: (a) ref. 116, OSA Publishing; (b) ref. 137, OSA Publishing.
Applications of LC-SLMs in measurement. (a) In situ wavefront calibration based on digital holography. (b) Coherent optical adaptive technique can increase the spatial resolution of STED microscopy in thick samples. Figure reproduced with permission from: (a) ref.151, SPIE; (b) ref.159, OSA Publishing.
Applications of LC-SLMs in wavefront coding. (a) Endoscopic interferenceless coded aperture correlation holography (EI-COACH) for high-resolution coded aperture imaging. (b) Ultrasound-induced field perturbation (UFP) for focusing light into scattering media and speckle imaging. Figure reproduced with permission from: (a) ref.174, OSA Publishing; (b) ref.186, Springer Nature.
Applications of LC-SLMs in optical vortex. (a) Optical vortex array generation aligned along an arbitrary curvilinear path. (b) Optical communication beyond orbital angular momentum can generate over 100 channels with one hologram. Figure reproduced with permission from: (a) ref.216, OSA Publishing; (b) ref.235, Springer Nature.
Applications of LC-SLMs in quantum applications. (a) High dimensional and multidimensional entanglement with structured light. (b) Quantum entanglement swapping of multiple orbital angular momentum states of light simultaneously. Figure reproduced with permission from: (a) ref.237, AIP Publishing LLC; (b) ref.256, Springer Nature.