Sharbirin AS, Kong RE, Mato WB et al. Highly enhanced UV absorption and light emission of monolayer WS2 through hybridization with Ti2N MXene quantum dots and g-C3N4 quantum dots. Opto-Electron Adv 7, 240029 (2024). doi: 10.29026/oea.2024.240029
Citation: Sharbirin AS, Kong RE, Mato WB et al. Highly enhanced UV absorption and light emission of monolayer WS2 through hybridization with Ti2N MXene quantum dots and g-C3N4 quantum dots. Opto-Electron Adv 7, 240029 (2024). doi: 10.29026/oea.2024.240029

Article Open Access

Highly enhanced UV absorption and light emission of monolayer WS2 through hybridization with Ti2N MXene quantum dots and g-C3N4 quantum dots

More Information
  • Two-dimensional (2D) transition metal dichalcogenides (TMD) are atomically thin semiconductors with promising optoelectronic applications across the visible spectrum. However, their intrinsically weak light absorption and the low photoluminescence quantum yield (PLQY) restrict their performance and potential use, especially in ultraviolet (UV) wavelength light ranges. Quantum dots (QD) derived from 2D materials (2D/QD) provide efficient light absorption and emission of which energy can be tuned for desirable light wavelength. In this study, we greatly enhanced the photon absorption and PLQY of monolayer (1L) tungsten disulfide (WS2) in the UV range via hybridization with 2D/QD, particularly titanium nitride MXene QD (Ti2N MQD) and graphitic carbon nitride QD (GCNQD). With the hybridization of MQD or GCNQD, 1L-WS2 showed a maximum PL enhancement by 15 times with 300 nm wavelength excitation, while no noticeable enhancement was observed when the excitation photon energy was less than the bandgap of the QD, indicating that UV absorption by the QD played a crucial role in enhancing the light emission of 1L-WS2 in our 0D/2D hybrid system. Our findings present a convenient method for enhancing the photo-response of 1L-WS2 to UV light and offer exciting possibilities for harvesting UV energy using 1L-TMD.
  • 加载中
  • [1] Mak KF, Lee C, Hone J et al. Atomically thin MoS2: a new direct-gap semiconductor. Phys Rev Lett 105, 136805 (2010). doi: 10.1103/PhysRevLett.105.136805

    CrossRef Google Scholar

    [2] Lee Y, Forte JDS, Chaves A et al. Boosting quantum yields in two-dimensional semiconductors via proximal metal plates. Nat Commun 12, 7095 (2021). doi: 10.1038/s41467-021-27418-x

    CrossRef Google Scholar

    [3] Wang HN, Zhang CJ, Rana F. Ultrafast dynamics of defect-assisted electron–hole recombination in monolayer MoS2. Nano Lett 15, 339–345 (2015). doi: 10.1021/nl503636c

    CrossRef Google Scholar

    [4] Khor JWP, Tran TT, Sharbirin AS et al. Prediction of quantum yields of monolayer WS2 by machine learning. Adv Opt Mater 12, 2302195 (2024). doi: 10.1002/adom.202302195

    CrossRef Google Scholar

    [5] Lee E, Dhakal KP, Song H et al. Anomalous temperature and polarization dependences of photoluminescence of metal-organic chemical vapor deposition-grown GeSe2. Adv Opt Mater 12, 2301355 (2024). doi: 10.1002/adom.202301355

    CrossRef Google Scholar

    [6] Tran TT, Lee Y, Roy S et al. Synergetic enhancement of quantum yield and exciton lifetime of monolayer WS2 by proximal metal plate and negative electric bias. ACS Nano 18, 220–228 (2024). doi: 10.1021/acsnano.3c05667

    CrossRef Google Scholar

    [7] Kozawa D, Kumar R, Carvalho A et al. Photocarrier relaxation pathway in two-dimensional semiconducting transition metal dichalcogenides. Nat Commun 5, 4543 (2014). doi: 10.1038/ncomms5543

    CrossRef Google Scholar

    [8] Hill HM, Rigosi AF, Roquelet C et al. Observation of excitonic rydberg states in monolayer MoS2 and WS2 by photoluminescence excitation spectroscopy. Nano Lett 15, 2992–2997 (2015). doi: 10.1021/nl504868p

    CrossRef Google Scholar

    [9] Lee Y, Kim J. Controlling lattice defects and inter-exciton interactions in monolayer transition metal dichalcogenides for efficient light emission. ACS Photonics 5, 4187–4194 (2018). doi: 10.1021/acsphotonics.8b00645

    CrossRef Google Scholar

    [10] Huang XH, Li ZD, Liu X et al. Neutralizing defect states in MoS2 monolayers. ACS Appl Mater Interfaces 13, 44686–44692 (2021). doi: 10.1021/acsami.1c07956

    CrossRef Google Scholar

    [11] Wang Z, Dong ZG, Gu YH et al. Giant photoluminescence enhancement in tungsten-diselenide-gold plasmonic hybrid structures. Nat Commun 7, 11283 (2016). doi: 10.1038/ncomms11283

    CrossRef Google Scholar

    [12] Huang X, Feng XW, Chen L et al. Fabry-Perot cavity enhanced light-matter interactions in two-dimensional van der Waals heterostructure. Nano Energy 62, 667–673 (2019). doi: 10.1016/j.nanoen.2019.05.090

    CrossRef Google Scholar

    [13] Singh KJ, Ahmed T, Gautam P et al. Recent advances in two‐dimensional quantum dots and their applications. Nanomaterials 11, 1549 (2021). doi: 10.3390/nano11061549

    CrossRef Google Scholar

    [14] Xu YH, Wang XX, Zhang WL et al. Recent progress in two-dimensional inorganic quantum dots. Chem Soc Rev 47, 586–625 (2018). doi: 10.1039/C7CS00500H

    CrossRef Google Scholar

    [15] Zheng F, Chen Z, Li JF et al. A highly sensitive CRISPR-empowered surface plasmon resonance sensor for diagnosis of inherited diseases with femtomolar-level real-time quantification. Adv Sci 9, 2105231 (2022). doi: 10.1002/advs.202105231

    CrossRef Google Scholar

    [16] Chen Z, Li JF, Li TZ et al. A CRISPR/Cas12a-empowered surface plasmon resonance platform for rapid and specific diagnosis of the Omicron variant of SARS-CoV-2. Natl Sci Rev 9, nwac104 (2022). doi: 10.1093/nsr/nwac104

    CrossRef Google Scholar

    [17] Xue TY, Liang WY, Li YW et al. Ultrasensitive detection of miRNA with an antimonene-based surface plasmon resonance sensor. Nat Commun 10, 28 (2019). doi: 10.1038/s41467-018-07947-8

    CrossRef Google Scholar

    [18] Shao BB, Liu ZF, Zeng GM et al. Two-dimensional transition metal carbide and nitride (MXene) derived quantum dots (QDs): synthesis, properties, applications and prospects. J Mater Chem A 8, 7508–7535 (2020). doi: 10.1039/D0TA01552K

    CrossRef Google Scholar

    [19] Wang XW, Sun GZ, Li N et al. Quantum dots derived from two-dimensional materials and their applications for catalysis and energy. Chem Soc Rev 45, 2239–2262 (2016). doi: 10.1039/C5CS00811E

    CrossRef Google Scholar

    [20] Xue Q, Zhang HJ, Zhu MS et al. Photoluminescent Ti3C2 MXene quantum dots for multicolor cellular imaging. Adv Mater 29, 1604847 (2017). doi: 10.1002/adma.201604847

    CrossRef Google Scholar

    [21] Zhan Y, Liu ZM, Liu QQ et al. A facile and one-pot synthesis of fluorescent graphitic carbon nitride quantum dots for bio-imaging applications. New J Chem 41, 3930–3938 (2017). doi: 10.1039/C7NJ00058H

    CrossRef Google Scholar

    [22] Liu Y, Li H, Zheng X et al. Giant photoluminescence enhancement in monolayer WS2 by energy transfer from CsPbBr3 quantum dots. Opt Mater Express 7, 1327–1334 (2017). doi: 10.1364/OME.7.001327

    CrossRef Google Scholar

    [23] Luo Y, Shan HY, Gao XQ et al. Photoluminescence enhancement of MoS2/CdSe quantum rod heterostructures induced by energy transfer and exciton-exciton annihilation suppression. Nanoscale Horiz 5, 971–977 (2020). doi: 10.1039/C9NH00802K

    CrossRef Google Scholar

    [24] Boulesbaa A, Wang K, Mahjouri-Samani M et al. Ultrafast charge transfer and hybrid exciton formation in 2D/0D heterostructures. J Am Chem Soc 138, 14713–14719 (2016). doi: 10.1021/jacs.6b08883

    CrossRef Google Scholar

    [25] Su WT, Li JK, Chen F et al. Enhancing nonradiative energy transfer between nitridized carbon quantum dots and monolayer WS2. J Phys Chem C 123, 25456–25463 (2019). doi: 10.1021/acs.jpcc.9b06685

    CrossRef Google Scholar

    [26] Su WT, Wang YC, Wu WW et al. Towards full-colour tunable photoluminescence of monolayer MoS2/carbon quantum dot ultra-thin films. J Mater Chem C 5, 6352–6358 (2017). doi: 10.1039/C7TC01773A

    CrossRef Google Scholar

    [27] Sharbirin AS, Akhtar S, Kim JY. Light-emitting MXene quantum dots. Opto-Electron Adv 4, 200077 (2021). doi: 10.29026/oea.2021.200077

    CrossRef Google Scholar

    [28] Rigosi AF, Hill HM, Li YL et al. Probing interlayer interactions in transition metal dichalcogenide heterostructures by optical spectroscopy: MoS2/WS2 and MoSe2/WSe2. Nano Lett 15, 5033–5038 (2015). doi: 10.1021/acs.nanolett.5b01055

    CrossRef Google Scholar

    [29] Castellanos-Gomez A, Buscema M, Molenaar R et al. Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping. 2D Mater 1, 011002 (2014). doi: 10.1088/2053-1583/1/1/011002

    CrossRef Google Scholar

    [30] Sharbirin AS, Roy S, Tran TT et al. Light-emitting Ti2N (MXene) quantum dots: synthesis, characterization and theoretical calculations. J Mater Chem C 10, 6508–6514 (2022). doi: 10.1039/D2TC00568A

    CrossRef Google Scholar

    [31] Zeng HL, Liu GB, Dai JF et al. Optical signature of symmetry variations and spin-valley coupling in atomically thin tungsten dichalcogenides. Sci Rep 3, 1608 (2013). doi: 10.1038/srep01608

    CrossRef Google Scholar

    [32] Dhakal KP, Duong DL, Lee J et al. Confocal absorption spectral imaging of MoS2: optical transitions depending on the atomic thickness of intrinsic and chemically doped MoS2. Nanoscale 6, 13028–13035 (2014). doi: 10.1039/C4NR03703K

    CrossRef Google Scholar

    [33] Zhai SC, Guo P, Zheng JM et al. Density functional theory study on the stability, electronic structure and absorption spectrum of small size g-C3N4 quantum dots. Comput Mater Sci 148, 149–156 (2018). doi: 10.1016/j.commatsci.2018.02.023

    CrossRef Google Scholar

    [34] Asaithambi A, Kazemi Tofighi N, Ghini M et al. Energy transfer and charge transfer between semiconducting nanocrystals and transition metal dichalcogenide monolayers. Chem Commun 59, 7717–7730 (2023). doi: 10.1039/D3CC01125A

    CrossRef Google Scholar

    [35] Marin DM, Payerpaj S, Collier GS et al. Efficient intersystem crossing using singly halogenated carbomethoxyphenyl porphyrins measured using delayed fluorescence, chemical quenching, and singlet oxygen emission. Phys Chem Chem Phys 17, 29090–29096 (2015). doi: 10.1039/C5CP04359J

    CrossRef Google Scholar

    [36] Seo C, Kim M, Lee J et al. Spectroscopic evidence of energy transfer in bodipy-incorporated nano-porphyrinic metal-organic frameworks. Nanomaterials 10, 1925 (2020). doi: 10.3390/nano10101925

    CrossRef Google Scholar

    [37] Park J, Kim MS, Cha E et al. Synthesis of uniform single layer WS2 for tunable photoluminescence. Sci Rep 7, 16121 (2017). doi: 10.1038/s41598-017-16251-2

    CrossRef Google Scholar

    [38] Ma YD, Dai Y, Guo M et al. Electronic and magnetic properties of perfect, vacancy-doped, and nonmetal adsorbed MoSe2, MoTe2 and WS2 monolayers. Phys Chem Chem Phys 13, 15546–15553 (2011). doi: 10.1039/c1cp21159e

    CrossRef Google Scholar

    [39] Peng Q, Wang ZY, Sa B et al. Electronic structures and enhanced optical properties of blue phosphorene/transition metal dichalcogenides van der Waals heterostructures. Sci Rep 6, 31994 (2016). doi: 10.1038/srep31994

    CrossRef Google Scholar

    [40] Wu LL, Chen YZ, Zhou HZ et al. Ultrafast energy transfer of both bright and dark excitons in 2D van der Waals heterostructures beyond dipolar coupling. ACS Nano 13, 2341–2348 (2019). doi: 10.1021/acsnano.8b09059

    CrossRef Google Scholar

    [41] Roy S, Neupane GP, Dhakal KP et al. Observation of charge transfer in heterostructures composed of MoSe2 quantum dots and a monolayer of MoS2 or WSe2. J Phys Chem C 121, 1997–2004 (2017). doi: 10.1021/ACS.JPCC.6B11778

    CrossRef Google Scholar

    [42] Neupane GP, Wang BW, Tebyetekerwa M et al. Highly enhanced light–matter interaction in MXene quantum dots–monolayer WS2 heterostructure. Small 17, 2006309 (2021). doi: 10.1002/smll.202006309

    CrossRef Google Scholar

    [43] Mawlong LPL, Bora A, Giri PK. Coupled charge transfer dynamics and photoluminescence quenching in monolayer MoS2 decorated with WS2 quantum dots. Sci Rep 9, 19414 (2019). doi: 10.1038/s41598-019-55776-6

    CrossRef Google Scholar

    [44] Lin JD, Han C, Wang F et al. Electron-doping-enhanced trion formation in monolayer molybdenum disulfide functionalized with cesium carbonate. ACS Nano 8, 5323–5329 (2014). doi: 10.1021/nn501580c

    CrossRef Google Scholar

    [45] Kim MS, Roy S, Lee J et al. Enhanced light emission from monolayer semiconductors by forming heterostructures with ZnO thin films. ACS Appl Mater Interfaces 8, 28809–28815 (2016). doi: 10.1021/acsami.6b08003

    CrossRef Google Scholar

    [46] Cao YM, Wood S, Richheimer F et al. Enhancing and quantifying spatial homogeneity in monolayer WS2. Sci Rep 11, 14831 (2021). doi: 10.1038/s41598-021-94263-9

    CrossRef Google Scholar

    [47] Bianchi MG, Risplendi F, Re Fiorentin M et al. Engineering the electrical and optical properties of WS2 monolayers via defect control. Adv Sci 11, 2305162 (2024). doi: 10.1002/advs.202305162

    CrossRef Google Scholar

    [48] Mouri S, Miyauchi Y, Matsuda K. Tunable photoluminescence of monolayer MoS2 via chemical doping. Nano Lett 13, 5944–5948 (2013). doi: 10.1021/nl403036h

    CrossRef Google Scholar

    [49] Bora A, Paul S, Hossain MT et al. Quantitative understanding of the photoluminescence modulation and doping of monolayer WS2 by heterostructuring with Non-van der Waals 2D Bi2O2Se quantum dots. J Phys Chem C 126, 12623–12634 (2022). doi: 10.1021/acs.jpcc.2c03245

    CrossRef Google Scholar

    [50] Kim MS, Seo C, Kim H et al. Simultaneous hosting of positive and negative trions and the enhanced direct band emission in MoSe2/MoS2 heterostacked multilayers. ACS Nano 10, 6211–6219 (2016). doi: 10.1021/acsnano.6b02213

    CrossRef Google Scholar

    [51] Xu WS, Kozawa D, Zhou YQ et al. Controlling photoluminescence enhancement and energy transfer in WS2: hBN: WS2 vertical stacks by precise interlayer distances. Small 16, 1905985 (2020). doi: 10.1002/smll.201905985

    CrossRef Google Scholar

    [52] Haidari MM, Kim H, Kim JH et al. Doping effect in graphene-graphene oxide interlayer. Sci Rep 10, 8258 (2020). doi: 10.1038/s41598-020-65263-y

    CrossRef Google Scholar

  • Supplementary information for Highly enhanced UV absorption and light emission of monolayer WS2 through hybridization with Ti2N MXene quantum dots and g-C3N4 quantum dots
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Article Metrics

Article views() PDF downloads() Cited by()

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint