Citation: | Sharbirin AS, Kong RE, Mato WB et al. Highly enhanced UV absorption and light emission of monolayer WS2 through hybridization with Ti2N MXene quantum dots and g-C3N4 quantum dots. Opto-Electron Adv 7, 240029 (2024). doi: 10.29026/oea.2024.240029 |
[1] | Mak KF, Lee C, Hone J et al. Atomically thin MoS2: a new direct-gap semiconductor. Phys Rev Lett 105, 136805 (2010). doi: 10.1103/PhysRevLett.105.136805 |
[2] | Lee Y, Forte JDS, Chaves A et al. Boosting quantum yields in two-dimensional semiconductors via proximal metal plates. Nat Commun 12, 7095 (2021). doi: 10.1038/s41467-021-27418-x |
[3] | Wang HN, Zhang CJ, Rana F. Ultrafast dynamics of defect-assisted electron–hole recombination in monolayer MoS2. Nano Lett 15, 339–345 (2015). doi: 10.1021/nl503636c |
[4] | Khor JWP, Tran TT, Sharbirin AS et al. Prediction of quantum yields of monolayer WS2 by machine learning. Adv Opt Mater 12, 2302195 (2024). doi: 10.1002/adom.202302195 |
[5] | Lee E, Dhakal KP, Song H et al. Anomalous temperature and polarization dependences of photoluminescence of metal-organic chemical vapor deposition-grown GeSe2. Adv Opt Mater 12, 2301355 (2024). doi: 10.1002/adom.202301355 |
[6] | Tran TT, Lee Y, Roy S et al. Synergetic enhancement of quantum yield and exciton lifetime of monolayer WS2 by proximal metal plate and negative electric bias. ACS Nano 18, 220–228 (2024). doi: 10.1021/acsnano.3c05667 |
[7] | Kozawa D, Kumar R, Carvalho A et al. Photocarrier relaxation pathway in two-dimensional semiconducting transition metal dichalcogenides. Nat Commun 5, 4543 (2014). doi: 10.1038/ncomms5543 |
[8] | Hill HM, Rigosi AF, Roquelet C et al. Observation of excitonic rydberg states in monolayer MoS2 and WS2 by photoluminescence excitation spectroscopy. Nano Lett 15, 2992–2997 (2015). doi: 10.1021/nl504868p |
[9] | Lee Y, Kim J. Controlling lattice defects and inter-exciton interactions in monolayer transition metal dichalcogenides for efficient light emission. ACS Photonics 5, 4187–4194 (2018). doi: 10.1021/acsphotonics.8b00645 |
[10] | Huang XH, Li ZD, Liu X et al. Neutralizing defect states in MoS2 monolayers. ACS Appl Mater Interfaces 13, 44686–44692 (2021). doi: 10.1021/acsami.1c07956 |
[11] | Wang Z, Dong ZG, Gu YH et al. Giant photoluminescence enhancement in tungsten-diselenide-gold plasmonic hybrid structures. Nat Commun 7, 11283 (2016). doi: 10.1038/ncomms11283 |
[12] | Huang X, Feng XW, Chen L et al. Fabry-Perot cavity enhanced light-matter interactions in two-dimensional van der Waals heterostructure. Nano Energy 62, 667–673 (2019). doi: 10.1016/j.nanoen.2019.05.090 |
[13] | Singh KJ, Ahmed T, Gautam P et al. Recent advances in two‐dimensional quantum dots and their applications. Nanomaterials 11, 1549 (2021). doi: 10.3390/nano11061549 |
[14] | Xu YH, Wang XX, Zhang WL et al. Recent progress in two-dimensional inorganic quantum dots. Chem Soc Rev 47, 586–625 (2018). doi: 10.1039/C7CS00500H |
[15] | Zheng F, Chen Z, Li JF et al. A highly sensitive CRISPR-empowered surface plasmon resonance sensor for diagnosis of inherited diseases with femtomolar-level real-time quantification. Adv Sci 9, 2105231 (2022). doi: 10.1002/advs.202105231 |
[16] | Chen Z, Li JF, Li TZ et al. A CRISPR/Cas12a-empowered surface plasmon resonance platform for rapid and specific diagnosis of the Omicron variant of SARS-CoV-2. Natl Sci Rev 9, nwac104 (2022). doi: 10.1093/nsr/nwac104 |
[17] | Xue TY, Liang WY, Li YW et al. Ultrasensitive detection of miRNA with an antimonene-based surface plasmon resonance sensor. Nat Commun 10, 28 (2019). doi: 10.1038/s41467-018-07947-8 |
[18] | Shao BB, Liu ZF, Zeng GM et al. Two-dimensional transition metal carbide and nitride (MXene) derived quantum dots (QDs): synthesis, properties, applications and prospects. J Mater Chem A 8, 7508–7535 (2020). doi: 10.1039/D0TA01552K |
[19] | Wang XW, Sun GZ, Li N et al. Quantum dots derived from two-dimensional materials and their applications for catalysis and energy. Chem Soc Rev 45, 2239–2262 (2016). doi: 10.1039/C5CS00811E |
[20] | Xue Q, Zhang HJ, Zhu MS et al. Photoluminescent Ti3C2 MXene quantum dots for multicolor cellular imaging. Adv Mater 29, 1604847 (2017). doi: 10.1002/adma.201604847 |
[21] | Zhan Y, Liu ZM, Liu QQ et al. A facile and one-pot synthesis of fluorescent graphitic carbon nitride quantum dots for bio-imaging applications. New J Chem 41, 3930–3938 (2017). doi: 10.1039/C7NJ00058H |
[22] | Liu Y, Li H, Zheng X et al. Giant photoluminescence enhancement in monolayer WS2 by energy transfer from CsPbBr3 quantum dots. Opt Mater Express 7, 1327–1334 (2017). doi: 10.1364/OME.7.001327 |
[23] | Luo Y, Shan HY, Gao XQ et al. Photoluminescence enhancement of MoS2/CdSe quantum rod heterostructures induced by energy transfer and exciton-exciton annihilation suppression. Nanoscale Horiz 5, 971–977 (2020). doi: 10.1039/C9NH00802K |
[24] | Boulesbaa A, Wang K, Mahjouri-Samani M et al. Ultrafast charge transfer and hybrid exciton formation in 2D/0D heterostructures. J Am Chem Soc 138, 14713–14719 (2016). doi: 10.1021/jacs.6b08883 |
[25] | Su WT, Li JK, Chen F et al. Enhancing nonradiative energy transfer between nitridized carbon quantum dots and monolayer WS2. J Phys Chem C 123, 25456–25463 (2019). doi: 10.1021/acs.jpcc.9b06685 |
[26] | Su WT, Wang YC, Wu WW et al. Towards full-colour tunable photoluminescence of monolayer MoS2/carbon quantum dot ultra-thin films. J Mater Chem C 5, 6352–6358 (2017). doi: 10.1039/C7TC01773A |
[27] | Sharbirin AS, Akhtar S, Kim JY. Light-emitting MXene quantum dots. Opto-Electron Adv 4, 200077 (2021). doi: 10.29026/oea.2021.200077 |
[28] | Rigosi AF, Hill HM, Li YL et al. Probing interlayer interactions in transition metal dichalcogenide heterostructures by optical spectroscopy: MoS2/WS2 and MoSe2/WSe2. Nano Lett 15, 5033–5038 (2015). doi: 10.1021/acs.nanolett.5b01055 |
[29] | Castellanos-Gomez A, Buscema M, Molenaar R et al. Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping. 2D Mater 1, 011002 (2014). doi: 10.1088/2053-1583/1/1/011002 |
[30] | Sharbirin AS, Roy S, Tran TT et al. Light-emitting Ti2N (MXene) quantum dots: synthesis, characterization and theoretical calculations. J Mater Chem C 10, 6508–6514 (2022). doi: 10.1039/D2TC00568A |
[31] | Zeng HL, Liu GB, Dai JF et al. Optical signature of symmetry variations and spin-valley coupling in atomically thin tungsten dichalcogenides. Sci Rep 3, 1608 (2013). doi: 10.1038/srep01608 |
[32] | Dhakal KP, Duong DL, Lee J et al. Confocal absorption spectral imaging of MoS2: optical transitions depending on the atomic thickness of intrinsic and chemically doped MoS2. Nanoscale 6, 13028–13035 (2014). doi: 10.1039/C4NR03703K |
[33] | Zhai SC, Guo P, Zheng JM et al. Density functional theory study on the stability, electronic structure and absorption spectrum of small size g-C3N4 quantum dots. Comput Mater Sci 148, 149–156 (2018). doi: 10.1016/j.commatsci.2018.02.023 |
[34] | Asaithambi A, Kazemi Tofighi N, Ghini M et al. Energy transfer and charge transfer between semiconducting nanocrystals and transition metal dichalcogenide monolayers. Chem Commun 59, 7717–7730 (2023). doi: 10.1039/D3CC01125A |
[35] | Marin DM, Payerpaj S, Collier GS et al. Efficient intersystem crossing using singly halogenated carbomethoxyphenyl porphyrins measured using delayed fluorescence, chemical quenching, and singlet oxygen emission. Phys Chem Chem Phys 17, 29090–29096 (2015). doi: 10.1039/C5CP04359J |
[36] | Seo C, Kim M, Lee J et al. Spectroscopic evidence of energy transfer in bodipy-incorporated nano-porphyrinic metal-organic frameworks. Nanomaterials 10, 1925 (2020). doi: 10.3390/nano10101925 |
[37] | Park J, Kim MS, Cha E et al. Synthesis of uniform single layer WS2 for tunable photoluminescence. Sci Rep 7, 16121 (2017). doi: 10.1038/s41598-017-16251-2 |
[38] | Ma YD, Dai Y, Guo M et al. Electronic and magnetic properties of perfect, vacancy-doped, and nonmetal adsorbed MoSe2, MoTe2 and WS2 monolayers. Phys Chem Chem Phys 13, 15546–15553 (2011). doi: 10.1039/c1cp21159e |
[39] | Peng Q, Wang ZY, Sa B et al. Electronic structures and enhanced optical properties of blue phosphorene/transition metal dichalcogenides van der Waals heterostructures. Sci Rep 6, 31994 (2016). doi: 10.1038/srep31994 |
[40] | Wu LL, Chen YZ, Zhou HZ et al. Ultrafast energy transfer of both bright and dark excitons in 2D van der Waals heterostructures beyond dipolar coupling. ACS Nano 13, 2341–2348 (2019). doi: 10.1021/acsnano.8b09059 |
[41] | Roy S, Neupane GP, Dhakal KP et al. Observation of charge transfer in heterostructures composed of MoSe2 quantum dots and a monolayer of MoS2 or WSe2. J Phys Chem C 121, 1997–2004 (2017). doi: 10.1021/ACS.JPCC.6B11778 |
[42] | Neupane GP, Wang BW, Tebyetekerwa M et al. Highly enhanced light–matter interaction in MXene quantum dots–monolayer WS2 heterostructure. Small 17, 2006309 (2021). doi: 10.1002/smll.202006309 |
[43] | Mawlong LPL, Bora A, Giri PK. Coupled charge transfer dynamics and photoluminescence quenching in monolayer MoS2 decorated with WS2 quantum dots. Sci Rep 9, 19414 (2019). doi: 10.1038/s41598-019-55776-6 |
[44] | Lin JD, Han C, Wang F et al. Electron-doping-enhanced trion formation in monolayer molybdenum disulfide functionalized with cesium carbonate. ACS Nano 8, 5323–5329 (2014). doi: 10.1021/nn501580c |
[45] | Kim MS, Roy S, Lee J et al. Enhanced light emission from monolayer semiconductors by forming heterostructures with ZnO thin films. ACS Appl Mater Interfaces 8, 28809–28815 (2016). doi: 10.1021/acsami.6b08003 |
[46] | Cao YM, Wood S, Richheimer F et al. Enhancing and quantifying spatial homogeneity in monolayer WS2. Sci Rep 11, 14831 (2021). doi: 10.1038/s41598-021-94263-9 |
[47] | Bianchi MG, Risplendi F, Re Fiorentin M et al. Engineering the electrical and optical properties of WS2 monolayers via defect control. Adv Sci 11, 2305162 (2024). doi: 10.1002/advs.202305162 |
[48] | Mouri S, Miyauchi Y, Matsuda K. Tunable photoluminescence of monolayer MoS2 via chemical doping. Nano Lett 13, 5944–5948 (2013). doi: 10.1021/nl403036h |
[49] | Bora A, Paul S, Hossain MT et al. Quantitative understanding of the photoluminescence modulation and doping of monolayer WS2 by heterostructuring with Non-van der Waals 2D Bi2O2Se quantum dots. J Phys Chem C 126, 12623–12634 (2022). doi: 10.1021/acs.jpcc.2c03245 |
[50] | Kim MS, Seo C, Kim H et al. Simultaneous hosting of positive and negative trions and the enhanced direct band emission in MoSe2/MoS2 heterostacked multilayers. ACS Nano 10, 6211–6219 (2016). doi: 10.1021/acsnano.6b02213 |
[51] | Xu WS, Kozawa D, Zhou YQ et al. Controlling photoluminescence enhancement and energy transfer in WS2: hBN: WS2 vertical stacks by precise interlayer distances. Small 16, 1905985 (2020). doi: 10.1002/smll.201905985 |
[52] | Haidari MM, Kim H, Kim JH et al. Doping effect in graphene-graphene oxide interlayer. Sci Rep 10, 8258 (2020). doi: 10.1038/s41598-020-65263-y |
Supplementary information for Highly enhanced UV absorption and light emission of monolayer WS2 through hybridization with Ti2N MXene quantum dots and g-C3N4 quantum dots |
![]() |
(a) Schematic diagram illustrating the hybrid structure of 2D/QD and 1L-WS2. (b) Optical image and (c, d) Confocal PL mapping images of the 1L-WS2 and 1L-WS2/MQD hybrid obtained with
(a) Optical microscope image and (b) Epi-fluorescence image of 1L-WS2/MQD hybrid under λex=300 nm UV illumination (orange dotted lines in A indicates the boundary of MQD region and clean region without MQD). Scale bar is 2 μm. (c) Representative PL spectra of 1L-WS2/MQD hybrid (red curve) and 1L-WS2 (blue curve) showing a 15-fold enhancement in PL.
(a, b) Confocal PL mapping images of 1L-WS2/GCNQD hybrid with
Measured micro absorption spectra of 1L-WS2/GCNQD (black curve), 1L-WS2/MQD (blue curve) and 1L-WS2 only (red curve) as a function of photon wavelength. Six discrete data points are measured absorptions of 1L-WS2/GCNQD (black), 1L-WS2/MQD (blue) and 1L-WS2 only (red) measured by using laser sources at 300 nm and 375 nm wavelengths. Dashed lines are guides for the eyes.
PL spectra obtained from (a) MQD and (b) GCNQD in hybrid of 1L-WS2/QD. (c) Time-resolved photoluminescence (TRPL) of MQD emission of isolated MQD (blue curve) and 1L-WS2/MQD hybrid (orange curve). (d) TRPL of GCNQD emission of isolated GCNQD (green curve) and 1L-WS2/GCNQD hybrid (purple curve) at λex=375 nm. Dotted line represents the fitting curve. The emission of (c) and (d) was collected at the wavelength range of 400-550 nm using the combination of a long-pass filter and a short-pass filter to exclude the emission of 1L-WS2. (e) Schematic of energy band alignment showing the type I band alignment of hybrid structure between QD and 1L-WS2. Values of the conduction band minimum (ECBM) and the valence band maximum (EVBM) and the Fermi level (EF) for each material are marked.