Xu X, Luo Q, Wang JX et al. Large-field objective lens for multi-wavelength microscopy at mesoscale and submicron resolution. Opto-Electron Adv 7, 230212 (2024). doi: 10.29026/oea.2024.230212
Citation: Xu X, Luo Q, Wang JX et al. Large-field objective lens for multi-wavelength microscopy at mesoscale and submicron resolution. Opto-Electron Adv 7, 230212 (2024). doi: 10.29026/oea.2024.230212

Article Open Access

Large-field objective lens for multi-wavelength microscopy at mesoscale and submicron resolution

More Information
  • Conventional microscopes designed for submicron resolution in biological research are hindered by a limited field of view, typically around 1 mm. This restriction poses a challenge when attempting to simultaneously analyze various parts of a sample, such as different brain areas. In addition, conventional objective lenses struggle to perform consistently across the required range of wavelengths for brain imagingin vivo. Here we present a novel mesoscopic objective lens with an impressive field of view of 8 mm, a numerical aperture of 0.5, and a working wavelength range from 400 to 1000 nm. We achieved a resolution of 0.74 μm in fluorescent beads imaging. The versatility of this lens was further demonstrated through high-quality images of mouse brain and kidney sections in a wide-field imaging system, a confocal laser scanning system, and a two-photon imaging system. This mesoscopic objective lens holds immense promise for advancing multi-wavelength imaging of large fields of view at high resolution.
  • 加载中
  • [1] Sigal YM, Zhou RB, Zhuang XW. Visualizing and discovering cellular structures with super-resolution microscopy. Science 361, 880–887 (2018). doi: 10.1126/science.aau1044

    CrossRef Google Scholar

    [2] Westphal V, Rizzoli SO, Lauterbach MA et al. Video-rate far-field optical nanoscopy dissects synaptic vesicle movement. Science 320, 246–249 (2008). doi: 10.1126/science.1154228

    CrossRef Google Scholar

    [3] Rust MJ, Bates M, Zhuang XW. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods 3, 793–796 (2006). doi: 10.1038/nmeth929

    CrossRef Google Scholar

    [4] Abraham E, Zhou JX, Liu ZW. Speckle structured illumination endoscopy with enhanced resolution at wide field of view and depth of field. Opto-Electron Adv 6, 220163 (2023). doi: 10.29026/oea.2023.220163

    CrossRef Google Scholar

    [5] Xiao YT, Chen LW, Pu MB et al. Improved spatiotemporal resolution of anti-scattering super-resolution label-free microscopy via synthetic wave 3D metalens imaging. Opto-Electron Sci 2, 230037 (2023). doi: 10.29026/oes.2023.230037

    CrossRef Google Scholar

    [6] Huang Q, Cohen MA, Alsina FC et al. Intravital imaging of mouse embryos. Science 368, 181–186 (2020). doi: 10.1126/science.aba0210

    CrossRef Google Scholar

    [7] Yang MK, Zhou ZQ, Zhang JX et al. MATRIEX imaging: multiarea two-photon real-time in vivo explorer. Light Sci Appl 8, 109 (2019). doi: 10.1038/s41377-019-0219-x

    CrossRef Google Scholar

    [8] Lohmann AW, Dorsch RG, Mendlovic D et al. Space–bandwidth product of optical signals and systems. J Opt Soc Am A 13, 470–473 (1996). doi: 10.1364/JOSAA.13.000470

    CrossRef Google Scholar

    [9] Pan A, Zuo C, Yao BL. High-resolution and large field-of-view Fourier ptychographic microscopy and its applications in biomedicine. Rep Prog Phys 83, 096101 (2020). doi: 10.1088/1361-6633/aba6f0

    CrossRef Google Scholar

    [10] Economo MN, Clack NG, Lavis LD et al. A platform for brain-wide imaging and reconstruction of individual neurons. eLife 5, e10566 (2016). doi: 10.7554/eLife.10566

    CrossRef Google Scholar

    [11] Hörl D, Rojas Rusak F, Preusser F et al. BigStitcher: reconstructing high-resolution image datasets of cleared and expanded samples. Nat Methods 16, 870–874 (2019). doi: 10.1038/s41592-019-0501-0

    CrossRef Google Scholar

    [12] Voleti V, Patel KB, Li WZ et al. Real-time volumetric microscopy of in vivo dynamics and large-scale samples with SCAPE 2.0. Nat Methods 16, 1054–1062 (2019). doi: 10.1038/s41592-019-0579-4

    CrossRef Google Scholar

    [13] Tian L, Liu ZJ, Yeh LH et al. Computational illumination for high-speed in vitro Fourier ptychographic microscopy. Optica 2, 904–911 (2015). doi: 10.1364/OPTICA.2.000904

    CrossRef Google Scholar

    [14] Lee H, Chon BH, Ahn HK. Reflective Fourier ptychographic microscopy using a parabolic mirror. Opt Express 27, 34382–34391 (2019). doi: 10.1364/OE.27.034382

    CrossRef Google Scholar

    [15] Song S, Kim J, Hur S et al. Large-area, high-resolution birefringence imaging with polarization-sensitive Fourier ptychographic microscopy. ACS Photonics 8, 158–165 (2021).

    Google Scholar

    [16] Pan A, Zhang Y, Wen K et al. Subwavelength resolution Fourier ptychography with hemispherical digital condensers. Opt Express 26, 23119–23131 (2018). doi: 10.1364/OE.26.023119

    CrossRef Google Scholar

    [17] Voigt FF, Kirschenbaum D, Platonova E et al. The mesoSPIM initiative: open-source light-sheet microscopes for imaging cleared tissue. Nat Methods 16, 1105–1108 (2019). doi: 10.1038/s41592-019-0554-0

    CrossRef Google Scholar

    [18] Fan JT, Suo JL, Wu JM et al. Video-rate imaging of biological dynamics at centimetre scale and micrometre resolution. Nat Photonics 13, 809–816 (2019). doi: 10.1038/s41566-019-0474-7

    CrossRef Google Scholar

    [19] McConnell G, Trägårdh J, Amor R et al. A novel optical microscope for imaging large embryos and tissue volumes with sub-cellular resolution throughout. eLife 5, e18659 (2016). doi: 10.7554/eLife.18659

    CrossRef Google Scholar

    [20] McConnell G, Amos WB. Application of the Mesolens for subcellular resolution imaging of intact larval and whole adult Drosophila. J Microsc 270, 252–258 (2018).

    Google Scholar

    [21] Schniete J, Franssen A, Dempster J et al. Fast optical sectioning for widefield fluorescence mesoscopy with the mesolens based on HiLo microscopy. Sci Rep 8, 16259 (2018). doi: 10.1038/s41598-018-34516-2

    CrossRef Google Scholar

    [22] Lu RW, Sun WZ, Liang YJ et al. Video-rate volumetric functional imaging of the brain at synaptic resolution. Nat Neurosci 20, 620–628 (2017). doi: 10.1038/nn.4516

    CrossRef Google Scholar

    [23] Zong WJ, Wu RL, Li ML et al. Fast high-resolution miniature two-photon microscopy for brain imaging in freely behaving mice. Nat Methods 14, 713–719 (2017). doi: 10.1038/nmeth.4305

    CrossRef Google Scholar

    [24] Young MD, Field JJ, Sheetz KE et al. A pragmatic guide to multiphoton microscope design. Adv Opt Photonics 7, 276–378 (2015). doi: 10.1364/AOP.7.000276

    CrossRef Google Scholar

    [25] Stirman J N, Smith I T, Kudenov M W et al. Wide field-of-view, multi-region, two-photon imaging of neuronal activity in the mammalian brain. Nat Biotechnol 34, 857–862 (2016). doi: 10.1038/nbt.3594

    CrossRef Google Scholar

    [26] Yu CH, Stirman JN, Yu YY et al. Diesel2p mesoscope with dual independent scan engines for flexible capture of dynamics in distributed neural circuitry. Nat Commun 12, 6639 (2021). doi: 10.1038/s41467-021-26736-4

    CrossRef Google Scholar

    [27] Sofroniew NJ, Flickinger D, King J et al. A large field of view two-photon mesoscope with subcellular resolution for in vivo imaging. eLife 5, e14472 (2016). doi: 10.7554/eLife.14472

    CrossRef Google Scholar

    [28] Lu RW, Liang YJ, Meng GH et al. Rapid mesoscale volumetric imaging of neural activity with synaptic resolution. Nat Methods 17, 291–294 (2020). doi: 10.1038/s41592-020-0760-9

    CrossRef Google Scholar

    [29] Ota K, Oisi Y, Suzuki T et al. Fast, cell-resolution, contiguous-wide two-photon imaging to reveal functional network architectures across multi-modal cortical areas. Neuron 109, 1810–1824.e9 (2021). doi: 10.1016/j.neuron.2021.03.032

    CrossRef Google Scholar

    [30] Diaspro A, Chirico G, Collini M. Two-photon fluorescence excitation and related techniques in biological microscopy. Quart Rev Biophys 38, 97–166 (2005). doi: 10.1017/S0033583505004129

    CrossRef Google Scholar

    [31] Svoboda K, Yasuda R. Principles of two-photon excitation microscopy and its applications to neuroscience. Neuron 50, 823–839 (2006). doi: 10.1016/j.neuron.2006.05.019

    CrossRef Google Scholar

    [32] Kingslake R, Johnson RB. Lens Design Fundamentals 2nd ed 570 (Elsevier, Amsterdam, 2010).

    Google Scholar

    [33] den Dekker AJ, van den Bos A. Resolution: a survey. J Opt Soc Am A 14, 547–557 (1997). doi: 10.1364/JOSAA.14.000547

    CrossRef Google Scholar

    [34] Dixon AE, Damaskinos S, Ribes A et al. A new confocal scanning beam laser MACROscope using a telecentric, f-theta laser scan lens. J Microsc 178, 261–266 (1995). doi: 10.1111/j.1365-2818.1995.tb03603.x

    CrossRef Google Scholar

    [35] Du E, Shen SH, Qiu A Q et al. Confocal laser speckle autocorrelation imaging of dynamic flow in microvasculature. Opto-Electron Adv 5, 210045 (2022). doi: 10.29026/oea.2022.210045

    CrossRef Google Scholar

    [36] Liu S, Hua H. Extended depth-of-field microscopic imaging with a variable focus microscope objective. Opt Express 19, 353–362 (2011). doi: 10.1364/OE.19.000353

    CrossRef Google Scholar

    [37] Botcherby EJ, Smith CW, Kohl MM et al. Aberration-free three-dimensional multiphoton imaging of neuronal activity at kHz rates. Proc Natl Acad Sci USA 109, 2919–2924 (2012). doi: 10.1073/pnas.1111662109

    CrossRef Google Scholar

    [38] Qi ZY, Guo QC, Wang S et al. All-fiber-transmission photometry for simultaneous optogenetic stimulation and multi-color neuronal activity recording. Opto-Electron Adv 5, 210081 (2022). doi: 10.29026/oea.2022.210081

    CrossRef Google Scholar

    [39] Wang XY, Yao TY, Liu MK et al. A normalized absolute values adaptive evaluation function of image clarity. Sensors 23, 9017 (2023).

    Google Scholar

    [40] Hu SR, Li ZY, Wang SH et al. A texture selection approach for cultural artifact 3D reconstruction considering both geometry and radiation quality. Remote Sens 12, 2521 (2020). doi: 10.3390/rs12162521

    CrossRef Google Scholar

    [41] Yang WJ, Yuste R. In vivo imaging of neural activity. Nat Methods 14, 349–359 (2017). doi: 10.1038/nmeth.4230

    CrossRef Google Scholar

    [42] Tomer R, Ye L, Hsueh B et al. Advanced CLARITY for rapid and high-resolution imaging of intact tissues. Nat Protoc 9, 1682–1697 (2014). doi: 10.1038/nprot.2014.123

    CrossRef Google Scholar

    [43] Ueda HR, Ertürk A, Chung K et al. Tissue clearing and its applications in neuroscience. Nat Rev Neurosci 21, 61–79 (2020). doi: 10.1038/s41583-019-0250-1

    CrossRef Google Scholar

    [44] Wu ST, Yang ZC, Ma CG et al. Deep learning enhanced NIR-II volumetric imaging of whole mice vasculature. Opto-Electron Adv 6, 220105 (2023). doi: 10.29026/oea.2023.220105

    CrossRef Google Scholar

  • OEA-2023-0212Supp_hq
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Tables(3)

Article Metrics

Article views(1566) PDF downloads(376) Cited by(0)

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint