Xiang SY, Shi YC, Zhang YH, Guo XX, Zheng L et al. Photonic integrated neuro-synaptic core for convolutional spiking neural network. Opto-Electron Adv 6, 230140 (2023). doi: 10.29026/oea.2023.230140
Citation: Xiang SY, Shi YC, Zhang YH, Guo XX, Zheng L et al. Photonic integrated neuro-synaptic core for convolutional spiking neural network. Opto-Electron Adv 6, 230140 (2023). doi: 10.29026/oea.2023.230140

Article Open Access

Photonic integrated neuro-synaptic core for convolutional spiking neural network

More Information
  • Neuromorphic photonic computing has emerged as a competitive computing paradigm to overcome the bottlenecks of the von-Neumann architecture. Linear weighting and nonlinear spike activation are two fundamental functions of a photonic spiking neural network (PSNN). However, they are separately implemented with different photonic materials and devices, hindering the large-scale integration of PSNN. Here, we propose, fabricate and experimentally demonstrate a photonic neuro-synaptic chip enabling the simultaneous implementation of linear weighting and nonlinear spike activation based on a distributed feedback (DFB) laser with a saturable absorber (DFB-SA). A prototypical system is experimentally constructed to demonstrate the parallel weighted function and nonlinear spike activation. Furthermore, a four-channel DFB-SA laser array is fabricated for realizing matrix convolution of a spiking convolutional neural network, achieving a recognition accuracy of 87% for the MNIST dataset. The fabricated neuro-synaptic chip offers a fundamental building block to construct the large-scale integrated PSNN chip.
  • 加载中
  • [1] Indiveri G, Liu SC. Memory and information processing in neuromorphic systems. Proc IEEE 103, 1379–1397 (2015). doi: 10.1109/JPROC.2015.2444094

    CrossRef Google Scholar

    [2] Roy K, Jaiswal A, Panda P. Towards spike-based machine intelligence with neuromorphic computing. Nature 575, 607–617 (2019). doi: 10.1038/s41586-019-1677-2

    CrossRef Google Scholar

    [3] Marković D, Mizrahi A, Querlioz D, Grollier J. Physics for neuromorphic computing. Nat Rev Phys 2, 499–510 (2020). doi: 10.1038/s42254-020-0208-2

    CrossRef Google Scholar

    [4] Nawrocki RA, Voyles RM, Shaheen SE. A mini review of neuromorphic architectures and implementations. IEEE Trans Electron Devices 63, 3819–3829 (2016). doi: 10.1109/TED.2016.2598413

    CrossRef Google Scholar

    [5] Schuman CD, Potok TE, Patton RM, Birdwell JD, Dean ME et al. A survey of neuromorphic computing and neural networks in hardware. arXiv preprint arXiv: 1705.06963 (2017).

    Google Scholar

    [6] Painkras E, Plana LA, Garside J, Temple S, Galluppi F et al. SpiNNaker: a 1-W 18-core system-on-chip for massively-parallel neural network simulation. IEEE J Solid-State Circuits 48, 1943–1953 (2013). doi: 10.1109/JSSC.2013.2259038

    CrossRef Google Scholar

    [7] Benjamin BV, Gao PR, McQuinn E, Choudhary S, Chandrasekaran AR et al. Neurogrid: a mixed-analog-digital multichip system for large-scale neural simulations. Proc IEEE 102, 699–716 (2014). doi: 10.1109/JPROC.2014.2313565

    CrossRef Google Scholar

    [8] Merolla PA, Arthur JV, Alvarez-Icaza R, Cassidy AS, Sawada J et al. A million spiking-neuron integrated circuit with a scalable communication network and interface. Science 345, 668–673 (2014). doi: 10.1126/science.1254642

    CrossRef Google Scholar

    [9] Shen JC, Ma D, Gu ZH, Zhang M, Zhu XL et al. Darwin: a neuromorphic hardware co-processor based on spiking neural networks. Sci China Inform Sci 59, 1–5 (2016).

    Google Scholar

    [10] Davies M, Srinivasa N, Lin TH, Chinya G, Cao YQ et al. Loihi: a neuromorphic manycore processor with on-chip learning. IEEE Micro 38, 82–99 (2018). doi: 10.1109/MM.2018.112130359

    CrossRef Google Scholar

    [11] Pei J, Deng L, Song S, Zhao MG, Zhang YH et al. Towards artificial general intelligence with hybrid Tianjic chip architecture. Nature 572, 106–111 (2019). doi: 10.1038/s41586-019-1424-8

    CrossRef Google Scholar

    [12] Wetzstein G, Ozcan A, Gigan S, Fan SH, Englund D et al. Inference in artificial intelligence with deep optics and photonics. Nature 588, 39–47 (2020). doi: 10.1038/s41586-020-2973-6

    CrossRef Google Scholar

    [13] Shastri BJ, Tait AN, Ferreira de Lima T, Pernice WHP, Bhaskaran H et al. Photonics for artificial intelligence and neuromorphic computing. Nat Photonics 15, 102–114 (2021). doi: 10.1038/s41566-020-00754-y

    CrossRef Google Scholar

    [14] Zhou HL, Dong JJ, Cheng JW, Dong WC, Huang CR et al. Photonic matrix multiplication lights up photonic accelerator and beyond. Light Sci Appl 11, 30 (2022). doi: 10.1038/s41377-022-00717-8

    CrossRef Google Scholar

    [15] Huang CR, Sorger VJ, Miscuglio M, Al-Qadasi M, Mukherjee A et al. Prospects and applications of photonic neural networks. Adv Phys X 7, 1981155 (2022).

    Google Scholar

    [16] Qi HX, Du ZC, Hu XY, Yang JY, Chu SS et al. High performance integrated photonic circuit based on inverse design method. Opto-Electron Adv 5, 210061 (2022). doi: 10.29026/oea.2022.210061

    CrossRef Google Scholar

    [17] Li CH, Du W, Huang YX, Zou JH, Luo LZ et al. Photonic synapses with ultralow energy consumption for artificial visual perception and brain storage. Opto-Electron Adv 5, 210069 (2022). doi: 10.29026/oea.2022.210069

    CrossRef Google Scholar

    [18] Jiao SM, Liu JW, Zhang LW, Yu FH, Zuo GM et al. All-optical logic gate computing for high-speed parallel information processing. Opto-Electron Sci 1, 220010 (2022). doi: 10.29026/oes.2022.220010

    CrossRef Google Scholar

    [19] Meng XY, Zhang GJ, Shi NN, Li GY, Azaña J et al. Compact optical convolution processing unit based on multimode interference. Nat Commun 14, 3000 (2023). doi: 10.1038/s41467-023-38786-x

    CrossRef Google Scholar

    [20] Zhang F, Guo YH, Pu MB, Chen LW, Xu MF et al. Meta-optics empowered vector visual cryptography for high security and rapid decryption. Nat Commun 14, 1946 (2023). doi: 10.1038/s41467-023-37510-z

    CrossRef Google Scholar

    [21] He C, Zhao D, Fan F, Zhou HQ, Li X et al. Pluggable multitask diffractive neural networks based on cascaded metasurfaces. Opto-Electron Adv 7, 230005 (2024).

    Google Scholar

    [22] Maass W. Networks of spiking neurons: the third generation of neural network models. Neural Netw 10, 1659–1671 (1997). doi: 10.1016/S0893-6080(97)00011-7

    CrossRef Google Scholar

    [23] Gütig R, Sompolinsky H. The tempotron: a neuron that learns spike timing–based decisions. Nat Neurosci 9, 420–428 (2006). doi: 10.1038/nn1643

    CrossRef Google Scholar

    [24] Ponulak F, Kasiński A. Supervised learning in spiking neural networks with ReSuMe: sequence learning, classification, and spike shifting. Neural Comput 22, 467–510 (2010). doi: 10.1162/neco.2009.11-08-901

    CrossRef Google Scholar

    [25] Feldmann J, Youngblood N, Wright CD, Bhaskaran H, Pernice WHP. All-optical spiking neurosynaptic networks with self-learning capabilities. Nature 569, 208–214 (2019). doi: 10.1038/s41586-019-1157-8

    CrossRef Google Scholar

    [26] Xiang SY, Ren ZX, Song ZW, Zhang YH, Guo XX et al. Computing primitive of fully VCSEL-based all-optical spiking neural network for supervised learning and pattern classification. IEEE Trans Neural Netw Learn Syst 32, 2494–2505 (2021). doi: 10.1109/TNNLS.2020.3006263

    CrossRef Google Scholar

    [27] Jha A, Huang CR, Peng HT, Shastri B, Prucnal PR. Photonic spiking neural networks and graphene-on-silicon spiking neurons. J Lightwave Technol 40, 2901–2914 (2022). doi: 10.1109/JLT.2022.3146157

    CrossRef Google Scholar

    [28] Xiang SY, Shi YC, Guo XX, Zhang YH, Wang HJ et al. Hardware-algorithm collaborative computing with photonic spiking neuron chip based on an integrated Fabry–Perot laser with a saturable absorber. Optica 10, 162–171 (2023). doi: 10.1364/OPTICA.468347

    CrossRef Google Scholar

    [29] Tait AN, Ferreira de Lima T, Zhou E, Wu AX, Nahmias MA et al. Neuromorphic photonic networks using silicon photonic weight banks. Sci Rep 7, 7430 (2017). doi: 10.1038/s41598-017-07754-z

    CrossRef Google Scholar

    [30] Shen YC, Harris NC, Skirlo S, Prabhu M, Baehr-Jones T et al. Deep learning with coherent nanophotonic circuits. Nat Photonics 11, 441–446 (2017). doi: 10.1038/nphoton.2017.93

    CrossRef Google Scholar

    [31] Cheng ZG, Ríos C, Pernice WHP, Wright CD, Bhaskaran H. On-chip photonic synapse. Sci Adv 3, e1700160 (2017). doi: 10.1126/sciadv.1700160

    CrossRef Google Scholar

    [32] Zhou HL, Zhao YH, Wang X, Gao DS, Dong JJ et al. Self-configuring and reconfigurable silicon photonic signal processor. ACS Photonics 7, 792–799 (2020). doi: 10.1021/acsphotonics.9b01673

    CrossRef Google Scholar

    [33] Feldmann J, Youngblood N, Karpov M, Gehring H, Li X et al. Parallel convolutional processing using an integrated photonic tensor core. Nature 589, 52–58 (2021). doi: 10.1038/s41586-020-03070-1

    CrossRef Google Scholar

    [34] Xu XY, Tan MX, Corcoran B, Wu JY, Boes A et al. 11 TOPS photonic convolutional accelerator for optical neural networks. Nature 589, 44–51 (2021). doi: 10.1038/s41586-020-03063-0

    CrossRef Google Scholar

    [35] Xu SF, Wang J, Shu HW, Zhang ZK, Yi SC et al. Optical coherent dot-product chip for sophisticated deep learning regression. Light Sci Appl 10, 221 (2021). doi: 10.1038/s41377-021-00666-8

    CrossRef Google Scholar

    [36] Zhang H, Gu M, Jiang XD, Thompson J, Cai H et al. An optical neural chip for implementing complex-valued neural network. Nat Commun 12, 457 (2021). doi: 10.1038/s41467-020-20719-7

    CrossRef Google Scholar

    [37] Guo XH, Xiang JL, Zhang YJ, Su YK. Integrated neuromorphic photonics: synapses, neurons, and neural networks. Adv Photonics Res 2, 2000212 (2021). doi: 10.1002/adpr.202000212

    CrossRef Google Scholar

    [38] Cheng JW, Zhao YH, Zhang WK, Zhou HL, Huang DM et al. A small microring array that performs large complex-valued matrix-vector multiplication. Front Optoelectron 15, 15 (2022). doi: 10.1007/s12200-022-00009-4

    CrossRef Google Scholar

    [39] Prucnal PR, Shastri BJ, Ferreira de Lima T, Nahmias MA, Tait AN. Recent progress in semiconductor excitable lasers for photonic spike processing. Adv Opt Photonics 8, 228–299 (2016). doi: 10.1364/AOP.8.000228

    CrossRef Google Scholar

    [40] Robertson J, Wade E, Kopp Y, Bueno J, Hurtado A. Toward neuromorphic photonic networks of ultrafast spiking laser neurons. IEEE J Sel Top Quantum Electron 26, 7700715 (2020).

    Google Scholar

    [41] Zhang YH, Robertson J, Xiang SY, Hejda M, Bueno J et al. All-optical neuromorphic binary convolution with a spiking VCSEL neuron for image gradient magnitudes. Photonics Res 9, B201–B209 (2021). doi: 10.1364/PRJ.412141

    CrossRef Google Scholar

    [42] Nahmias MA, Shastri BJ, Tait AN, Prucnal PR. A leaky integrate-and-fire laser neuron for ultrafast cognitive computing. IEEE J Sel Top Quantum Electron 19, 1800212 (2013).

    Google Scholar

    [43] Shastri BJ, Nahmias MA, Tait AN, Rodriguez AW, Wu B et al. Spike processing with a graphene excitable laser. Sci Rep 6, 19126 (2016). doi: 10.1038/srep19126

    CrossRef Google Scholar

    [44] Chakraborty I, Saha G, Sengupta G, Roy K. Toward fast neural computing using all-photonic phase change spiking neurons. Sci Rep 8, 12980 (2018). doi: 10.1038/s41598-018-31365-x

    CrossRef Google Scholar

    [45] Selmi F, Braive R, Beaudoin G, Sagnes I, Kuszelewicz R et al. Relative refractory period in an excitable semiconductor laser. Phys Rev Lett 112, 183902 (2014). doi: 10.1103/PhysRevLett.112.183902

    CrossRef Google Scholar

    [46] Peng HT, Angelatos G, Ferreira de Lima T, Nahmias MA, Tait AN et al. Temporal information processing with an integrated laser neuron. IEEE J Sel Top Quantum Electron 26, 5100209 (2020).

    Google Scholar

    [47] Xiang JL, Zhang YJ, Zhao YT, Guo XH, Su YK. All-optical silicon microring spiking neuron. Photonics Res 10, 939–946 (2022). doi: 10.1364/PRJ.445954

    CrossRef Google Scholar

    [48] Zheng DZ, Xiang SY, Guo XX, Zhang YH, Gu BL et al. Experimental demonstration of coherent photonic neural computing based on a Fabry–Perot laser with a saturable absorber. Photonics Res 11, 65–71 (2023). doi: 10.1364/PRJ.471950

    CrossRef Google Scholar

    [49] Shi YC, Li SM, Chen XF, Li LY, Li JS et al. High channel count and high precision channel spacing multi-wavelength laser array for future PICs. Sci Rep 4, 7377 (2014). doi: 10.1038/srep07377

    CrossRef Google Scholar

    [50] Shi YC, Xiang SY, Guo XX, Zhang YH, Wang HJ et al. Photonic integrated spiking neuron chip based on a self-pulsating DFB laser with a saturable absorber. Photonics Res 11, 1382–1389 (2023). doi: 10.1364/PRJ.485941

    CrossRef Google Scholar

    [51] Beck H, Yaari Y. Plasticity of intrinsic neuronal properties in CNS disorders. Nat Rev Neurosci 9, 357–369 (2008). doi: 10.1038/nrn2371

    CrossRef Google Scholar

    [52] The MNIST database of handwritten digits. http://yann.lecun.com/exdb/mnist/.

    Google Scholar

    [53] Alanis JA, Robertson J, Hejda M, Hurtado A. Weight adjustable photonic synapse by nonlinear gain in a vertical cavity semiconductor optical amplifier. Appl Phys Lett 119, 201104 (2021). doi: 10.1063/5.0064374

    CrossRef Google Scholar

    [54] Robertson J, Alanis JA, Hejda M, Hurtado A. Photonic synaptic system for MAC operations by interconnected vertical cavity surface emitting lasers. Opt Mater. Express 12, 1417–1426 (2022). doi: 10.1364/OME.450923

    CrossRef Google Scholar

  • Supplementary information for Photonic integrated neuro-synaptic core for convolutional spiking neural network
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Article Metrics

Article views(4469) PDF downloads(743) Cited by(0)

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint