Zhu HT, Luo JX, Dai Q, Zhu SG, Yang H et al. Spatiotemporal hemodynamic monitoring via configurable skin-like microfiber Bragg grating group. Opto-Electron Adv 6, 230018 (2023). doi: 10.29026/oea.2023.230018
Citation: Zhu HT, Luo JX, Dai Q, Zhu SG, Yang H et al. Spatiotemporal hemodynamic monitoring via configurable skin-like microfiber Bragg grating group. Opto-Electron Adv 6, 230018 (2023). doi: 10.29026/oea.2023.230018

Article Open Access

Spatiotemporal hemodynamic monitoring via configurable skin-like microfiber Bragg grating group

More Information
  • These authors contributed equally to this work

  • *Corresponding author: Fei Xu, E-mail: feixu@nju.edu.cn
  • Systemic blood circulation is one of life activity’s most important physiological functions. Continuous noninvasive hemodynamic monitoring is essential for the management of cardiovascular status. However, it is difficult to achieve systemic hemodynamic monitoring with the daily use of current devices due to the lack of multichannel and time-synchronized operation capability over the whole body. Here, we utilize a soft microfiber Bragg grating group to monitor spatiotemporal hemodynamics by taking advantage of the high sensitivity, electromagnetic immunity, and great temporal synchronization between multiple remote sensor nodes. A continuous systemic hemodynamic measurement technique is developed using all-mechanical physiological signals, such as ballistocardiogram signals and pulse waves, to illustrate the actual mechanical process of blood circulation. Multiple hemodynamic parameters, such as systemic pulse transit time, heart rate, blood pressure, and peripheral resistance, are monitored using skin-like microfiber Bragg grating patches conformally attached at different body locations. Relying on the soft microfiber Bragg grating group, the spatiotemporal hemodynamic monitoring technique opens up new possibilities in clinical medical diagnosis and daily health management.
  • 加载中
  • [1] Dagenais GR, Leong DP, Rangarajan S, Lanas F, Lopez-Jaramillo P et al. Variations in common diseases, hospital admissions, and deaths in middle-aged adults in 21 countries from five continents (PURE): a prospective cohort study. Lancet 395, 785–794 (2020). doi: 10.1016/S0140-6736(19)32007-0

    CrossRef Google Scholar

    [2] Kaur RI. Electrocardiogram signal analysis - an overview. Int J Comput Appl 84, 22–25 (2013). doi: 10.5120/14590-2826

    CrossRef Google Scholar

    [3] Debbal SM, Bereksi-Reguig F. Computerized heart sounds analysis. Comput Biol Med 38, 263–280 (2008). doi: 10.1016/j.compbiomed.2007.09.006

    CrossRef Google Scholar

    [4] Elgendi M. On the analysis of fingertip photoplethysmogram signals. Curr Cardiol Rep 8, 14–25 (2012). doi: 10.2174/157340312801215782

    CrossRef Google Scholar

    [5] Allen J. Photoplethysmography and its application in clinical physiological measurement. Physiol Meas 28, R1–R39 (2007). doi: 10.1088/0967-3334/28/3/R01

    CrossRef Google Scholar

    [6] Buxi D, Redouté JM, Yuce MR. A survey on signals and systems in ambulatory blood pressure monitoring using pulse transit time. Physiol Meas 36, R1–R26 (2015). doi: 10.1088/0967-3334/36/3/R1

    CrossRef Google Scholar

    [7] Chen Y, Wen CY, Tao GC, Bi M. Continuous and noninvasive measurement of systolic and diastolic blood pressure by one mathematical model with the same model parameters and two separate pulse wave velocities. Ann Biomed Eng 40, 871–882 (2012). doi: 10.1007/s10439-011-0467-2

    CrossRef Google Scholar

    [8] Chen Y, Wen CY, Tao GC, Bi M, Li GQ. Continuous and noninvasive blood pressure measurement: a novel modeling methodology of the relationship between blood pressure and pulse wave velocity. Ann Biomed Eng 37, 2222–2233 (2009). doi: 10.1007/s10439-009-9759-1

    CrossRef Google Scholar

    [9] Ding XR, Yan BP, Zhang YT, Liu J, Zhao N et al. Pulse transit time based continuous cuffless blood pressure estimation: a new extension and a comprehensive evaluation. Sci Rep 7, 11554 (2017). doi: 10.1038/s41598-017-11507-3

    CrossRef Google Scholar

    [10] Mukkamala R, Hahn JO, Inan OT, Mestha LK, Kim CS et al. Toward ubiquitous blood pressure monitoring via pulse transit time: theory and practice. IEEE Trans Biomed Eng 62, 1879–1901 (2015). doi: 10.1109/TBME.2015.2441951

    CrossRef Google Scholar

    [11] Sharma M, Barbosa K, Ho V, Griggs D, Ghirmai T et al. Cuff-less and continuous blood pressure monitoring: a methodological review. Technologies 5, 21 (2017). doi: 10.3390/technologies5020021

    CrossRef Google Scholar

    [12] Koo JH, Yun HW, Lee WC, Sunwoo SH, Shim HJ et al. Recent advances in soft electronic materials for intrinsically stretchable optoelectronic systems. Opto-Electron Adv 5, 210131 (2022). doi: 10.29026/oea.2022.210131

    CrossRef Google Scholar

    [13] Bennett A, Beiderman Y, Agdarov S, Beiderman Y, Hendel R et al. Monitoring of vital bio-signs by analysis of speckle patterns in a fabric-integrated multimode optical fiber sensor. Opt Express 28, 20830–20844 (2020). doi: 10.1364/OE.384423

    CrossRef Google Scholar

    [14] Chung HU, Kim BH, Lee JY, Lee J, Xie ZQ et al. Binodal, wireless epidermal electronic systems with in-sensor analytics for neonatal intensive care. Science 363, eaau0780 (2019). doi: 10.1126/science.aau0780

    CrossRef Google Scholar

    [15] Chung HU, Rwei AY, Hourlier-Fargette A, Xu S, Lee K et al. Skin-interfaced biosensors for advanced wireless physiological monitoring in neonatal and pediatric intensive-care units. Nat Med 26, 418–429 (2020). doi: 10.1038/s41591-020-0792-9

    CrossRef Google Scholar

    [16] Jin Y, Chen GN, Lao KT, Li SH, Lu Y et al. Identifying human body states by using a flexible integrated sensor. npj Flex Electron 4, 28 (2020). doi: 10.1038/s41528-020-00090-9

    CrossRef Google Scholar

    [17] Li HC, Ma YJ, Liang ZW, Wang ZH, Cao Y et al. Wearable skin-like optoelectronic systems with suppression of motion artifacts for cuff-less continuous blood pressure monitor. Natl Sci Rev 7, 849–862 (2020). doi: 10.1093/nsr/nwaa022

    CrossRef Google Scholar

    [18] Zhong F, Hu W, Zhu PN, Wang H, Ma C et al. Piezoresistive design for electronic skin: from fundamental to emerging applications. Opto-Electron Adv (2022). doi: 10.29026/oea.2022.210029

    CrossRef Google Scholar

    [19] Li JH, Chen JH, Xu F. Sensitive and wearable optical microfiber sensor for human health monitoring. Adv Mater Technol 3, 1800296 (2018). doi: 10.1002/admt.201800296

    CrossRef Google Scholar

    [20] Wang CH, Li XS, Hu HJ, Zhang L, Huang ZL et al. Monitoring of the central blood pressure waveform via a conformal ultrasonic device. Nat Biomed Eng 2, 687–695 (2018). doi: 10.1038/s41551-018-0287-x

    CrossRef Google Scholar

    [21] Zhang L, Pan J, Zhang Z, Wu H, Yao N et al. Ultrasensitive skin-like wearable optical sensors based on glass micro/nanofibers. Opto-Electron Adv 3, 190022 (2020). doi: 10.29026/oea.2020.190022

    CrossRef Google Scholar

    [22] Zhu HT, Zhan LW, Dai Q, Xu B, Chen Y et al. Self‐assembled wavy optical microfiber for stretchable wearable sensor. Adv Opt Mater 9, 2002206 (2021). doi: 10.1002/adom.202002206

    CrossRef Google Scholar

    [23] Hill KO, Meltz G. Fiber Bragg grating technology fundamentals and overview. J Lightwave Technol 15, 1263–1276 (1997). doi: 10.1109/50.618320

    CrossRef Google Scholar

    [24] Dziuda Ł, Skibniewski FW. A new approach to ballistocardiographic measurements using fibre Bragg grating-based sensors. Biocybern Biomed Eng 34, 101–116 (2014). doi: 10.1016/j.bbe.2014.02.001

    CrossRef Google Scholar

    [25] Haseda Y, Bonefacino J, Tam HY, Chino S, Koyama S et al. Measurement of pulse wave signals and blood pressure by a plastic optical fiber FBG sensor. Sensors 19, 5088 (2019). doi: 10.3390/s19235088

    CrossRef Google Scholar

    [26] Xu L, Liu N, Ge J, Wang XQ, Fok MP. Stretchable fiber-Bragg-grating-based sensor. Opt Lett 43, 2503–2506 (2018). doi: 10.1364/OL.43.002503

    CrossRef Google Scholar

    [27] Al-Fakih EA, Abu Osman NA, Mahamd Adikan FR, Eshraghi A, Jahanshahi P. Development and validation of fiber Bragg grating sensing pad for interface pressure measurements within prosthetic sockets. IEEE Sensors J 16, 965–974 (2016). doi: 10.1109/JSEN.2015.2495323

    CrossRef Google Scholar

    [28] Li TL, Su YF, Chen FY, Liao XQ, Wu Q et al. A skin‐like and highly stretchable optical fiber sensor with the hybrid coding of wavelength–light intensity. Adv Intell Syst 4, 2100193 (2022). doi: 10.1002/aisy.202100193

    CrossRef Google Scholar

    [29] Pan J, Zhang Z, Jiang CP, Zhang L, Tong LM. A multifunctional skin-like wearable optical sensor based on an optical micro-/nanofibre. Nanoscale 12, 17538–17544 (2020). doi: 10.1039/D0NR03446K

    CrossRef Google Scholar

    [30] Ma SQ, Wang XY, Li P, Yao N, Xiao JL et al. Optical Micro/Nano fibers enabled smart textiles for human–machine interface. Adv Fiber Mater 4, 1108–1117 (2022). doi: 10.1007/s42765-022-00163-6

    CrossRef Google Scholar

    [31] Brambilla G, Finazzi V, Richardson DJ. Ultra-low-loss optical fiber nanotapers. Opt Express 12, 2258–2263 (2004). doi: 10.1364/OPEX.12.002258

    CrossRef Google Scholar

    [32] Lou JY, Wang YP, Tong LM. Microfiber optical sensors: a review. Sensors 14, 5823–5844 (2014). doi: 10.3390/s140405823

    CrossRef Google Scholar

    [33] Thomas J, Voigtländer C, Becker RG, Richter D, Tünnermann A et al. Femtosecond pulse written fiber gratings: a new avenue to integrated fiber technology. Laser Photonics Rev 6, 709–723 (2012). doi: 10.1002/lpor.201100033

    CrossRef Google Scholar

    [34] Luo JX, Liu S, Chen PJ, Lu SZ, Zhang Q et al. Fiber optic hydrogen sensor based on a Fabry-Perot interferometer with a fiber Bragg grating and a nanofilm. Lab Chip 21, 1752–1758 (2021). doi: 10.1039/D1LC00012H

    CrossRef Google Scholar

    [35] Brambilla G, Xu F, Horak P, Jung Y, Koizumi F et al. Optical fiber nanowires and microwires: fabrication and applications. Adv Opt Photonics 1, 107–161 (2009). doi: 10.1364/AOP.1.000107

    CrossRef Google Scholar

    [36] Tong LM, Zi F, Guo X, Lou JY. Optical microfibers and nanofibers: a tutorial. Opt Commun 285, 4641–4647 (2012). doi: 10.1016/j.optcom.2012.07.068

    CrossRef Google Scholar

    [37] Yang LY, Li YP, Fang F, Li LY, Yan ZJ et al. Highly sensitive and miniature microfiber-based ultrasound sensor for photoacoustic tomography. Opto-Electron Adv 5, 200076 (2022). doi: 10.29026/oea.2022.200076

    CrossRef Google Scholar

    [38] Mukkamala R, Xu D. Continuous and less invasive central hemodynamic monitoring by blood pressure waveform analysis. Am J Physiol Heart Circ Physiol 299, H584–H599 (2010). doi: 10.1152/ajpheart.00303.2010

    CrossRef Google Scholar

    [39] Laurent S, Boutouyrie P, Asmar R, Gautier I, Laloux B et al. Aortic stiffness is an independent predictor of all-cause and cardiovascular mortality in hypertensive patients. Hypertension 37, 1236–1241 (2001). doi: 10.1161/01.HYP.37.5.1236

    CrossRef Google Scholar

    [40] Kim J, Song TJ, Song D, Lee KJ, Kim EH et al. Brachial-ankle pulse wave velocity is a strong predictor for mortality in patients with acute stroke. Hypertension 64, 240–246 (2014). doi: 10.1161/HYPERTENSIONAHA.114.03304

    CrossRef Google Scholar

    [41] Zhang GQ, Gao MW, Xu D, Olivier NB, Mukkamala R. Pulse arrival time is not an adequate surrogate for pulse transit time as a marker of blood pressure. J Appl Physiol 111, 1681–1686 (2011). doi: 10.1152/japplphysiol.00980.2011

    CrossRef Google Scholar

    [42] Rueckert PA, Slane PR, Lillis DL, Hanson P. Hemodynamic patterns and duration of post-dynamic exercise hypotension in hypertensive humans. Med Sci Sports Exerc 28, 24–32 (1996). doi: 10.1097/00005768-199601000-00010

    CrossRef Google Scholar

    [43] Ohlsson Å, Steinhaus D, Kjellström B, Ryden L, Bennett T. Central hemodynamic responses during serial exercise tests in heart failure patients using implantable hemodynamic monitors. Eur J Heart Fail 5, 253–259 (2003). doi: 10.1016/S1388-9842(02)00250-7

    CrossRef Google Scholar

    [44] Intengan HD, Schiffrin EL. Structure and mechanical properties of resistance arteries in hypertension: role of adhesion molecules and extracellular matrix determinants. Hypertension 36, 312–318 (2000). doi: 10.1161/01.HYP.36.3.312

    CrossRef Google Scholar

    [45] Taylor AJ, Bobik A, Berndt MC, Ramsay D, Jennings G. Experimental rupture of atherosclerotic lesions increases distal vascular resistance: a limiting factor to the success of infarct angioplasty. Arterioscler Thromb Vasc Biol 22, 153–160 (2002). doi: 10.1161/hq0102.101128

    CrossRef Google Scholar

  • Supplementary information for Spatiotemporal hemodynamic monitoring via configurable skin-like microfiber Bragg grating group
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Article Metrics

Article views(4322) PDF downloads(738) Cited by(0)

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint