Citation: | Shao MR, Ji C, Tan JB, Du BQ, Zhao XF et al. Ferroelectrically modulate the Fermi level of graphene oxide to enhance SERS response. Opto-Electron Adv 6, 230094 (2023). doi: 10.29026/oea.2023.230094 |
[1] | Wang X, Huang SC, Hu S, Yan S, Ren B. Fundamental understanding and applications of plasmon-enhanced Raman spectroscopy. Nat Rev Phys 2, 253–271 (2020). doi: 10.1038/s42254-020-0171-y |
[2] | Chen XY, Ding QQ, Bi C, Ruan J, Yang SK. Lossless enrichment of trace analytes in levitating droplets for multiphase and multiplex detection. Nat Commun 13, 7807 (2022). doi: 10.1038/s41467-022-35495-9 |
[3] | Bharati MSS, Soma VR. Flexible SERS substrates for hazardous materials detection: recent advances. Opto-Electron Adv 4, 210048 (2021). doi: 10.29026/oea.2021.210048 |
[4] | Ding SY, Yi J, Li JF, Ren B, Wu DY et al. Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials. Nat Rev Mater 1, 16021 (2016). doi: 10.1038/natrevmats.2016.21 |
[5] | Du XJ, Liu D, An KY, Jiang SZ, Wei ZX et al. Advances in oxide semiconductors for surface enhanced Raman scattering. Appl Mater Today 29, 101563 (2022). doi: 10.1016/j.apmt.2022.101563 |
[6] | Ding SY, You EM, Tian ZQ, Moskovits M. Electromagnetic theories of surface-enhanced Raman spectroscopy. Chem Soc Rev 46, 4042–4076 (2017). doi: 10.1039/C7CS00238F |
[7] | Zhao YY, Ren XL, Zheng ML, Jin F, Liu J et al. Plasmon-enhanced nanosoldering of silver nanoparticles for high-conductive nanowires electrodes. Opto-Electron Adv 4, 200101 (2021). doi: 10.29026/oea.2021.200101 |
[8] | Li SW, Miao P, Zhang YY, Wu J, Zhang B et al. Recent advances in plasmonic nanostructures for enhanced photocatalysis and electrocatalysis. Adv Mater 33, 2000086 (2021). doi: 10.1002/adma.202000086 |
[9] | Zhan C, Chen XJ, Huang YF, Wu DY, Tian ZQ. Plasmon-mediated chemical reactions on nanostructures unveiled by surface-enhanced raman spectroscopy. Acc Chem Res 52, 2784–2792 (2019). doi: 10.1021/acs.accounts.9b00280 |
[10] | Kambhampati P, Child CM, Foster MC, Campion A. On the chemical mechanism of surface enhanced Raman scattering: Experiment and theory. J Chem Phys 108, 5013–5026 (1998). doi: 10.1063/1.475909 |
[11] | Zhang N, Tong LM, Zhang J. Graphene-based enhanced raman scattering toward analytical applications. Chem Mater 28, 6426–6435 (2016). doi: 10.1021/acs.chemmater.6b02925 |
[12] | Wang XT, Shi WX, Wang SX, Zhao HW, Lin J et al. Two-dimensional amorphous TiO2 nanosheets enabling high-efficiency photoinduced charge transfer for excellent SERS activity. J Am Chem Soc 141, 5856–5862 (2019). doi: 10.1021/jacs.9b00029 |
[13] | Zheng ZH, Cong S, Gong WB, Xuan JN, Li GH et al. Semiconductor SERS enhancement enabled by oxygen incorporation. Nat Commun 8, 1993 (2017). doi: 10.1038/s41467-017-02166-z |
[14] | Li MZ, Wei YJ, Fan XC, Li GQ, Hao Q et al. Mixed-dimensional van der Waals heterojunction-enhanced Raman scattering. Nano Res 15, 637–643 (2022). doi: 10.1007/s12274-021-3537-2 |
[15] | Peng YS, Lin CL, Long L, Masaki T, Tang M et al. Charge-transfer resonance and electromagnetic enhancement synergistically enabling MXenes with excellent SERS sensitivity for SARS-CoV-2 S protein detection. Nano-Micro Lett 13, 52 (2021). doi: 10.1007/s40820-020-00565-4 |
[16] | Tang X, Fan XC, Zhou J, Wang S, Li MZ et al. Alloy engineering allows on-demand design of ultrasensitive monolayer semiconductor SERS substrates. Nano Lett 23, 7037–7045 (2023). doi: 10.1021/acs.nanolett.3c01810 |
[17] | Xu H, Xie LM, Zhang HL, Zhang J. Effect of graphene fermi level on the raman scattering intensity of molecules on graphene. ACS Nano 5, 5338–5344 (2011). doi: 10.1021/nn103237x |
[18] | Xu H, Chen YB, Xu WG, Zhang HL, Kong J et al. Modulating the charge-transfer enhancement in GERS using an electrical field under vacuum and an n/p-doping atmosphere. Small 7, 2945–2952 (2011). doi: 10.1002/smll.201100546 |
[19] | Feng SM, dos Santos MC, Carvalho BR, Lv RT, Li Q et al. Ultrasensitive molecular sensor using N-doped graphene through enhanced Raman scattering. Sci Adv 2, e1600322 (2016). doi: 10.1126/sciadv.1600322 |
[20] | Seo J, Lee J, Kim Y, Koo D, Lee G et al. Ultrasensitive plasmon-free surface-enhanced raman spectroscopy with femtomolar detection limit from 2D van der waals heterostructure. Nano Lett 20, 1620–1630 (2020). doi: 10.1021/acs.nanolett.9b04645 |
[21] | Liang C, Lu ZA, Zheng M, Chen MX, Zhang YY et al. Band structure engineering within two-dimensional borocarbonitride nanosheets for surface-enhanced raman scattering. Nano Lett 22, 6590–6598 (2022). doi: 10.1021/acs.nanolett.2c01825 |
[22] | Li MZ, Wei YJ, Fan XC, Li GQ, Tang X et al. VSe2–xOx@Pd sensor for operando self-monitoring of palladium-catalyzed reactions. JACS Au 3, 468–475 (2023). doi: 10.1021/jacsau.2c00596 |
[23] | Zhou L, Pusey-Nazzaro L, Ren GH, Chen LG, Liu LY et al. Photoactive control of surface-enhanced raman scattering with reduced graphene oxide in gas atmosphere. ACS Nano 16, 577–587 (2022). doi: 10.1021/acsnano.1c07695 |
[24] | Fang HJ, Xu C, Ding J, Li Q, Sun JL et al. Self-powered ultrabroadband photodetector monolithically integrated on a PMN-PT ferroelectric single crystal. Acs Appl Mater Interfaces 8, 32934–32939 (2016). doi: 10.1021/acsami.6b10305 |
[25] | Pandya S, Wilbur J, Kim J, Gao R, Dasgupta A et al. Pyroelectric energy conversion with large energy and power density in relaxor ferroelectric thin films. Nat Mater 17, 432–438 (2018). doi: 10.1038/s41563-018-0059-8 |
[26] | Zheng R, Yan MY, Li C, Yin SQ, Chen WD et al. Pyroelectric effect mediated infrared photoresponse in Bi2Te3/Pb(Mg1/3Nb2/3)O3-PbTiO3 optothermal ferroelectric field-effect transistors. Nanoscale 13, 20657–20662 (2021). doi: 10.1039/D1NR06863F |
[27] | Deng MH, Ren ZP, Zhang HB, Li ZQ, Xue CL et al. Unamplified and real-time label-free miRNA-21 detection using solution-gated graphene transistors in prostate cancer diagnosis. Adv Sci 10, 2205886 (2023). doi: 10.1002/advs.202205886 |
[28] | Romagnoli A, D'Agostino M, Pavoni E, Ardiccioni C, Motta S et al. SARS-CoV-2 multi-variant rapid detector based on graphene transistor functionalized with an engineered dimeric ACE2 receptor. Nano Today 48, 101729 (2023). doi: 10.1016/j.nantod.2022.101729 |
[29] | Zhao L, Rosati G, Piper A, de Carvalho Castro e Silva C, Hu L et al. Laser reduced graphene oxide electrode for pathogenic escherichia coli detection. ACS Appl Mater Interfaces 15, 9024–9033 (2023). doi: 10.1021/acsami.2c20859 |
[30] | Guan HY, Hong JY, Wang XL, Ming JY, Zhang ZL et al. Broadband, high-sensitivity graphene photodetector based on ferroelectric polarization of lithium niobate. Adv Opt Mater 9, 2100245 (2021). doi: 10.1002/adom.202100245 |
[31] | Gopalan KK, Janner D, Nanot S, Parret R, Lundeberg MB et al. Mid-infrared pyroresistive graphene detector on LiNbO3. Adv Opt Mater 5, 1600723 (2017). doi: 10.1002/adom.201600723 |
[32] | Lu YY, Yang G, Shen YJ, Yang HY, Xu KC. Multifunctional flexible humidity sensor systems towards noncontact wearable electronics. Nano-Micro Lett 14, 150 (2022). doi: 10.1007/s40820-022-00895-5 |
[33] | Ling X, Xie LM, Fang Y, Xu H, Zhang HL et al. Can graphene be used as a substrate for raman enhancement? Nano Lett 10, 553–561 (2010). doi: 10.1021/nl903414x |
[34] | Li Z, Jiang SZ, Huo YY, Ning TY, Liu AH et al. 3D silver nanoparticles with multilayer graphene oxide as a spacer for surface enhanced Raman spectroscopy analysis. Nanoscale 10, 5897–5905 (2018). doi: 10.1039/C7NR09276H |
[35] | Almohammed S, Zhang FY, Rodriguez BJ, Rice JH. Electric field-induced chemical surface-enhanced raman spectroscopy enhancement from aligned peptide nanotube-graphene oxide templates for universal trace detection of biomolecules. J Phys Chem Lett 10, 1878–1887 (2019). doi: 10.1021/acs.jpclett.9b00436 |
[36] | Zhou TY, Xu C, Ren WC. Grain-boundary-induced ultrasensitive molecular detection of graphene film. Nano Lett 22, 9380–9388 (2022). doi: 10.1021/acs.nanolett.2c03218 |
[37] | Hao QZ, Morton SM, Wang B, Zhao YH, Jensen L et al. Tuning surface-enhanced Raman scattering from graphene substrates using the electric field effect and chemical doping. Appl Phys Lett 102, 011102 (2013). doi: 10.1063/1.4755756 |
[38] | Neto AHC, Guinea F, Peres NMR, Novoselov KS, Geim AK. The electronic properties of graphene. Rev Mod Phys 81, 109–162 (2009). doi: 10.1103/RevModPhys.81.109 |
[39] | Gorecki J, Apostolopoulos V, Ou JY, Mailis S, Papasimakis N. Optical gating of graphene on photoconductive Fe: LiNbO3. ACS Nano 12, 5940–5945 (2018). doi: 10.1021/acsnano.8b02161 |
[40] | Sun XZ, Chen Y, Zhao DY, Taniguchi T, Watanabe K et al. Measuring band modulation of MoS2 with ferroelectric gates. Nano Lett 23, 2114–2120 (2023). doi: 10.1021/acs.nanolett.2c04326 |
[41] | Wang XD, Wang P, Wang JL, Hu WD, Zhou XH et al. Ultrasensitive and broadband MoS2 photodetector driven by ferroelectrics. Adv Mater 27, 6575–6581 (2015). doi: 10.1002/adma.201503340 |
[42] | Zhang SK, Jiao HX, Wang XD, Chen Y, Wang HL et al. Highly sensitive InSb nanosheets infrared photodetector passivated by ferroelectric polymer. Adv Funct Mater 30, 2006156 (2020). doi: 10.1002/adfm.202006156 |
[43] | Yan JM, Ying JS, Yan MY, Wang ZC, Li SS et al. Optoelectronic coincidence detection with two-dimensional Bi2O2Se ferroelectric field-effect transistors. Adv Funct Mater 31, 2103982 (2021). doi: 10.1002/adfm.202103982 |
[44] | Chen JW, Lo ST, Ho SC, Wong SS, Vu THY et al. A gate-free monolayer WSe2 pn diode. Nat Commun 9, 3143 (2018). doi: 10.1038/s41467-018-05326-x |
[45] | Yang Y, Guo WX, Pradel KC, Zhu G, Zhou YS et al. Pyroelectric nanogenerators for harvesting thermoelectric energy. Nano Lett 12, 2833–2838 (2012). doi: 10.1021/nl3003039 |
[46] | Ma N, Zhang KW, Yang Y. Photovoltaic-pyroelectric coupled effect induced electricity for self-powered photodetector system. Adv Mater 29, 1703694 (2017). doi: 10.1002/adma.201703694 |
[47] | Ma N, Yang Y. Enhanced self-powered UV photoresponse of ferroelectric BaTiO3 materials by pyroelectric effect. Nano Energy 40, 352–359 (2017). doi: 10.1016/j.nanoen.2017.08.043 |
[48] | Das B, Voggu R, Rout CS, Rao CNR. Changes in the electronic structure and properties of graphene induced by molecular charge-transfer. Chem Commun 5155–5157 (2008). |
[49] | Baeumer C, Saldana-Greco D, Martirez JMP, Rappe AM, Shim M et al. Ferroelectrically driven spatial carrier density modulation in graphene. Nat Commun 6, 6136 (2015). doi: 10.1038/ncomms7136 |
[50] | Liu DM, Yi WC, Fu YL, Kong QH, Xi GC. In situ surface restraint-induced synthesis of transition-metal nitride ultrathin nanocrystals as ultrasensitive sers substrate with ultrahigh durability. ACS Nano 16, 13123–13133 (2022). doi: 10.1021/acsnano.2c05914 |
[51] | Ge YC, Wang F, Yang Y, Xu Y, Ye Y et al. Atomically thin TaSe2 film as a high-performance substrate for surface-enhanced raman scattering. Small 18, 2107027 (2022). doi: 10.1002/smll.202107027 |
[52] | Liu Y, Guo J, Zhu EB, Liao L, Lee SJ et al. Approaching the Schottky-Mott limit in van der Waals metal-semiconductor junctions. Nature 557, 696–700 (2018). doi: 10.1038/s41586-018-0129-8 |
[53] | Lombardi JR, Birke RL. A unified approach to surface-enhanced Raman spectroscopy. J Phys Chem C 112, 5605–5617 (2008). doi: 10.1021/jp800167v |
[54] | Jablan M, Buljan H, Soljačić M. Plasmonics in graphene at infrared frequencies. Phys Rev B 80, 245435 (2009). doi: 10.1103/PhysRevB.80.245435 |
[55] | Lombardi JR, Birke RL. The theory of surface-enhanced Raman scattering. J Chem Phys 136, 144704 (2012). doi: 10.1063/1.3698292 |
[56] | Li HY, Bowen CR, Yang Y. Phase transition enhanced pyroelectric nanogenerators for self-powered temperature sensors. Nano Energy 102, 107657 (2022). doi: 10.1016/j.nanoen.2022.107657 |
[57] | Yang Y, Wang SH, Zhang Y, Wang ZL. Pyroelectric nanogenerators for driving wireless sensors. Nano Lett 12, 6408–6413 (2012). doi: 10.1021/nl303755m |
[58] | Bai S, Serien D, Hu AM, Sugioka K. 3D microfluidic surface-enhanced raman spectroscopy (SERS) chips fabricated by all-femtosecond-laser-processing for real-time sensing of toxic substances. Adv Funct Mater 28, 1706262 (2018). doi: 10.1002/adfm.201706262 |
[59] | Wu J, Du YJ, Wang CY, Bai S, Zhang T et al. Reusable and long-life 3D Ag nanoparticles coated Si nanowire array as sensitive SERS substrate. Appl Surf Sci 494, 583–590 (2019). doi: 10.1016/j.apsusc.2019.07.080 |
[60] | Chen MM, Liu ZH, Su BH, Hu RJ, Fu FF et al. High-performance hydrogel SERS chips with tunable localized surface plasmon resonance for coordinated electromagnetic enhancement with chemical enhancement. Adv Opt Mater 11, 2202852 (2023). doi: 10.1002/adom.202202852 |
[61] | Cong S, Liu XH, Jiang YX, Zhang W, Zhao ZG. Surface enhanced raman scattering revealed by interfacial charge-transfer transitions. Innovation 1, 100051 (2020). |
Supplementary information for Ferroelectrically modulate the Fermi level of graphene oxide to enhance SERS response |
(a) SERS performance of Al2O3@GO, PMN-PT@GO (Ps+) and PMN-PT@GO(Ps−) by employing R6G as the probe molecule under excitation of 532 nm laser. (b) Raman shift of G band of GO in Al2O3@GO, PMN-PT@GO (Ps+) and PMN-PT@GO(Ps−). (c) UV-vis spectra of the GO and R6G/GO. (d-f) Schematic diagram of GO doping when adsorbed on different surfaces of PMN-PT. (g-i) Contact potential differences (VCPD) between Au probe and GO in (g) Al2O3@GO, (h) PMN-PT@GO (Ps+) and (i) PMN-PT@GO(Ps−) measured by a KPFM system. (j-l) Modulation mechanism of SERS enhancement of (j) Al2O3@GO, (k) PMN-PT@GO (Ps+) and (l) PMN-PT@GO(Ps−).
Atomic structure of (a) intrinsic graphene, (b) graphene on up-polarized (Ps+) PMN-PT surface, (c) graphene on down-polarized (Ps−) PMN-PT surface for DFT calculation. The electronic band structure of (d) intrinsic graphene, (e) graphene on up-polarized (Ps+) PMN-PT surface, (f) graphene on down-polarized (Ps−) PMN-PT surface.
(a, d) The temperature-dependent SERS spectra of R6G by employing (a) PMN-PT@GO(Ps−), (d) Al2O3@GO as a SERS substrate. (b) Schematic diagram of doping level of GO affected by PMN-PT@GO(Ps−) temperature. (c) Schematic illustration of the energy band structure of PMN-PT@GO(Ps−)/R6G and the electron transition process under 532 nm excitation laser. (e, f) SERS spectra of R6G with different concentrations on PMN-PT@GO(Ps−) at (e) 20 °C, (f) 0 °C. (g) SERS spectra of R6G with different concentrations on Al2O3@GO at different temperature.
(a) SERS spectra of CV on PMN-PT@GO(Ps−) under excitation of 532 and 633 nm laser. (b) Schematic diagram of doping level of GO affected by PMN-PT@GO(Ps−) temperature. (c, d) Schematic illustration of the energy band structure of PMN-PT@GO(Ps−)/CV and the electron transition process under (c) 532 nm, (d) 633 nm excitation laser. (e, f) SERS spectra of CV on PMN-PT@GO(Ps−) under excitation of (e) 532 nm, (f) 633 nm laser at different temperature.
(a, b) SERS spectra of PNTP on PMN-PT@GO(Ps−) under excitation of (a) 532 nm, (b) 633 nm laser at different temperature. (c) Schematic diagram of doping level of GO affected by PMN-PT@GO(Ps−) temperature. (d, e) Schematic illustration of the energy band structure of PMN-PT@GO(Ps−)/PNTP and the electron transition process under (d) 532 nm, (e) 633 nm excitation laser.