Shao MR, Ji C, Tan JB, Du BQ, Zhao XF et al. Ferroelectrically modulate the Fermi level of graphene oxide to enhance SERS response. Opto-Electron Adv 6, 230094 (2023). doi: 10.29026/oea.2023.230094
Citation: Shao MR, Ji C, Tan JB, Du BQ, Zhao XF et al. Ferroelectrically modulate the Fermi level of graphene oxide to enhance SERS response. Opto-Electron Adv 6, 230094 (2023). doi: 10.29026/oea.2023.230094

Article Open Access

Ferroelectrically modulate the Fermi level of graphene oxide to enhance SERS response

More Information
  • Surface-enhanced Raman scattering (SERS) substrates based on chemical mechanism (CM) have received widespread attentions for the stable and repeatable signal output due to their excellent chemical stability, uniform molecular adsorption and controllable molecular orientation. However, it remains huge challenges to achieve the optimal SERS signal for diverse molecules with different band structures on the same substrate. Herein, we demonstrate a graphene oxide (GO) energy band regulation strategy through ferroelectric polarization to facilitate the charge transfer process for improving SERS activity. The Fermi level (Ef) of GO can be flexibly manipulated by adjusting the ferroelectric polarization direction or the temperature of the ferroelectric substrate. Experimentally, kelvin probe force microscopy (KPFM) is employed to quantitatively analyze theEf of GO. Theoretically, the density functional theory calculations are also performed to verify the proposed modulation mechanism. Consequently, the SERS response of probe molecules with different band structures (R6G, CV, MB, PNTP) can be improved through polarization direction or temperature changes without the necessity to redesign the SERS substrate. This work provides a novel insight into the SERS substrate design based on CM and is expected to be applied to other two-dimensional materials.
  • 加载中
  • [1] Wang X, Huang SC, Hu S, Yan S, Ren B. Fundamental understanding and applications of plasmon-enhanced Raman spectroscopy. Nat Rev Phys 2, 253–271 (2020). doi: 10.1038/s42254-020-0171-y

    CrossRef Google Scholar

    [2] Chen XY, Ding QQ, Bi C, Ruan J, Yang SK. Lossless enrichment of trace analytes in levitating droplets for multiphase and multiplex detection. Nat Commun 13, 7807 (2022). doi: 10.1038/s41467-022-35495-9

    CrossRef Google Scholar

    [3] Bharati MSS, Soma VR. Flexible SERS substrates for hazardous materials detection: recent advances. Opto-Electron Adv 4, 210048 (2021). doi: 10.29026/oea.2021.210048

    CrossRef Google Scholar

    [4] Ding SY, Yi J, Li JF, Ren B, Wu DY et al. Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials. Nat Rev Mater 1, 16021 (2016). doi: 10.1038/natrevmats.2016.21

    CrossRef Google Scholar

    [5] Du XJ, Liu D, An KY, Jiang SZ, Wei ZX et al. Advances in oxide semiconductors for surface enhanced Raman scattering. Appl Mater Today 29, 101563 (2022). doi: 10.1016/j.apmt.2022.101563

    CrossRef Google Scholar

    [6] Ding SY, You EM, Tian ZQ, Moskovits M. Electromagnetic theories of surface-enhanced Raman spectroscopy. Chem Soc Rev 46, 4042–4076 (2017). doi: 10.1039/C7CS00238F

    CrossRef Google Scholar

    [7] Zhao YY, Ren XL, Zheng ML, Jin F, Liu J et al. Plasmon-enhanced nanosoldering of silver nanoparticles for high-conductive nanowires electrodes. Opto-Electron Adv 4, 200101 (2021). doi: 10.29026/oea.2021.200101

    CrossRef Google Scholar

    [8] Li SW, Miao P, Zhang YY, Wu J, Zhang B et al. Recent advances in plasmonic nanostructures for enhanced photocatalysis and electrocatalysis. Adv Mater 33, 2000086 (2021). doi: 10.1002/adma.202000086

    CrossRef Google Scholar

    [9] Zhan C, Chen XJ, Huang YF, Wu DY, Tian ZQ. Plasmon-mediated chemical reactions on nanostructures unveiled by surface-enhanced raman spectroscopy. Acc Chem Res 52, 2784–2792 (2019). doi: 10.1021/acs.accounts.9b00280

    CrossRef Google Scholar

    [10] Kambhampati P, Child CM, Foster MC, Campion A. On the chemical mechanism of surface enhanced Raman scattering: Experiment and theory. J Chem Phys 108, 5013–5026 (1998). doi: 10.1063/1.475909

    CrossRef Google Scholar

    [11] Zhang N, Tong LM, Zhang J. Graphene-based enhanced raman scattering toward analytical applications. Chem Mater 28, 6426–6435 (2016). doi: 10.1021/acs.chemmater.6b02925

    CrossRef Google Scholar

    [12] Wang XT, Shi WX, Wang SX, Zhao HW, Lin J et al. Two-dimensional amorphous TiO2 nanosheets enabling high-efficiency photoinduced charge transfer for excellent SERS activity. J Am Chem Soc 141, 5856–5862 (2019). doi: 10.1021/jacs.9b00029

    CrossRef Google Scholar

    [13] Zheng ZH, Cong S, Gong WB, Xuan JN, Li GH et al. Semiconductor SERS enhancement enabled by oxygen incorporation. Nat Commun 8, 1993 (2017). doi: 10.1038/s41467-017-02166-z

    CrossRef Google Scholar

    [14] Li MZ, Wei YJ, Fan XC, Li GQ, Hao Q et al. Mixed-dimensional van der Waals heterojunction-enhanced Raman scattering. Nano Res 15, 637–643 (2022). doi: 10.1007/s12274-021-3537-2

    CrossRef Google Scholar

    [15] Peng YS, Lin CL, Long L, Masaki T, Tang M et al. Charge-transfer resonance and electromagnetic enhancement synergistically enabling MXenes with excellent SERS sensitivity for SARS-CoV-2 S protein detection. Nano-Micro Lett 13, 52 (2021). doi: 10.1007/s40820-020-00565-4

    CrossRef Google Scholar

    [16] Tang X, Fan XC, Zhou J, Wang S, Li MZ et al. Alloy engineering allows on-demand design of ultrasensitive monolayer semiconductor SERS substrates. Nano Lett 23, 7037–7045 (2023). doi: 10.1021/acs.nanolett.3c01810

    CrossRef Google Scholar

    [17] Xu H, Xie LM, Zhang HL, Zhang J. Effect of graphene fermi level on the raman scattering intensity of molecules on graphene. ACS Nano 5, 5338–5344 (2011). doi: 10.1021/nn103237x

    CrossRef Google Scholar

    [18] Xu H, Chen YB, Xu WG, Zhang HL, Kong J et al. Modulating the charge-transfer enhancement in GERS using an electrical field under vacuum and an n/p-doping atmosphere. Small 7, 2945–2952 (2011). doi: 10.1002/smll.201100546

    CrossRef Google Scholar

    [19] Feng SM, dos Santos MC, Carvalho BR, Lv RT, Li Q et al. Ultrasensitive molecular sensor using N-doped graphene through enhanced Raman scattering. Sci Adv 2, e1600322 (2016). doi: 10.1126/sciadv.1600322

    CrossRef Google Scholar

    [20] Seo J, Lee J, Kim Y, Koo D, Lee G et al. Ultrasensitive plasmon-free surface-enhanced raman spectroscopy with femtomolar detection limit from 2D van der waals heterostructure. Nano Lett 20, 1620–1630 (2020). doi: 10.1021/acs.nanolett.9b04645

    CrossRef Google Scholar

    [21] Liang C, Lu ZA, Zheng M, Chen MX, Zhang YY et al. Band structure engineering within two-dimensional borocarbonitride nanosheets for surface-enhanced raman scattering. Nano Lett 22, 6590–6598 (2022). doi: 10.1021/acs.nanolett.2c01825

    CrossRef Google Scholar

    [22] Li MZ, Wei YJ, Fan XC, Li GQ, Tang X et al. VSe2–xOx@Pd sensor for operando self-monitoring of palladium-catalyzed reactions. JACS Au 3, 468–475 (2023). doi: 10.1021/jacsau.2c00596

    CrossRef Google Scholar

    [23] Zhou L, Pusey-Nazzaro L, Ren GH, Chen LG, Liu LY et al. Photoactive control of surface-enhanced raman scattering with reduced graphene oxide in gas atmosphere. ACS Nano 16, 577–587 (2022). doi: 10.1021/acsnano.1c07695

    CrossRef Google Scholar

    [24] Fang HJ, Xu C, Ding J, Li Q, Sun JL et al. Self-powered ultrabroadband photodetector monolithically integrated on a PMN-PT ferroelectric single crystal. Acs Appl Mater Interfaces 8, 32934–32939 (2016). doi: 10.1021/acsami.6b10305

    CrossRef Google Scholar

    [25] Pandya S, Wilbur J, Kim J, Gao R, Dasgupta A et al. Pyroelectric energy conversion with large energy and power density in relaxor ferroelectric thin films. Nat Mater 17, 432–438 (2018). doi: 10.1038/s41563-018-0059-8

    CrossRef Google Scholar

    [26] Zheng R, Yan MY, Li C, Yin SQ, Chen WD et al. Pyroelectric effect mediated infrared photoresponse in Bi2Te3/Pb(Mg1/3Nb2/3)O3-PbTiO3 optothermal ferroelectric field-effect transistors. Nanoscale 13, 20657–20662 (2021). doi: 10.1039/D1NR06863F

    CrossRef Google Scholar

    [27] Deng MH, Ren ZP, Zhang HB, Li ZQ, Xue CL et al. Unamplified and real-time label-free miRNA-21 detection using solution-gated graphene transistors in prostate cancer diagnosis. Adv Sci 10, 2205886 (2023). doi: 10.1002/advs.202205886

    CrossRef Google Scholar

    [28] Romagnoli A, D'Agostino M, Pavoni E, Ardiccioni C, Motta S et al. SARS-CoV-2 multi-variant rapid detector based on graphene transistor functionalized with an engineered dimeric ACE2 receptor. Nano Today 48, 101729 (2023). doi: 10.1016/j.nantod.2022.101729

    CrossRef Google Scholar

    [29] Zhao L, Rosati G, Piper A, de Carvalho Castro e Silva C, Hu L et al. Laser reduced graphene oxide electrode for pathogenic escherichia coli detection. ACS Appl Mater Interfaces 15, 9024–9033 (2023). doi: 10.1021/acsami.2c20859

    CrossRef Google Scholar

    [30] Guan HY, Hong JY, Wang XL, Ming JY, Zhang ZL et al. Broadband, high-sensitivity graphene photodetector based on ferroelectric polarization of lithium niobate. Adv Opt Mater 9, 2100245 (2021). doi: 10.1002/adom.202100245

    CrossRef Google Scholar

    [31] Gopalan KK, Janner D, Nanot S, Parret R, Lundeberg MB et al. Mid-infrared pyroresistive graphene detector on LiNbO3. Adv Opt Mater 5, 1600723 (2017). doi: 10.1002/adom.201600723

    CrossRef Google Scholar

    [32] Lu YY, Yang G, Shen YJ, Yang HY, Xu KC. Multifunctional flexible humidity sensor systems towards noncontact wearable electronics. Nano-Micro Lett 14, 150 (2022). doi: 10.1007/s40820-022-00895-5

    CrossRef Google Scholar

    [33] Ling X, Xie LM, Fang Y, Xu H, Zhang HL et al. Can graphene be used as a substrate for raman enhancement? Nano Lett 10, 553–561 (2010). doi: 10.1021/nl903414x

    CrossRef Google Scholar

    [34] Li Z, Jiang SZ, Huo YY, Ning TY, Liu AH et al. 3D silver nanoparticles with multilayer graphene oxide as a spacer for surface enhanced Raman spectroscopy analysis. Nanoscale 10, 5897–5905 (2018). doi: 10.1039/C7NR09276H

    CrossRef Google Scholar

    [35] Almohammed S, Zhang FY, Rodriguez BJ, Rice JH. Electric field-induced chemical surface-enhanced raman spectroscopy enhancement from aligned peptide nanotube-graphene oxide templates for universal trace detection of biomolecules. J Phys Chem Lett 10, 1878–1887 (2019). doi: 10.1021/acs.jpclett.9b00436

    CrossRef Google Scholar

    [36] Zhou TY, Xu C, Ren WC. Grain-boundary-induced ultrasensitive molecular detection of graphene film. Nano Lett 22, 9380–9388 (2022). doi: 10.1021/acs.nanolett.2c03218

    CrossRef Google Scholar

    [37] Hao QZ, Morton SM, Wang B, Zhao YH, Jensen L et al. Tuning surface-enhanced Raman scattering from graphene substrates using the electric field effect and chemical doping. Appl Phys Lett 102, 011102 (2013). doi: 10.1063/1.4755756

    CrossRef Google Scholar

    [38] Neto AHC, Guinea F, Peres NMR, Novoselov KS, Geim AK. The electronic properties of graphene. Rev Mod Phys 81, 109–162 (2009). doi: 10.1103/RevModPhys.81.109

    CrossRef Google Scholar

    [39] Gorecki J, Apostolopoulos V, Ou JY, Mailis S, Papasimakis N. Optical gating of graphene on photoconductive Fe: LiNbO3. ACS Nano 12, 5940–5945 (2018). doi: 10.1021/acsnano.8b02161

    CrossRef Google Scholar

    [40] Sun XZ, Chen Y, Zhao DY, Taniguchi T, Watanabe K et al. Measuring band modulation of MoS2 with ferroelectric gates. Nano Lett 23, 2114–2120 (2023). doi: 10.1021/acs.nanolett.2c04326

    CrossRef Google Scholar

    [41] Wang XD, Wang P, Wang JL, Hu WD, Zhou XH et al. Ultrasensitive and broadband MoS2 photodetector driven by ferroelectrics. Adv Mater 27, 6575–6581 (2015). doi: 10.1002/adma.201503340

    CrossRef Google Scholar

    [42] Zhang SK, Jiao HX, Wang XD, Chen Y, Wang HL et al. Highly sensitive InSb nanosheets infrared photodetector passivated by ferroelectric polymer. Adv Funct Mater 30, 2006156 (2020). doi: 10.1002/adfm.202006156

    CrossRef Google Scholar

    [43] Yan JM, Ying JS, Yan MY, Wang ZC, Li SS et al. Optoelectronic coincidence detection with two-dimensional Bi2O2Se ferroelectric field-effect transistors. Adv Funct Mater 31, 2103982 (2021). doi: 10.1002/adfm.202103982

    CrossRef Google Scholar

    [44] Chen JW, Lo ST, Ho SC, Wong SS, Vu THY et al. A gate-free monolayer WSe2 pn diode. Nat Commun 9, 3143 (2018). doi: 10.1038/s41467-018-05326-x

    CrossRef Google Scholar

    [45] Yang Y, Guo WX, Pradel KC, Zhu G, Zhou YS et al. Pyroelectric nanogenerators for harvesting thermoelectric energy. Nano Lett 12, 2833–2838 (2012). doi: 10.1021/nl3003039

    CrossRef Google Scholar

    [46] Ma N, Zhang KW, Yang Y. Photovoltaic-pyroelectric coupled effect induced electricity for self-powered photodetector system. Adv Mater 29, 1703694 (2017). doi: 10.1002/adma.201703694

    CrossRef Google Scholar

    [47] Ma N, Yang Y. Enhanced self-powered UV photoresponse of ferroelectric BaTiO3 materials by pyroelectric effect. Nano Energy 40, 352–359 (2017). doi: 10.1016/j.nanoen.2017.08.043

    CrossRef Google Scholar

    [48] Das B, Voggu R, Rout CS, Rao CNR. Changes in the electronic structure and properties of graphene induced by molecular charge-transfer. Chem Commun 5155–5157 (2008).

    Google Scholar

    [49] Baeumer C, Saldana-Greco D, Martirez JMP, Rappe AM, Shim M et al. Ferroelectrically driven spatial carrier density modulation in graphene. Nat Commun 6, 6136 (2015). doi: 10.1038/ncomms7136

    CrossRef Google Scholar

    [50] Liu DM, Yi WC, Fu YL, Kong QH, Xi GC. In situ surface restraint-induced synthesis of transition-metal nitride ultrathin nanocrystals as ultrasensitive sers substrate with ultrahigh durability. ACS Nano 16, 13123–13133 (2022). doi: 10.1021/acsnano.2c05914

    CrossRef Google Scholar

    [51] Ge YC, Wang F, Yang Y, Xu Y, Ye Y et al. Atomically thin TaSe2 film as a high-performance substrate for surface-enhanced raman scattering. Small 18, 2107027 (2022). doi: 10.1002/smll.202107027

    CrossRef Google Scholar

    [52] Liu Y, Guo J, Zhu EB, Liao L, Lee SJ et al. Approaching the Schottky-Mott limit in van der Waals metal-semiconductor junctions. Nature 557, 696–700 (2018). doi: 10.1038/s41586-018-0129-8

    CrossRef Google Scholar

    [53] Lombardi JR, Birke RL. A unified approach to surface-enhanced Raman spectroscopy. J Phys Chem C 112, 5605–5617 (2008). doi: 10.1021/jp800167v

    CrossRef Google Scholar

    [54] Jablan M, Buljan H, Soljačić M. Plasmonics in graphene at infrared frequencies. Phys Rev B 80, 245435 (2009). doi: 10.1103/PhysRevB.80.245435

    CrossRef Google Scholar

    [55] Lombardi JR, Birke RL. The theory of surface-enhanced Raman scattering. J Chem Phys 136, 144704 (2012). doi: 10.1063/1.3698292

    CrossRef Google Scholar

    [56] Li HY, Bowen CR, Yang Y. Phase transition enhanced pyroelectric nanogenerators for self-powered temperature sensors. Nano Energy 102, 107657 (2022). doi: 10.1016/j.nanoen.2022.107657

    CrossRef Google Scholar

    [57] Yang Y, Wang SH, Zhang Y, Wang ZL. Pyroelectric nanogenerators for driving wireless sensors. Nano Lett 12, 6408–6413 (2012). doi: 10.1021/nl303755m

    CrossRef Google Scholar

    [58] Bai S, Serien D, Hu AM, Sugioka K. 3D microfluidic surface-enhanced raman spectroscopy (SERS) chips fabricated by all-femtosecond-laser-processing for real-time sensing of toxic substances. Adv Funct Mater 28, 1706262 (2018). doi: 10.1002/adfm.201706262

    CrossRef Google Scholar

    [59] Wu J, Du YJ, Wang CY, Bai S, Zhang T et al. Reusable and long-life 3D Ag nanoparticles coated Si nanowire array as sensitive SERS substrate. Appl Surf Sci 494, 583–590 (2019). doi: 10.1016/j.apsusc.2019.07.080

    CrossRef Google Scholar

    [60] Chen MM, Liu ZH, Su BH, Hu RJ, Fu FF et al. High-performance hydrogel SERS chips with tunable localized surface plasmon resonance for coordinated electromagnetic enhancement with chemical enhancement. Adv Opt Mater 11, 2202852 (2023). doi: 10.1002/adom.202202852

    CrossRef Google Scholar

    [61] Cong S, Liu XH, Jiang YX, Zhang W, Zhao ZG. Surface enhanced raman scattering revealed by interfacial charge-transfer transitions. Innovation 1, 100051 (2020).

    Google Scholar

  • Supplementary information for Ferroelectrically modulate the Fermi level of graphene oxide to enhance SERS response
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Article Metrics

Article views(4431) PDF downloads(889) Cited by(0)

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint