Tan YX, Lv HT, Xu J, Zhang AD, Song YP et al. Three-dimensional isotropic microfabrication in glass using spatiotemporal focusing of high-repetition-rate femtosecond laser pulses. Opto-Electron Adv 6, 230066 (2023). doi: 10.29026/oea.2023.230066
Citation: Tan YX, Lv HT, Xu J, Zhang AD, Song YP et al. Three-dimensional isotropic microfabrication in glass using spatiotemporal focusing of high-repetition-rate femtosecond laser pulses. Opto-Electron Adv 6, 230066 (2023). doi: 10.29026/oea.2023.230066

Article Open Access

Three-dimensional isotropic microfabrication in glass using spatiotemporal focusing of high-repetition-rate femtosecond laser pulses

More Information
  • To improve the processing efficiency and extend the tuning range of 3D isotropic fabrication, we apply the simultaneous spatiotemporal focusing (SSTF) technique to a high-repetition-rate femtosecond (fs) fiber laser system. In the SSTF scheme, we propose a pulse compensation scheme for the fiber laser with a narrow spectral bandwidth by building an extra-cavity pulse stretcher. We further demonstrate truly 3D isotropic microfabrication in photosensitive glass with a tunable resolution ranging from 8 µm to 22 µm using the SSTF of fs laser pulses. Moreover, we systematically investigate the influences of pulse energy, writing speed, processing depth, and spherical aberration on the fabrication resolution. As a proof-of-concept demonstration, the SSTF scheme was further employed for the fs laser-assisted etching of complicated glass microfluidic structures with 3D uniform sizes. The developed technique can be extended to many applications such as advanced photonics, 3D biomimetic printing, micro-electromechanical systems, and lab-on-a-chips.
  • 加载中
  • [1] Davis KM, Miura K, Sugimoto N, Hirao K. Writing waveguides in glass with a femtosecond laser. Opt Lett 21, 1729–1731 (1996). doi: 10.1364/OL.21.001729

    CrossRef Google Scholar

    [2] Marcinkevičius A, Juodkazis S, Watanabe M, Miwa M, Matsuo S et al. Femtosecond laser-assisted three-dimensional microfabrication in silica. Opt Lett 26, 277–279 (2001). doi: 10.1364/OL.26.000277

    CrossRef Google Scholar

    [3] Kawata S, Sun HB, Tanaka T, Takada K. Finer features for functional microdevices. Nature 412, 697–698 (2001). doi: 10.1038/35089130

    CrossRef Google Scholar

    [4] Cheng Y, Sugioka K, Midorikawa K. Microfluidic laser embedded in glass by three-dimensional femtosecond laser microprocessing. Opt Lett 29, 2007–2009 (2004). doi: 10.1364/OL.29.002007

    CrossRef Google Scholar

    [5] Kowalevicz AM, Sharma V, Ippen EP, Fujimoto JG, Minoshima K. Three-dimensional photonic devices fabricated in glass by use of a femtosecond laser oscillator. Opt Lett 30, 1060–1062 (2005). doi: 10.1364/OL.30.001060

    CrossRef Google Scholar

    [6] Sugioka K, Cheng Y, Midorikawa K. Three-dimensional micromachining of glass using femtosecond laser for lab-on-a-chip device manufacture. Appl Phys A 81, 1–10 (2005). doi: 10.1007/s00339-005-3225-1

    CrossRef Google Scholar

    [7] Sugioka K, Cheng Y. Ultrafast lasers—reliable tools for advanced materials processing. Light Sci Appl 3, e149 (2014). doi: 10.1038/lsa.2014.30

    CrossRef Google Scholar

    [8] Malinauskas M, Žukauskas A, Hasegawa S, Hayasaki Y, Mizeikis V et al. Ultrafast laser processing of materials: from science to industry. Light Sci Appl 5, e16133 (2016). doi: 10.1038/lsa.2016.133

    CrossRef Google Scholar

    [9] Xu J, Li XL, Zhong Y, Qi J, Wang ZH et al. Glass-channel molding assisted 3D printing of metallic microstructures enabled by femtosecond laser internal processing and microfluidic electroless plating. Adv Mater Technol 3, 1800372 (2018). doi: 10.1002/admt.201800372

    CrossRef Google Scholar

    [10] Lin ZJ, Xu J, Song YP, Li XL, Wang P et al. Freeform microfluidic networks encapsulated in laser‐printed 3D macroscale glass objects. Adv Mater Technol 5, 1900989 (2020). doi: 10.1002/admt.201900989

    CrossRef Google Scholar

    [11] Liu ZM, Xu J, Lin ZJ, Qi J, Li XL et al. Fabrication of single-mode circular optofluidic waveguides in fused silica using femtosecond laser microfabrication. Opt Laser Technol 141, 107118 (2021). doi: 10.1016/j.optlastec.2021.107118

    CrossRef Google Scholar

    [12] Jia YC, Wang SX, Chen F. Femtosecond laser direct writing of flexibly configured waveguide geometries in optical crystals: fabrication and application. Opto-Electron Adv 3, 190042 (2020). doi: 10.29026/oea.2020.190042

    CrossRef Google Scholar

    [13] Tan DZ, Wang Z, Xu BB, Qiu JR. Photonic circuits written by femtosecond laser in glass: improved fabrication and recent progress in photonic devices. Adv Photon 3, 024002 (2021). doi: 10.1117/1.AP.3.2.024002

    CrossRef Google Scholar

    [14] Wolf A, Dostovalov A, Bronnikov K, Skvortsov M, Wabnitz S et al. Advances in femtosecond laser direct writing of fiber Bragg gratings in multicore fibers: technology, sensor and laser applications. Opto-Electron Adv 5, 210055 (2022). doi: 10.29026/oea.2022.210055

    CrossRef Google Scholar

    [15] Sugioka K, Xu J, Wu D, Hanada Y, Wang ZK et al. Femtosecond laser 3D micromachining: a powerful tool for the fabrication of microfluidic, optofluidic, and electrofluidic devices based on glass. Lab Chip 14, 3447–3458 (2014). doi: 10.1039/C4LC00548A

    CrossRef Google Scholar

    [16] Serien D, Sugioka K. Fabrication of three-dimensional proteinaceous micro- and nano-structures by femtosecond laser cross-linking. Opto-Electron Adv 1, 180008 (2018). doi: 10.29026/oea.2018.180008

    CrossRef Google Scholar

    [17] Cheng Y, Sugioka K, Midorikawa K, Masuda M, Toyoda K et al. Control of the cross-sectional shape of a hollow microchannel embedded in photostructurable glass by use of a femtosecond laser. Opt Lett 28, 55–57 (2003). doi: 10.1364/OL.28.000055

    CrossRef Google Scholar

    [18] Ams M, Marshall GD, Spence DJ, Withford MJ. Slit beam shaping method for femtosecond laser direct-write fabrication of symmetric waveguides in bulk glasses. Opt Express 13, 5676–5681 (2005). doi: 10.1364/OPEX.13.005676

    CrossRef Google Scholar

    [19] Osellame R, Taccheo S, Marangoni M, Ramponi R, Laporta P et al. Femtosecond writing of active optical waveguides with astigmatically shaped beams. J Opt Soc Am B 20, 1559–1567 (2003). doi: 10.1364/JOSAB.20.001559

    CrossRef Google Scholar

    [20] Sugioka K, Cheng Y, Midorikawa K, Takase F, Takai H. Femtosecond laser microprocessing with three-dimensionally isotropic spatial resolution using crossed-beam irradiation. Opt Lett 31, 208–210 (2006). doi: 10.1364/OL.31.000208

    CrossRef Google Scholar

    [21] Vishnubhatla KC, Bellini N, Ramponi R, Cerullo G, Osellame R. Shape control of microchannels fabricated in fused silica by femtosecond laser irradiation and chemical etching. Opt Express 17, 8685–8695 (2009). doi: 10.1364/OE.17.008685

    CrossRef Google Scholar

    [22] Zhu GH, van Howe J, Durst M, Zipfel W, Xu C. Simultaneous spatial and temporal focusing of femtosecond pulses. Opt Express 13, 2153–2159 (2005). doi: 10.1364/OPEX.13.002153

    CrossRef Google Scholar

    [23] Oron D, Tal E, Silberberg Y. Scanningless depth-resolved microscopy. Opt Express 13, 1468–1476 (2005). doi: 10.1364/OPEX.13.001468

    CrossRef Google Scholar

    [24] He F, Xu H, Cheng Y, Ni JL, Xiong H et al. Fabrication of microfluidic channels with a circular cross section using spatiotemporally focused femtosecond laser pulses. Opt Lett 35, 1106–1108 (2010). doi: 10.1364/OL.35.001106

    CrossRef Google Scholar

    [25] Vitek DN, Adams DE, Johnson A, Tsai PS, Backus S et al. Temporally focused femtosecond laser pulses for low numerical aperture micromachining through optically transparent materials. Opt Express 18, 18086–18094 (2010). doi: 10.1364/OE.18.018086

    CrossRef Google Scholar

    [26] He F, Cheng Y, Lin JT, Ni JL, Xu ZZ et al. Independent control of aspect ratios in the axial and lateral cross sections of a focal spot for three-dimensional femtosecond laser micromachining. New J Phys 13, 083014 (2011). doi: 10.1088/1367-2630/13/8/083014

    CrossRef Google Scholar

    [27] Kammel R, Ackermann R, Thomas J, Götte J, Skupin S et al. Enhancing precision in fs-laser material processing by simultaneous spatial and temporal focusing. Light Sci Appl 3, e169 (2014). doi: 10.1038/lsa.2014.50

    CrossRef Google Scholar

    [28] Zeng B, Chu W, Gao H, Liu WW, Li GH et al. Enhancement of peak intensity in a filament core with spatiotemporally focused femtosecond laser pulses. Phys Rev A 84, 063819 (2011). doi: 10.1103/PhysRevA.84.063819

    CrossRef Google Scholar

    [29] He F, Zeng B, Chu W, Ni JL, Sugioka K et al. Characterization and control of peak intensity distribution at the focus of a spatiotemporally focused femtosecond laser beam. Opt Express 22, 9734–9748 (2014). doi: 10.1364/OE.22.009734

    CrossRef Google Scholar

    [30] Tan YX, Wang ZH, Chu W, Liao Y, Qiao LL et al. High-throughput in-volume processing in glass with isotropic spatial resolutions in three dimensions. Opt Mater Express 6, 3787–3793 (2016). doi: 10.1364/OME.6.003787

    CrossRef Google Scholar

    [31] Tan YX, Chu W, Wang P, Li WB, Qi J et al. High-throughput multi-resolution three dimensional laser printing. Phys Scr 94, 015501 (2019). doi: 10.1088/1402-4896/aaec99

    CrossRef Google Scholar

    [32] Sun BS, Salter PS, Roider C, Jesacher A, Strauss J et al. Four-dimensional light shaping: manipulating ultrafast spatiotemporal foci in space and time. Light Sci Appl 7, 17117 (2018).

    Google Scholar

    [33] Quinoman P, Chimier B, Duchateau G. Theoretical study of spatiotemporal focusing for in-bulk laser structuring of dielectrics. J Opt Soc Am B 39, 166–176 (2022). doi: 10.1364/JOSAB.443320

    CrossRef Google Scholar

    [34] Cheng WB, Wang ZH, Liu XL, Cheng Y, Polynkin P. Microexplosions in bulk sapphire driven by simultaneously spatially and temporally focused femtosecond laser beams. Opt Lett 48, 751–754 (2023). doi: 10.1364/OL.482320

    CrossRef Google Scholar

    [35] Hansen WW, Janson SW, Helvajian H. Direct-write UV-laser microfabrication of 3D structures in lithium-aluminosilicate glass. Proc SPIE 2991, 104–112 (1997). doi: 10.1117/12.273716

    CrossRef Google Scholar

    [36] Cheng Y, Sugioka K, Masuda M, Shihoyama K, Toyoda K et al. Optical gratings embedded in photosensitive glass by photochemical reaction using a femtosecond laser. Opt Express 11, 1809–1816 (2003). doi: 10.1364/OE.11.001809

    CrossRef Google Scholar

    [37] Martinez O. 3000 times grating compressor with positive group velocity dispersion: application to fiber compensation in 1.3-1.6 µm region. IEEE J Quantum Electron 23, 59–64 (1987). doi: 10.1109/JQE.1987.1073201

    CrossRef Google Scholar

    [38] Yu JP, Xu J, Dong QN, Qi J, Chen JF et al. Low-loss optofluidic waveguides in fused silica enabled by spatially shaped femtosecond laser assisted etching combined with carbon dioxide laser irradiation. Opt Laser Technol 158, 108889 (2023). doi: 10.1016/j.optlastec.2022.108889

    CrossRef Google Scholar

  • Supplementary information for Three-dimensional isotropic microfabrication in glass using spatiotemporal focusing of high-repetition-rate femtosecond laser pulses
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)

Article Metrics

Article views(4499) PDF downloads(603) Cited by(0)

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint