Imas JJ, Matías IR, Del Villar I, Ozcáriz A, Zamarreño CR et al. All-fiber ellipsometer for nanoscale dielectric coatings. Opto-Electron Adv 6, 230048 (2023). doi: 10.29026/oea.2023.230048
Citation: Imas JJ, Matías IR, Del Villar I, Ozcáriz A, Zamarreño CR et al. All-fiber ellipsometer for nanoscale dielectric coatings. Opto-Electron Adv 6, 230048 (2023). doi: 10.29026/oea.2023.230048

Article Open Access

All-fiber ellipsometer for nanoscale dielectric coatings

More Information
  • Multiple mode resonance shifts in tilted fiber Bragg gratings (TFBGs) are used to simultaneously measure the thickness and the refractive index of TiO2 thin films formed by Atomic Layer Deposition (ALD) on optical fibers. This is achieved by comparing the experimental wavelength shifts of 8 TFBG resonances during the deposition process with simulated shifts from a range of thicknesses (T) and values of the real part of the refractive index (n). The minimization of an error function computed for each (n,T) pair then provides a solution for the thickness and refractive index of the deposited film and, a posteriori, to verify the deposition rate throughout the process from the time evolution of the wavelength shift data. Validations of the results were carried out with a conventional ellipsometer on flat witness samples deposited simultaneously with the fiber and with scanning electron measurements on cut pieces of the fiber itself. The final values obtained by the TFBG (n= 2.25, final thickness of 185 nm) were both within 4% of the validation measurements. This approach provides a method to measure the formation of nanoscale dielectric coatings on fibers in situ for applications that require precise thicknesses and refractive indices, such as the optical fiber sensor field. Furthermore, the TFBG can also be used as a process monitor for deposition on other substrates for deposition methods that produce uniform coatings on dissimilar shaped substrates, such as ALD.
  • 加载中
  • [1] Ohring M. Chapter 10 - Characterization of thin films and surfaces. In Ohring M. Materials Science of Thin Films 2nd ed (Academic Press, San Diego, 2002);http://doi.org/10.1016/B978-012524975-1/50013-6.

    Google Scholar

    [2] Podraza NJ, Jellison GE Jr. Ellipsometry. In Lindon JC, Tranter GE, Koppenaal DW. Encyclopedia of Spectroscopy and Spectrometry 3rd ed 482–489 (Academic Press, Oxford, 2017);http://doi.org/10.1016/B978-0-12-409547-2.10991-6.

    Google Scholar

    [3] Garcia-Caurel E, De Martino A, Gaston JP, Yan L. Application of spectroscopic ellipsometry and mueller ellipsometry to optical characterization. Appl Spectrosc 67, 1–21 (2013). doi: 10.1366/12-06883

    CrossRef Google Scholar

    [4] McCrackin FL, Passaglia E, Stromberg RR, Steinberg HL. Measurement of the thickness and refractive index of very thin films and the optical properties of surfaces by ellipsometry. J Res Natl Bur Stand A Phys Chem 67A, 363–377 (1963).

    Google Scholar

    [5] Wei JS, Westwood WD. A new method for determining thin‐film refractive index and thickness using guided optical waves. Appl Phys Lett 32, 819–821 (1978). doi: 10.1063/1.89928

    CrossRef Google Scholar

    [6] Ding TN, Garmire E. Measuring refractive index and thickness of thin films: a new technique. Appl Opt 22, 3177–3181 (1983). doi: 10.1364/AO.22.003177

    CrossRef Google Scholar

    [7] Kersten RT. A new method for measuring refractive index and thickness of liquid and deposited solid thin films. Opt Commun 13, 327–329 (1975). doi: 10.1016/0030-4018(75)90112-1

    CrossRef Google Scholar

    [8] Kirsch ST. Determining the refractive index and thickness of thin films from prism coupler measurements. Appl Opt 20, 2085–2089 (1981). doi: 10.1364/AO.20.002085

    CrossRef Google Scholar

    [9] Choi HJ, Lim HH, Moon HS, Eom TB, Ju JJ et al. Measurement of refractive index and thickness of transparent plate by dual-wavelength interference. Opt Express 18, 9429–9434 (2010). doi: 10.1364/OE.18.009429

    CrossRef Google Scholar

    [10] Jafarfard MR, Moon S, Tayebi B, Kim DY. Dual-wavelength diffraction phase microscopy for simultaneous measurement of refractive index and thickness. Opt Lett 39, 2908–2911 (2014). doi: 10.1364/OL.39.002908

    CrossRef Google Scholar

    [11] Kim S, Na J, Kim MJ, Lee BH. Simultaneous measurement of refractive index and thickness by combining low-coherence interferometry and confocal optics. Opt Express 16, 5516–5526 (2008). doi: 10.1364/OE.16.005516

    CrossRef Google Scholar

    [12] Cheng HC, Liu YC. Simultaneous measurement of group refractive index and thickness of optical samples using optical coherence tomography. Appl Opt 49, 790–797 (2010). doi: 10.1364/AO.49.000790

    CrossRef Google Scholar

    [13] De Bruijn HE, Kooyman RPH, Greve J. Determination of dielectric permittivity and thickness of a metal layer from a surface Plasmon resonance experiment. Appl Opt 29, 1974–1978 (1990). doi: 10.1364/AO.29.001974

    CrossRef Google Scholar

    [14] De Bruijn HE, Minor M, Kooyman RPH, Greve J. Thickness and dielectric constant determination of thin dielectric layers. Opt Commun 95, 183–188 (1993). doi: 10.1016/0030-4018(93)90659-S

    CrossRef Google Scholar

    [15] Del Rosso T, Sánchez JEH, Dos Santos Carvalho R, Pandoli O, Cremona M. Accurate and simultaneous measurement of thickness and refractive index of thermally evaporated thin organic films by surface Plasmon resonance spectroscopy. Opt Express 22, 18914–18923 (2014). doi: 10.1364/OE.22.018914

    CrossRef Google Scholar

    [16] Salvi J, Barchiesi D. Measurement of thicknesses and optical properties of thin films from Surface Plasmon Resonance (SPR). Appl Phys A 115, 245–255 (2014). doi: 10.1007/s00339-013-8038-z

    CrossRef Google Scholar

    [17] Rees ND, James SW, Tatam RP, Ashwell GJ. Optical fiber long-period gratings with Langmuir–Blodgett thin-film overlays. Opt Lett 27, 686–688 (2002). doi: 10.1364/OL.27.000686

    CrossRef Google Scholar

    [18] Cusano A, Iadicicco A, Pilla P, Contessa L, Campopiano S et al. Mode transition in high refractive index coated long period gratings. Opt Express 14, 19–34 (2006). doi: 10.1364/OPEX.14.000019

    CrossRef Google Scholar

    [19] Del Villar I, Matías IR, Arregui FJ, Lalanne P. Optimization of sensitivity in Long Period Fiber Gratings with overlay deposition. Opt Express 13, 56–69 (2005). doi: 10.1364/OPEX.13.000056

    CrossRef Google Scholar

    [20] Del Villar I, Achaerandio M, Matías IR, Arregui FJ. Deposition of overlays by electrostatic self-assembly in long-period fiber gratings. Opt Lett 30, 720–722 (2005). doi: 10.1364/OL.30.000720

    CrossRef Google Scholar

    [21] Pilla P, Trono C, Baldini F, Chiavaioli F, Giordano M et al. Giant sensitivity of long period gratings in transition mode near the dispersion turning point: an integrated design approach. Opt Lett 37, 4152–4154 (2012). doi: 10.1364/OL.37.004152

    CrossRef Google Scholar

    [22] Śmietana M, Koba M, Mikulic P, Bock WJ. Towards refractive index sensitivity of long-period gratings at level of tens of µm per refractive index unit: fiber cladding etching and Nano-coating deposition. Opt Express 24, 11897–11904 (2016). doi: 10.1364/OE.24.011897

    CrossRef Google Scholar

    [23] Cusano A, Iadicicco A, Pilla P, Contessa L, Campopiano S et al. Coated long-period fiber gratings as high-sensitivity optochemical sensors. J Lightwave Technol 24, 1776–1786 (2006). doi: 10.1109/JLT.2006.871128

    CrossRef Google Scholar

    [24] Esposito F, Sansone L, Srivastava A, Baldini F, Campopiano S et al. Long period grating in double cladding fiber coated with graphene oxide as high-performance optical platform for biosensing. Biosens Bioelectron 172, 112747 (2021). doi: 10.1016/j.bios.2020.112747

    CrossRef Google Scholar

    [25] Imas JJ, Albert J, Del Villar I, Ozcáriz A, Zamarreño CR et al. Mode transitions and thickness measurements during deposition of nanoscale TiO2 coatings on tilted fiber Bragg gratings. J Lightwave Technol 40, 6006–6012 (2022). doi: 10.1109/JLT.2022.3186596

    CrossRef Google Scholar

    [26] Imas JJ, Albert J, Del Villar I, Ozcáriz A, Zamarreño CR et al. Mode transition during deposition of nanoscale ITO coatings on tilted fiber Bragg gratings. In Bragg Gratings, Photosensitivity and Poling in Glass Waveguides and Materials 2022 BM3A. 5 (Optica Publishing Group, 2022); https://doi.org/10.1364/BGPPM.2022.BM3A.5.

    Google Scholar

    [27] Albert J, Shao LY, Caucheteur C. Tilted fiber Bragg grating sensors. Laser Photon Rev 7, 83–108 (2013). doi: 10.1002/lpor.201100039

    CrossRef Google Scholar

    [28] Lu YC, Huang WP, Lu YC, Jian SS. Full vector complex coupled mode theory for tilted fiber gratings. Opt Express 18, 713–726 (2010). doi: 10.1364/OE.18.000713

    CrossRef Google Scholar

    [29] Erdogan T. Cladding-mode resonances in short- and long-period fiber grating filters. J Opt Soc Am A 14, 1760–1773 (1997). doi: 10.1364/JOSAA.14.001760

    CrossRef Google Scholar

    [30] Malitson IH. Interspecimen comparison of the refractive index of fused silica. J Opt Soc Am 55, 1205–1209 (1965). doi: 10.1364/JOSA.55.001205

    CrossRef Google Scholar

    [31] Sarkar S, Gupta V, Kumar M, Schubert J, Probst PT et al. Hybridized guided-mode resonances via colloidal plasmonic self-assembled grating. ACS Appl Mater Interfaces 11, 13752–13760 (2019). doi: 10.1021/acsami.8b20535

    CrossRef Google Scholar

    [32] Kischkat J, Peters S, Gruska B, Semtsiv M, Chashnikova M et al. Mid-infrared optical properties of thin films of aluminum oxide, titanium dioxide, silicon dioxide, aluminum nitride, and silicon nitride. Appl Opt 51, 6789–6798 (2012). doi: 10.1364/AO.51.006789

    CrossRef Google Scholar

    [33] Del Villar I, Zamarreño CR, Hernaez M, Arregui FJ, Matias IR. Resonances in coated long period fiber gratings and cladding removed multimode optical fibers: a comparative study. Opt Express 18, 20183–20189 (2010). doi: 10.1364/OE.18.020183

    CrossRef Google Scholar

    [34] Del Villar I, Corres JM, Achaerandio M, Arregui FJ, Matias IR. Spectral evolution with incremental nanocoating of long period fiber gratings. Opt Express 14, 11972–11981 (2006). doi: 10.1364/OE.14.011972

    CrossRef Google Scholar

    [35] Del Villar I, Matias IR, Arregui FJ, Achaerandio M. Nanodeposition of materials with complex refractive index in long-period fiber gratings. J Lightwave Technol 23, 4192–4199 (2005). doi: 10.1109/JLT.2005.858246

    CrossRef Google Scholar

  • Supplymentary video
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(11)

Tables(2)

Article Metrics

Article views(3404) PDF downloads(459) Cited by(0)

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint