Xing Y, Lin XY, Zhang LB, Xia YP, Zhang HL et al. Integral imaging-based tabletop light field 3D display with large viewing angle. Opto-Electron Adv 6, 220178 (2023). doi: 10.29026/oea.2023.220178
Citation: Xing Y, Lin XY, Zhang LB, Xia YP, Zhang HL et al. Integral imaging-based tabletop light field 3D display with large viewing angle. Opto-Electron Adv 6, 220178 (2023). doi: 10.29026/oea.2023.220178

Article Open Access

Integral imaging-based tabletop light field 3D display with large viewing angle

More Information
  • Light field 3D display technology is considered a revolutionary technology to address the critical visual fatigue issues in the existing 3D displays. Tabletop light field 3D display provides a brand-new display form that satisfies multi-user shared viewing and collaborative works, and it is poised to become a potential alternative to the traditional wall and portable display forms. However, a large radial viewing angle and correct radial perspective and parallax are still out of reach for most current tabletop light field 3D displays due to the limited amount of spatial information. To address the viewing angle and perspective issues, a novel integral imaging-based tabletop light field 3D display with a simple flat-panel structure is proposed and developed by applying a compound lens array, two spliced 8K liquid crystal display panels, and a light shaping diffuser screen. The compound lens array is designed to be composed of multiple three-piece compound lens units by employing a reverse design scheme, which greatly extends the radial viewing angle in the case of a limited amount of spatial information and balances other important 3D display parameters. The proposed display has a radial viewing angle of 68.7° in a large display size of 43.5 inches, which is larger than the conventional tabletop light field 3D displays. The radial perspective and parallax are correct, and high-resolution 3D images can be reproduced in large radial viewing positions. We envision that this proposed display opens up possibility for redefining the display forms of consumer electronics.
  • 加载中
  • [1] Geng J. Three-dimensional display technologies. Adv Opt Photonics 5, 456–535 (2013). doi: 10.1364/AOP.5.000456

    CrossRef Google Scholar

    [2] Fattal D, Peng Z, Tran T, Vo S, Fiorentino M et al. A multi-directional backlight for a wide-angle, glasses-free three-dimensional display. Nature 495, 348–351 (2013). doi: 10.1038/nature11972

    CrossRef Google Scholar

    [3] Li YNQ, Yang Q, Xiong JH, Yin K, Wu ST. 3D displays in augmented and virtual realities with holographic optical elements [Invited]. Opt Express 29, 42696–42712 (2021). doi: 10.1364/OE.444693

    CrossRef Google Scholar

    [4] Liu C, Jiang Z, Wang X, Zheng Y, Zheng YW et al. Continuous optical zoom microscope with extended depth of field and 3D reconstruction. PhotoniX 3, 20 (2022). doi: 10.1186/s43074-022-00066-0

    CrossRef Google Scholar

    [5] Jones A, McDowall I, Yamada H, Bolas M, Debevec P. Rendering for an interactive 360° light field display. ACM Trans Graphics 26, 40–es (2007). doi: 10.1145/1276377.1276427

    CrossRef Google Scholar

    [6] Takaki Y, Uchida S. Table screen 360-degree three-dimensional display using a small array of high-speed projectors. Opt Express 20, 8848–8861 (2012). doi: 10.1364/OE.20.008848

    CrossRef Google Scholar

    [7] Otsuka R, Hoshino T, Horry Y. Transpost: 360 deg-viewable three-dimensional display system. Proc IEEE 94, 629–635 (2006). doi: 10.1109/JPROC.2006.870700

    CrossRef Google Scholar

    [8] Holliman NS, Dodgson NA, Favalora GE, Pockett L. Three-dimensional displays: a review and applications analysis. IEEE Trans Broadcast 57, 362–371 (2011). doi: 10.1109/TBC.2011.2130930

    CrossRef Google Scholar

    [9] Momonoi Y, Yamamoto K, Yokote Y, Sato A, Takaki Y. Light field Mirage using multiple flat-panel light field displays. Opt Express 29, 10406–10423 (2021). doi: 10.1364/OE.417924

    CrossRef Google Scholar

    [10] Gao H, Fan XH, Xiong W, Hong MH. Recent advances in optical dynamic meta-holography. Opto-Electron Adv 4, 210030 (2021). doi: 10.29026/oea.2021.210030

    CrossRef Google Scholar

    [11] Wang D, Liu C, Shen C, Xing Y, Wang QH. Holographic capture and projection system of real object based on tunable zoom lens. PhotoniX 1, 6 (2020). doi: 10.1186/s43074-020-0004-3

    CrossRef Google Scholar

    [12] Wakunami K, Hsieh PY, Oi R, Senoh T, Sasaki H et al. Projection-type see-through holographic three-dimensional display. Nat Commun 7, 12954 (2016). doi: 10.1038/ncomms12954

    CrossRef Google Scholar

    [13] Li YL, Li NN, Wang D, Chu F, Lee SD et al. Tunable liquid crystal grating based holographic 3D display system with wide viewing angle and large size. Light Sci Appl 11, 188 (2022). doi: 10.1038/s41377-022-00880-y

    CrossRef Google Scholar

    [14] Lim Y, Hong K, Kim H, Kim HE, Chang EY et al. 360-degree tabletop electronic holographic display. Opt Express 24, 24999–25009 (2016). doi: 10.1364/OE.24.024999

    CrossRef Google Scholar

    [15] Zhang CL, Zhang DF, Bian ZP. Dynamic full-color digital holographic 3D display on single DMD. Opto-Electron Adv 4, 200049 (2021). doi: 10.29026/oea.2021.200049

    CrossRef Google Scholar

    [16] Smalley DE, Nygaard E, Squire K, van Wagoner J, Rasmussen J et al. A photophoretic-trap volumetric display. Nature 553, 486–490 (2018). doi: 10.1038/nature25176

    CrossRef Google Scholar

    [17] Hirayama R, Martinez Plasencia D, Masuda N, Subramanian S. A volumetric display for visual, tactile and audio presentation using acoustic trapping. Nature 575, 320–323 (2019). doi: 10.1038/s41586-019-1739-5

    CrossRef Google Scholar

    [18] Deng RR, Qin F, Chen RF, Huang W, Hong MH et al. Temporal full-colour tuning through non-steady-state upconversion. Nat Nanotechnol 10, 237–242 (2015). doi: 10.1038/nnano.2014.317

    CrossRef Google Scholar

    [19] Zhou FB, Zhou F, Chen Y, Hua JY, Qiao W et al. Vector light field display based on an intertwined flat lens with large depth of focus. Optica 9, 288–294 (2022). doi: 10.1364/OPTICA.439613

    CrossRef Google Scholar

    [20] Hua JY, Hua EK, Zhou FB, Shi JC, Wang CH et al. Foveated glasses-free 3D display with ultrawide field of view via a large-scale 2D-metagrating complex. Light Sci Appl 10, 213 (2021). doi: 10.1038/s41377-021-00651-1

    CrossRef Google Scholar

    [21] Nam D, Lee JH, Cho YH, Jeong YJ, Hwang H et al. Flat panel light-field 3-D display: concept, design, rendering, and calibration. Proc IEEE 105, 876–891 (2017). doi: 10.1109/JPROC.2017.2686445

    CrossRef Google Scholar

    [22] Huang FC, Wetzstein G, Barsky BA, Raskar R. Eyeglasses-free display: towards correcting visual aberrations with computational light field displays. ACM Trans Graphics 33, 59 (2014). doi: 10.1145/2601097.2601122

    CrossRef Google Scholar

    [23] Makiguchi M, Sakamoto D, Takada H, Honda K, Ono T. Interactive 360-degree glasses-free tabletop 3D display. In Proceedings of the 32nd Annual ACM Symposium on User Interface Software and Technology 625–637 (ACM, 2019).

    Google Scholar

    [24] Xia XX, Liu X, Li HF, Zheng ZR, Wang H et al. A 360-degree floating 3D display based on light field regeneration. Opt Express 21, 11237–11247 (2013). doi: 10.1364/OE.21.011237

    CrossRef Google Scholar

    [25] Yoshida S. fVisiOn: 360-degree viewable glasses-free tabletop 3D display composed of conical screen and modular projector arrays. Opt Express 24, 13194–13203 (2016). doi: 10.1364/OE.24.013194

    CrossRef Google Scholar

    [26] Yoshida S. Virtual multiplication of light sources for a 360°-viewable tabletop 3D display. Opt Express 28, 32517–32528 (2020). doi: 10.1364/OE.408628

    CrossRef Google Scholar

    [27] Takaki Y, Nakamura J. Generation of 360-degree color three-dimensional images using a small array of high-speed projectors to provide multiple vertical viewpoints. Opt Express 22, 8779–8789 (2014). doi: 10.1364/OE.22.008779

    CrossRef Google Scholar

    [28] Martínez-Corral M, Javidi B. Fundamentals of 3D imaging and displays: a tutorial on integral imaging, light-field, and plenoptic systems. Adv Opt Photonics 10, 512–566 (2018). doi: 10.1364/AOP.10.000512

    CrossRef Google Scholar

    [29] Javidi B, Carnicer A, Arai J, Fujii T, Hua H et al. Roadmap on 3D integral imaging: sensing, processing, and display. Opt Express 28, 32266–32293 (2020). doi: 10.1364/OE.402193

    CrossRef Google Scholar

    [30] Zhao D, Su BQ, Chen GW, Liao HE. 360 degree viewable floating autostereoscopic display using integral photography and multiple semitransparent mirrors. Opt Express 23, 9812–9823 (2015). doi: 10.1364/OE.23.009812

    CrossRef Google Scholar

    [31] Fan ZB, Qiu HY, Zhang HL, Pang XN, Zhou LD et al. A broadband achromatic metalens array for integral imaging in the visible. Light Sci Appl 8, 67 (2019). doi: 10.1038/s41377-019-0178-2

    CrossRef Google Scholar

    [32] Zhang HL, Deng H, Li JJ, He MY, Li DH et al. Integral imaging-based 2D/3D convertible display system by using holographic optical element and polymer dispersed liquid crystal. Opt Lett 44, 387–390 (2019). doi: 10.1364/OL.44.000387

    CrossRef Google Scholar

    [33] Okaichi N, Miura M, Arai J, Kawakita M, Mishina T. Integral 3D display using multiple LCD panels and multi-image combining optical system. Opt Express 25, 2805–2817 (2017). doi: 10.1364/OE.25.002805

    CrossRef Google Scholar

    [34] Zhao ZF, Liu J, Zhang ZQ, Xu LF. Bionic-compound-eye structure for realizing a compact integral imaging 3D display in a cell phone with enhanced performance. Opt Lett 45, 1491–1494 (2020). doi: 10.1364/OL.384182

    CrossRef Google Scholar

    [35] Aieta F, Genevet P, Kats MA, Yu NF, Blanchard R et al. Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces. Nano Lett 12, 4932–4936 (2012). doi: 10.1021/nl302516v

    CrossRef Google Scholar

    [36] Zhang N, Huang TQ, Zhang XR, Hu CQ, Liao HE. Omnidirectional 3D autostereoscopic aerial display with continuous parallax. J Opt Soc Am A 39, 782–792 (2022). doi: 10.1364/JOSAA.452915

    CrossRef Google Scholar

    [37] Gao X, Sang XZ, Zhang WL, Yan BB. Viewing resolution and viewing angle enhanced tabletop 3D light field display based on voxel superimposition and collimated backlight. Opt Commun 474, 126157 (2020). doi: 10.1016/j.optcom.2020.126157

    CrossRef Google Scholar

    [38] Heo D, Kim B, Lim S, Moon W, Lee D et al. Large field-of-view microlens array with low crosstalk and uniform angular resolution for tabletop integral imaging display. J Inf Disp 24, 81–92 (2023). doi: 10.1080/15980316.2022.2136275

    CrossRef Google Scholar

    [39] Gao X, Sang XZ, Yu XB, Zhang WL, Yan BB et al. 360° light field 3D display system based on a triplet lenses array and holographic functional screen. Chin Opt Lett 15, 121201 (2017). doi: 10.3788/COL201715.121201

    CrossRef Google Scholar

    [40] Yu XB, Sang XZ, Gao X, Yan BB, Chen DY et al. 360-degree tabletop 3D light-field display with ring-shaped viewing range based on aspheric conical lens array. Opt Express 27, 26738–26748 (2019). doi: 10.1364/OE.27.026738

    CrossRef Google Scholar

    [41] Martínez-Corral M, Dorado A, Barreiro JC, Saavedra G, Javidi B. Recent advances in the capture and display of macroscopic and microscopic 3-D scenes by integral imaging. Proc IEEE 105, 825–836 (2017). doi: 10.1109/JPROC.2017.2655260

    CrossRef Google Scholar

    [42] Xing SJ, Sang XZ, Yu XB, Duo C, Pang B et al. High-efficient computer-generated integral imaging based on the backward ray-tracing technique and optical reconstruction. Opt Express 25, 330–338 (2017). doi: 10.1364/OE.25.000330

    CrossRef Google Scholar

    [43] Yu XB, Sang XZ, Gao X, Yang SW, Liu BY et al. Distortion correction for the elemental images of integral imaging by introducing the directional diffuser. Chin Opt Lett 16, 041001 (2018). doi: 10.3788/COL201816.041001

    CrossRef Google Scholar

  • Video S1
    Video S2
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Article Metrics

Article views(7455) PDF downloads(747) Cited by(0)

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint