Citation: | Armbruster O, Pöhl H, Kautek W. Hot electron electrochemistry at silver activated by femtosecond laser pulses. Opto-Electron Adv 6, 220170 (2023). doi: 10.29026/oea.2023.220170 |
[1] | Hertz H. Ueber einen einfluss des ultravioletten lichtes auf die electrische entladung. Ann Phys 267, 983–1000 (1887). doi: 10.1002/andp.18872670827 |
[2] | Lenard P. Ueber die lichtelektrische wirkung. Ann Phys 313, 149–198 (1902). doi: 10.1002/andp.19023130510 |
[3] | Georges AT. Theory of the multiphoton photoelectric effect: a stepwise excitation process. Phys Rev B 51, 13735–13738 (1995). doi: 10.1103/PhysRevB.51.13735 |
[4] | Girardeau-Montaut JP, Girardeau-Montaut C. Theory of ultrashort nonlinear multiphoton photoelectric emission from metals. Phys Rev B 51, 13560–13567 (1995). doi: 10.1103/PhysRevB.51.13560 |
[5] | Damascelli A, Gabetta G, Lumachi A, Fini L, Parmigiani F. Multiphoton electron emission from Cu and W: an angle-resolved study. Phys Rev B 54, 6031–6034 (1996). doi: 10.1103/PhysRevB.54.6031 |
[6] | Georges AT. High-order multiphoton photoelectric effect at midinfrared laser wavelengths. Phys Rev A 66, 063412 (2002). doi: 10.1103/PhysRevA.66.063412 |
[7] | Bonn M, Denzler DN, Funk S, Wolf M, Wellershoff SS et al. Ultrafast electron dynamics at metal surfaces: competition between electron-phonon coupling and hot-electron transport. Phys Rev B 61, 1101–1105 (2000). doi: 10.1103/PhysRevB.61.1101 |
[8] | Hohlfeld J, Wellershoff SS, Güdde J, Conrad U, Jähnke V et al. Electron and lattice dynamics following optical excitation of metals. Chem Phys 251, 237–258 (2000). doi: 10.1016/S0301-0104(99)00330-4 |
[9] | Bäuerle D. Laser Processing and Chemistry (Springer, Berlin, 2011). |
[10] | Anisimov SI, Kapeliovich BL, Perel’man TL. Electron emission from metal surfaces exposed to ultrashort laser pulses. J Exp Theor Phys 39, 375–377 (1974). |
[11] | Krivenko AG, Kautek W, Krüger J, Benderskii VA. Subpicosecond emission from mercury and silver into electrolyte solution: an experimental study. Russ J Electrochem 33, 394–400 (1997). |
[12] | Krüger J, Kautek W, Krivenko AG, Benderskii VA. Gigantic hydrogen-ion discharge currents initiated by a subpicosecond laser. Russ J Electrochem 34, 1068–1075 (1998). |
[13] | Kautek W, Armbruster O. Non-thermal material response to laser energy deposition. In Castillejo M, Ossi PM, Zhigilei L, eds. Lasers in Materials Science 43–66 (Springer, Cham, 2014). |
[14] | Lin ZB, Zhigilei LV, Celli V. Electron-phonon coupling and electron heat capacity of metals under conditions of strong electron-phonon nonequilibrium. Phys Rev B 77, 075133 (2008). doi: 10.1103/PhysRevB.77.075133 |
[15] | Ellison WJ, Lamkaouchi K, Moreau JM. Water: a dielectric reference. J Mol Liq 68, 171–279 (1996). doi: 10.1016/0167-7322(96)00926-9 |
[16] | Brodsky AM, Pleskov YV. Electron photoemission at a metal-electrolyte solution interface. Prog Surf Sci 2, 1–73 (1972). doi: 10.1016/0079-6816(72)90010-X |
[17] | Benderskii VA, Benderskii AV. Laser Electrochemistry of Intermediates (CRC Press, Boca Raton, 1995). |
[18] | Bockris JOM, Reddy AKN, Gamboa-Aldeco ME. Modern Electrochemistry 2A: Fundamentals of Electrodics 2nd ed (Springer, New York, 2000). |
[19] | Benderskii VA, Efimov IO, Krivenko AG. Short-pulse laser activation of metal electrodes. J Electroanal Chem Interfacial Electrochem 315, 29–64 (1991). doi: 10.1016/0022-0728(91)80059-Y |
[20] | Tamir S, Zahavi J. Laser‐induced gold deposition on a silicon substrate. J Vac Sci Technol A 3, 2312–2315 (1985). doi: 10.1116/1.572871 |
[21] | Kautek W, Sorg N, Paatsch W. Laser-induced electrodeposition of transition metals on silicon. Electrochim Acta 36, 1803–1810 (1991). doi: 10.1016/0013-4686(91)85048-C |
[22] | Sorg N, Kautek W, Paatsch W. Etching pretreatment and galvanic Cu enhancement of laser-deposited ultrathin Ni structures on p-Si. Ber Bunsenges Phys Chem 95, 1501–1507 (1991). doi: 10.1002/bbpc.19910951136 |
[23] | Oltra R, Indrianjafy GM, Keddam M, Takenouti H. Laser depassivation of a channel flow double-electrode: a new technique in repassivation studies. Corros Sci 35, 827–832 (1993). doi: 10.1016/0010-938X(93)90221-2 |
[24] | Nagy TO, Pacher U, Giesriegl A, Soyka L, Trettenhahn G et al. Laser-induced electrochemical de- and repassivation investigations on plasma-oxidized aluminium alloys. Appl Surf Sci 302, 184–188 (2014). doi: 10.1016/j.apsusc.2014.01.129 |
[25] | Nagy TO, Weimerskirch MJJ, Pacher U, Kautek W. Repassivation investigations on aluminium: physical chemistry of the passive state. Z Phys Chem 230, 1303–1327 (2016). doi: 10.1515/zpch-2016-0001 |
[26] | Khosrofian JM, Garetz BA. Measurement of a Gaussian laser beam diameter through the direct inversion of knife-edge data. Appl Opt 22, 3406–3410 (1983). doi: 10.1364/AO.22.003406 |
[27] | Armbruster O, Naghilou A, Pöhl H, Kautek W. In-situ and non-destructive focus determination device for high-precision laser applications. J Opt 18, 095401 (2016). doi: 10.1088/2040-8978/18/9/095401 |
[28] | Liu JM. Simple technique for measurements of pulsed Gaussian-beam spot sizes. Opt Lett 7, 196–198 (1982). doi: 10.1364/OL.7.000196 |
[29] | Howard H, Conneely AJ, O'Connor GM, Glynn TJ. Investigation of a method for the determination of the focused spot size of industrial laser beams based on the drilling of holes in mylar film. Proc SPIE 4876, 541–552 (2003). doi: 10.1117/12.463732 |
[30] | Krüger J, Kautek W. Ultrashort pulse laser interaction with dielectrics and polymers. In Lippert TK, ed. Polymers and Light 247–290 (Springer, Berlin, 2004). |
[31] | Pourbaix M. Atlas of Electrochemical Equilibria in Aqueous Solutions 2nd ed (National Association of Corrosion Engineers, Houston, 1974). |
[32] | Brug GJ, van den Eeden ALG, Sluyters-Rehbach M, Sluyters J. The analysis of electrode impedances complicated by the presence of a constant phase element. J Electroanal Chem Interfacial Electrochem 176, 275–295 (1984). doi: 10.1016/S0022-0728(84)80324-1 |
[33] | Pajkossy T. Impedance spectroscopy at interfaces of metals and aqueous solutions — surface roughness, CPE and related issues. Solid State Ion 176, 1997–2003 (2005). doi: 10.1016/j.ssi.2004.06.023 |
[34] | Groeneveld RHM, Sprik R, Lagendijk A. Femtosecond spectroscopy of electron-electron and electron-phonon energy relaxation in Ag and Au. Phys Rev B 51, 11433–11445 (1995). doi: 10.1103/PhysRevB.51.11433 |
[35] | Krivenko AG, Krüger J, Kautek W, Benderskii VA. Subpicosecond-pulse-laser-induced electron emission from mercury and silver into aqueous electrolytes. Ber Bunsenges Phys Chem 99, 1489–1494 (1995). doi: 10.1002/bbpc.199500113 |
[36] | Krüger J, Kautek W. Ultrashort pulse laser interaction with dielectrics and polymers. In Lippert TK, ed. Polymers and Light 247–290 (Springer, Berlin, 2004). |
[37] | Zolotovitskii YM, Korshunov LI, Benderskii VA. Electron work function from metals in a liquid dielectric. Bull Acad Sci USSR, Div Chem Sci 21, 760–763 (1972). doi: 10.1007/BF00854468 |
[38] | Holze R. Table 3.1. Electrode potentials of zero charge of metal electrodes in contact with electrolyte solutions. In Lechner MD, ed. Electrochemical Thermodynamics and Kinetics 223–272 (Springer, Berlin, 2007). |
[39] | Gerischer H. Über den ablauf von redoxreaktionen an metallen und an halbleitern. I. Allgemeines zum elektronenübergang zwischen einem festkörper und einem redoxelektrolyten. Z Phys Chem 26, 223–247 (1960). doi: 10.1524/zpch.1960.26.3_4.223 |
[40] | Gerischer H. Über den ablauf von redoxreaktionen an metallen und an halbleitern. II. Metall-elektroden. Z Phys Chem 26, 325–338 (1960). doi: 10.1524/zpch.1960.26.5_6.325 |
Supplementary information for Hot electron electrochemistry at silver activated by femtosecond laser pulses |
Calculated electron temperature Te of silver for various incident laser fluences F according to Equation (2) with γe = 62.8 J m−3 K−2, μ = 142 nm, and β = 0.15.
Block diagram of the laser-electrochemical system. μWE: silver working microelectrode; CE: platinum counter electrode; fs-CPO: femtosecond chirped pulse oscillator; E: laser pulse energy; τ: pulse duration; OBJ: microscope objective; R: 1 MΩ resistor; DAQ: digital-to-analog converter output; φ: applied electrode potential; HPA: high pass amplifier; Δφ: transient voltage signal; OSC: digital storage oscilloscope.
(a) Exemplary Δφ(t) transient voltage measurement averaged over 100 single laser pulses. τ = (55 ± 1) fs, F0 = (64 ± 7) mJ cm-2, ϕ = (–460 ± 40) mV vs. SHE. The inset enlarges the region around t = 0 and shows the extracted peak voltage change Δφ0 = (19.7 ± 0.1) mV. (b) Comparison of Δφ(t) transient voltage measurements recorded at various laser peak fluences F0.
Imaginary part X of an exemplary impedance measurement corresponding to the Δφ(t) transient in Fig. 3. The solid line shows the constant phase element fit.
Logarithmic plot of the emitted hot electron charge Q for two pulse durations, τ = (55 ± 1) fs (red circles) and τ = (213 ± 1) fs (blue stars), plotted over the applied electrode bias φ and peak laser fluence F0. The gray surface is calculated from Eq. (5) but for a constant factor with γe = 62.8 J m−3 K−2, μ = 142 nm, β = 0.15, and φ0 = 3.41 eV at 0 V vs. SHE.
Schematic electronic Fermi-Dirac distribution n on the metal and density of states (DOS) as function of the electronic energy ε of H3O+ and H0.