Armbruster O, Pöhl H, Kautek W. Hot electron electrochemistry at silver activated by femtosecond laser pulses. Opto-Electron Adv 6, 220170 (2023). doi: 10.29026/oea.2023.220170
Citation: Armbruster O, Pöhl H, Kautek W. Hot electron electrochemistry at silver activated by femtosecond laser pulses. Opto-Electron Adv 6, 220170 (2023). doi: 10.29026/oea.2023.220170

Article Open Access

Hot electron electrochemistry at silver activated by femtosecond laser pulses

More Information
  • A silver microelectrode with a diameter of 30 µm in an aqueous K2SO4 electrolyte was irradiated with 55 fs and 213 fs laser pulses. This caused the emission of electrons which transiently charged the electrochemical double layer. The two applied pulse durations were significantly shorter than the electron-phonon relaxation time. The laser pulse durations had negligible impact on the emitted charge, which is incompatible with multiphoton emission. On the other hand, the observed dependence of emitted charge on laser fluence and electrode potential supports the thermionic emission mechanism.
  • 加载中
  • [1] Hertz H. Ueber einen einfluss des ultravioletten lichtes auf die electrische entladung. Ann Phys 267, 983–1000 (1887). doi: 10.1002/andp.18872670827

    CrossRef Google Scholar

    [2] Lenard P. Ueber die lichtelektrische wirkung. Ann Phys 313, 149–198 (1902). doi: 10.1002/andp.19023130510

    CrossRef Google Scholar

    [3] Georges AT. Theory of the multiphoton photoelectric effect: a stepwise excitation process. Phys Rev B 51, 13735–13738 (1995). doi: 10.1103/PhysRevB.51.13735

    CrossRef Google Scholar

    [4] Girardeau-Montaut JP, Girardeau-Montaut C. Theory of ultrashort nonlinear multiphoton photoelectric emission from metals. Phys Rev B 51, 13560–13567 (1995). doi: 10.1103/PhysRevB.51.13560

    CrossRef Google Scholar

    [5] Damascelli A, Gabetta G, Lumachi A, Fini L, Parmigiani F. Multiphoton electron emission from Cu and W: an angle-resolved study. Phys Rev B 54, 6031–6034 (1996). doi: 10.1103/PhysRevB.54.6031

    CrossRef Google Scholar

    [6] Georges AT. High-order multiphoton photoelectric effect at midinfrared laser wavelengths. Phys Rev A 66, 063412 (2002). doi: 10.1103/PhysRevA.66.063412

    CrossRef Google Scholar

    [7] Bonn M, Denzler DN, Funk S, Wolf M, Wellershoff SS et al. Ultrafast electron dynamics at metal surfaces: competition between electron-phonon coupling and hot-electron transport. Phys Rev B 61, 1101–1105 (2000). doi: 10.1103/PhysRevB.61.1101

    CrossRef Google Scholar

    [8] Hohlfeld J, Wellershoff SS, Güdde J, Conrad U, Jähnke V et al. Electron and lattice dynamics following optical excitation of metals. Chem Phys 251, 237–258 (2000). doi: 10.1016/S0301-0104(99)00330-4

    CrossRef Google Scholar

    [9] Bäuerle D. Laser Processing and Chemistry (Springer, Berlin, 2011).

    Google Scholar

    [10] Anisimov SI, Kapeliovich BL, Perel’man TL. Electron emission from metal surfaces exposed to ultrashort laser pulses. J Exp Theor Phys 39, 375–377 (1974).

    Google Scholar

    [11] Krivenko AG, Kautek W, Krüger J, Benderskii VA. Subpicosecond emission from mercury and silver into electrolyte solution: an experimental study. Russ J Electrochem 33, 394–400 (1997).

    Google Scholar

    [12] Krüger J, Kautek W, Krivenko AG, Benderskii VA. Gigantic hydrogen-ion discharge currents initiated by a subpicosecond laser. Russ J Electrochem 34, 1068–1075 (1998).

    Google Scholar

    [13] Kautek W, Armbruster O. Non-thermal material response to laser energy deposition. In Castillejo M, Ossi PM, Zhigilei L, eds. Lasers in Materials Science 43–66 (Springer, Cham, 2014).

    Google Scholar

    [14] Lin ZB, Zhigilei LV, Celli V. Electron-phonon coupling and electron heat capacity of metals under conditions of strong electron-phonon nonequilibrium. Phys Rev B 77, 075133 (2008). doi: 10.1103/PhysRevB.77.075133

    CrossRef Google Scholar

    [15] Ellison WJ, Lamkaouchi K, Moreau JM. Water: a dielectric reference. J Mol Liq 68, 171–279 (1996). doi: 10.1016/0167-7322(96)00926-9

    CrossRef Google Scholar

    [16] Brodsky AM, Pleskov YV. Electron photoemission at a metal-electrolyte solution interface. Prog Surf Sci 2, 1–73 (1972). doi: 10.1016/0079-6816(72)90010-X

    CrossRef Google Scholar

    [17] Benderskii VA, Benderskii AV. Laser Electrochemistry of Intermediates (CRC Press, Boca Raton, 1995).

    Google Scholar

    [18] Bockris JOM, Reddy AKN, Gamboa-Aldeco ME. Modern Electrochemistry 2A: Fundamentals of Electrodics 2nd ed (Springer, New York, 2000).

    Google Scholar

    [19] Benderskii VA, Efimov IO, Krivenko AG. Short-pulse laser activation of metal electrodes. J Electroanal Chem Interfacial Electrochem 315, 29–64 (1991). doi: 10.1016/0022-0728(91)80059-Y

    CrossRef Google Scholar

    [20] Tamir S, Zahavi J. Laser‐induced gold deposition on a silicon substrate. J Vac Sci Technol A 3, 2312–2315 (1985). doi: 10.1116/1.572871

    CrossRef Google Scholar

    [21] Kautek W, Sorg N, Paatsch W. Laser-induced electrodeposition of transition metals on silicon. Electrochim Acta 36, 1803–1810 (1991). doi: 10.1016/0013-4686(91)85048-C

    CrossRef Google Scholar

    [22] Sorg N, Kautek W, Paatsch W. Etching pretreatment and galvanic Cu enhancement of laser-deposited ultrathin Ni structures on p-Si. Ber Bunsenges Phys Chem 95, 1501–1507 (1991). doi: 10.1002/bbpc.19910951136

    CrossRef Google Scholar

    [23] Oltra R, Indrianjafy GM, Keddam M, Takenouti H. Laser depassivation of a channel flow double-electrode: a new technique in repassivation studies. Corros Sci 35, 827–832 (1993). doi: 10.1016/0010-938X(93)90221-2

    CrossRef Google Scholar

    [24] Nagy TO, Pacher U, Giesriegl A, Soyka L, Trettenhahn G et al. Laser-induced electrochemical de- and repassivation investigations on plasma-oxidized aluminium alloys. Appl Surf Sci 302, 184–188 (2014). doi: 10.1016/j.apsusc.2014.01.129

    CrossRef Google Scholar

    [25] Nagy TO, Weimerskirch MJJ, Pacher U, Kautek W. Repassivation investigations on aluminium: physical chemistry of the passive state. Z Phys Chem 230, 1303–1327 (2016). doi: 10.1515/zpch-2016-0001

    CrossRef Google Scholar

    [26] Khosrofian JM, Garetz BA. Measurement of a Gaussian laser beam diameter through the direct inversion of knife-edge data. Appl Opt 22, 3406–3410 (1983). doi: 10.1364/AO.22.003406

    CrossRef Google Scholar

    [27] Armbruster O, Naghilou A, Pöhl H, Kautek W. In-situ and non-destructive focus determination device for high-precision laser applications. J Opt 18, 095401 (2016). doi: 10.1088/2040-8978/18/9/095401

    CrossRef Google Scholar

    [28] Liu JM. Simple technique for measurements of pulsed Gaussian-beam spot sizes. Opt Lett 7, 196–198 (1982). doi: 10.1364/OL.7.000196

    CrossRef Google Scholar

    [29] Howard H, Conneely AJ, O'Connor GM, Glynn TJ. Investigation of a method for the determination of the focused spot size of industrial laser beams based on the drilling of holes in mylar film. Proc SPIE 4876, 541–552 (2003). doi: 10.1117/12.463732

    CrossRef Google Scholar

    [30] Krüger J, Kautek W. Ultrashort pulse laser interaction with dielectrics and polymers. In Lippert TK, ed. Polymers and Light 247–290 (Springer, Berlin, 2004).

    Google Scholar

    [31] Pourbaix M. Atlas of Electrochemical Equilibria in Aqueous Solutions 2nd ed (National Association of Corrosion Engineers, Houston, 1974).

    Google Scholar

    [32] Brug GJ, van den Eeden ALG, Sluyters-Rehbach M, Sluyters J. The analysis of electrode impedances complicated by the presence of a constant phase element. J Electroanal Chem Interfacial Electrochem 176, 275–295 (1984). doi: 10.1016/S0022-0728(84)80324-1

    CrossRef Google Scholar

    [33] Pajkossy T. Impedance spectroscopy at interfaces of metals and aqueous solutions — surface roughness, CPE and related issues. Solid State Ion 176, 1997–2003 (2005). doi: 10.1016/j.ssi.2004.06.023

    CrossRef Google Scholar

    [34] Groeneveld RHM, Sprik R, Lagendijk A. Femtosecond spectroscopy of electron-electron and electron-phonon energy relaxation in Ag and Au. Phys Rev B 51, 11433–11445 (1995). doi: 10.1103/PhysRevB.51.11433

    CrossRef Google Scholar

    [35] Krivenko AG, Krüger J, Kautek W, Benderskii VA. Subpicosecond-pulse-laser-induced electron emission from mercury and silver into aqueous electrolytes. Ber Bunsenges Phys Chem 99, 1489–1494 (1995). doi: 10.1002/bbpc.199500113

    CrossRef Google Scholar

    [36] Krüger J, Kautek W. Ultrashort pulse laser interaction with dielectrics and polymers. In Lippert TK, ed. Polymers and Light 247–290 (Springer, Berlin, 2004).

    Google Scholar

    [37] Zolotovitskii YM, Korshunov LI, Benderskii VA. Electron work function from metals in a liquid dielectric. Bull Acad Sci USSR, Div Chem Sci 21, 760–763 (1972). doi: 10.1007/BF00854468

    CrossRef Google Scholar

    [38] Holze R. Table 3.1. Electrode potentials of zero charge of metal electrodes in contact with electrolyte solutions. In Lechner MD, ed. Electrochemical Thermodynamics and Kinetics 223–272 (Springer, Berlin, 2007).

    Google Scholar

    [39] Gerischer H. Über den ablauf von redoxreaktionen an metallen und an halbleitern. I. Allgemeines zum elektronenübergang zwischen einem festkörper und einem redoxelektrolyten. Z Phys Chem 26, 223–247 (1960). doi: 10.1524/zpch.1960.26.3_4.223

    CrossRef Google Scholar

    [40] Gerischer H. Über den ablauf von redoxreaktionen an metallen und an halbleitern. II. Metall-elektroden. Z Phys Chem 26, 325–338 (1960). doi: 10.1524/zpch.1960.26.5_6.325

    CrossRef Google Scholar

  • Supplementary information for Hot electron electrochemistry at silver activated by femtosecond laser pulses
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Article Metrics

Article views(3486) PDF downloads(700) Cited by(0)

Access History

Other Articles By Authors

Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint