Lin ZY, Liu K, Cao T, Hong MH. Microsphere femtosecond laser sub-50 nm structuring in far field via non-linear absorption. Opto-Electron Adv 6, 230029 (2023). doi: 10.29026/oea.2023.230029
Citation: Lin ZY, Liu K, Cao T, Hong MH. Microsphere femtosecond laser sub-50 nm structuring in far field via non-linear absorption. Opto-Electron Adv 6, 230029 (2023). doi: 10.29026/oea.2023.230029

Article Open Access

Microsphere femtosecond laser sub-50 nm structuring in far field via non-linear absorption

More Information
  • Creation of arbitrary features with high resolution is critically important in the fabrication of nano-optoelectronic devices. Here, sub-50 nm surface structuring is achieved directly on Sb2S3 thin films via microsphere femtosecond laser irradiation in far field. By varying laser fluence and scanning speed, nano-feature sizes can be flexibly tuned. Such small patterns are attributed to the co-effect of microsphere focusing, two-photons absorption, top threshold effect, and high-repetition-rate femtosecond laser-induced incubation effect. The minimum feature size can be reduced down to ~30 nm (λ/26) by manipulating film thickness. The fitting analysis between the ablation width and depth predicts that the feature size can be down to ~15 nm at the film thickness of ~10 nm. A nano-grating is fabricated, which demonstrates desirable beam diffraction performance. This nano-scale resolution would be highly attractive for next-generation laser nano-lithography in far field and in ambient air.
  • 加载中
  • [1] Cummins C, Lundy R, Walsh JJ, Ponsinet V, Fleury G et al. Enabling future nanomanufacturing through block copolymer self-assembly: a review. Nano Today 35, 100936 (2020). doi: 10.1016/j.nantod.2020.100936

    CrossRef Google Scholar

    [2] Xiong YF, Xu F. Multifunctional integration on optical fiber tips: challenges and opportunities. Adv Photonics 2, 064001 (2020). doi: 10.1117/1.AP.2.6.064001

    CrossRef Google Scholar

    [3] Grebenko AK, Motovilov KA, Bubis AV, Nasibulin AG. Gentle patterning approaches toward compatibility with bio-organic materials and their environmental aspects. Small 18, 2200476 (2022). doi: 10.1002/smll.202200476

    CrossRef Google Scholar

    [4] Wang L, Kirk E, Wäckerlin C, Schneider CW, Hojeij M et al. Nearly amorphous Mo-N gratings for ultimate resolution in extreme ultraviolet interference lithography. Nanotechnology 25, 235305 (2014). doi: 10.1088/0957-4484/25/23/235305

    CrossRef Google Scholar

    [5] Ray D, Wang HC, Kim J, Santschi C, Martin OJF. A low-temperature annealing method for alloy nanostructures and metasurfaces: unlocking a novel degree of freedom. Adv Mater 34, 2108225 (2022). doi: 10.1002/adma.202108225

    CrossRef Google Scholar

    [6] Karakachian H, Rosenzweig P, Nguyen TTN, Matta B, Zakharov AA et al. Periodic nanoarray of graphene pn-junctions on silicon carbide obtained by hydrogen intercalation. Adv Funct Mater 32, 2109839 (2022). doi: 10.1002/adfm.202109839

    CrossRef Google Scholar

    [7] Wolf A, Dostovalov A, Bronnikov K, Skvortsov M, Wabnitz S et al. Advances in femtosecond laser direct writing of fiber Bragg gratings in multicore fibers: technology, sensor and laser applications. Opto-Electron Adv 5, 210055 (2022). doi: 10.29026/oea.2022.210055

    CrossRef Google Scholar

    [8] Ma ZC, Zhang YL, Han B, Chen QD, Sun HB. Femtosecond-laser direct writing of metallic micro/nanostructures: from fabrication strategies to future applications. Small Methods 2, 1700413 (2018). doi: 10.1002/smtd.201700413

    CrossRef Google Scholar

    [9] Qin L, Huang YQ, Xia F, Wang L, Ning JQ et al. 5 nm nanogap electrodes and arrays by super-resolution laser lithography. Nano Lett 20, 4916–4923 (2020). doi: 10.1021/acs.nanolett.0c00978

    CrossRef Google Scholar

    [10] Lin ZY, Ji LF, Hong MH. Approximately 30 nm nanogroove formation on single crystalline silicon surface under pulsed nanosecond laser irradiation. Nano Lett 22, 7005–7010 (2022). doi: 10.1021/acs.nanolett.2c01794

    CrossRef Google Scholar

    [11] Zhang JQ, Gao Y, Li C, Ju K, Tan JP et al. Laser direct writing of flexible antenna sensor for strain and humidity sensing. Opto-Electron Eng 49, 210316 (2022). doi: 10.12086/oee.2022.210316

    CrossRef Google Scholar

    [12] Ma ZC, Zhang YL, Han B, Hu XY, Li CH et al. Femtosecond laser programmed artificial musculoskeletal systems. Nat Commun 11, 4536 (2020). doi: 10.1038/s41467-020-18117-0

    CrossRef Google Scholar

    [13] Livakas N, Skoulas E, Stratakis E. Omnidirectional iridescence via cylindrically-polarized femtosecond laser processing. Opto-Electron Adv 3, 190035 (2020). doi: 10.29026/oea.2020.190035

    CrossRef Google Scholar

    [14] Zhang YL, Tian Y, Wang H, Ma ZC, Han DD et al. Dual-3D femtosecond laser nanofabrication enables dynamic actuation. ACS Nano 13, 4041–4048 (2019). doi: 10.1021/acsnano.8b08200

    CrossRef Google Scholar

    [15] Saha SK, Wang DE, Nguyen VH, Chang YN, Oakdale JS et al. Scalable submicrometer additive manufacturing. Science 366, 105–109 (2019). doi: 10.1126/science.aax8760

    CrossRef Google Scholar

    [16] Sugioka K, Cheng Y. Ultrafast lasers-reliable tools for advanced materials processing. Light Sci Appl 3, e149 (2014). doi: 10.1038/lsa.2014.30

    CrossRef Google Scholar

    [17] Lin ZY, Hong MH. Femtosecond laser precision engineering: from micron, submicron, to nanoscale. Ultrafast Sci 2021, 9783514 (2021). doi: 10.34133/2021/9783514

    CrossRef Google Scholar

    [18] Wang HT, Hao CL, Lin H, Wang YT, Lan T et al. Generation of super-resolved optical needle and multifocal array using graphene oxide metalenses. Opto-Electron Adv 4, 200031 (2021). doi: 10.29026/oea.2021.200031

    CrossRef Google Scholar

    [19] Zhou WP, Bai S, Xie ZW, Liu MW, Hu AM. Research progress of laser direct writing fabrication of metal and carbon micro/nano structures and devices. Opto-Electron Eng 49, 210330 (2022). doi: 10.12086/oee.2022.210330

    CrossRef Google Scholar

    [20] Lin Y, Hong MH, Wang WJ, Law YZ, Chong TC. Sub-30 nm lithography with near-field scanning optical microscope combined with femtosecond laser. Appl Phys A 80, 461–465 (2005). doi: 10.1007/s00339-004-3093-0

    CrossRef Google Scholar

    [21] Li Y, Hong MH. Parallel laser micro/nano-processing for functional device fabrication. Laser Photonics Rev 14, 1900062 (2020). doi: 10.1002/lpor.201900062

    CrossRef Google Scholar

    [22] Chen L, Cao KQ, Li YL, Liu JK, Zhang SA et al. Large-area straight, regular periodic surface structures produced on fused silica by the interference of two femtosecond laser beams through cylindrical lens. Opto-Electron Adv 4, 200036 (2021). doi: 10.29026/oea.2021.200036

    CrossRef Google Scholar

    [23] Li LJ, Gattass RR, Gershgoren E, Hwang H, Fourkas JT. Achieving λ/20 resolution by one-color initiation and deactivation of polymerization. Science 324, 910–913 (2009). doi: 10.1126/science.1168996

    CrossRef Google Scholar

    [24] Li ZZ, Wang L, Fan H, Yu YH, Chen QD et al. O-FIB: far-field-induced near-field breakdown for direct nanowriting in an atmospheric environment. Light Sci Appl 9, 41 (2020). doi: 10.1038/s41377-020-0275-2

    CrossRef Google Scholar

    [25] Lin ZY, Liu HG, Ji LF, Lin WX, Hong MH. Realization of ~10 nm features on semiconductor surfaces via femtosecond laser direct patterning in far field and in ambient air. Nano Lett 20, 4947–4952 (2020). doi: 10.1021/acs.nanolett.0c01013

    CrossRef Google Scholar

    [26] Li ZQ, Allegre O, Li L. Realising high aspect ratio 10 nm feature size in laser materials processing in air at 800 nm wavelength in the far-field by creating a high purity longitudinal light field at focus. Light Sci Appl 11, 339 (2022). doi: 10.1038/s41377-022-00962-x

    CrossRef Google Scholar

    [27] Wu GX, Zhou Y, Hong MH. Sub-50 nm optical imaging in ambient air with 10× objective lens enabled by hyper-hemi-microsphere. Light Sci Appl 12, 49 (2023). doi: 10.1038/s41377-023-01091-9

    CrossRef Google Scholar

    [28] Lin ZY, Ji LF, Li L, Liu J, Wu Y et al. Laser microsphere lens array fabrication of micro/nanostructures with tunable enhanced SERS behavior in dipole superposition Plasmon mode. IEEE Photonics J 9, 2700511 (2017). doi: 10.1109/JPHOT.2017.2715343

    CrossRef Google Scholar

    [29] Feng D, Weng D, Wang B, Wang JD. Laser pulse number dependent nanostructure evolution by illuminating self-assembled microsphere array. J Appl Phys 122, 243102 (2017). doi: 10.1063/1.5000275

    CrossRef Google Scholar

    [30] Lim CS, Hong MH, Lin Y, Chen GX, Senthil Kumar A et al. Sub-micron surface patterning by laser irradiation through microlens arrays. J Mater Process Technol 192–193, 328–333 (2007).

    Google Scholar

    [31] Jacassi A, Tantussi F, Dipalo M, Biagini C, Maccaferri N et al. Scanning probe photonic nanojet lithography. ACS Appl Mater Interfaces 9, 32386–32393 (2017). doi: 10.1021/acsami.7b10145

    CrossRef Google Scholar

    [32] Yan B, Yue LY, Norman Monks J, Yang XB, Xiong DX et al. Superlensing plano-convex-microsphere (PCM) lens for direct laser nano-marking and beyond. Opt Lett 45, 1168–1171 (2020). doi: 10.1364/OL.380574

    CrossRef Google Scholar

    [33] Luo H, Yu HB, Wen YD, Zheng JC, Wang XD et al. Direct writing of silicon oxide nanopatterns using photonic nanojets. Photonics 8, 152 (2021). doi: 10.3390/photonics8050152

    CrossRef Google Scholar

    [34] Chimmalgi A, Choi TY, Grigoropoulos CP, Komvopoulos K. Femtosecond laser aperturless near-field nanomachining of metals assisted by scanning probe microscopy. Appl Phys Lett 82, 1146–1148 (2003). doi: 10.1063/1.1555693

    CrossRef Google Scholar

    [35] Chen LW, Zhou Y, Li Y, Hong MH. Microsphere enhanced optical imaging and patterning: from physics to applications. Appl Phys Rev 6, 021304 (2019). doi: 10.1063/1.5082215

    CrossRef Google Scholar

    [36] Zhou Y, Hong MH, Fuh JYH, Lu L, Lukyanchuk BS et al. Near-field enhanced femtosecond laser nano-drilling of glass substrate. J Alloys Compd 449, 246–249 (2008). doi: 10.1016/j.jallcom.2006.02.110

    CrossRef Google Scholar

    [37] Dong WL, Liu HL, Behera JK, Lu L, Ng RJH et al. Wide bandgap phase change material tuned visible photonics. Adv Funct Mater 29, 1806181 (2019). doi: 10.1002/adfm.201806181

    CrossRef Google Scholar

    [38] Lu L, Dong ZG, Tijiptoharsono F, Ng RJH, Wang HT et al. Reversible tuning of Mie resonances in the visible spectrum. ACS Nano 15, 19722–19732 (2021). doi: 10.1021/acsnano.1c07114

    CrossRef Google Scholar

    [39] Choi C, Mun SE, Sung J, Choi K, Lee SY et al. Hybrid state engineering of phase-change metasurface for all-optical cryptography. Adv Funct Mater 31, 2007210 (2021). doi: 10.1002/adfm.202007210

    CrossRef Google Scholar

    [40] Iwase H, Kokubo S, Juodkazis S, Misawa H. Suppression of ripples on ablated Ni surface via a polarization grating. Opt Express 17, 4388–4396 (2009). doi: 10.1364/OE.17.004388

    CrossRef Google Scholar

    [41] Mizeikis V, Kowalska E, Juodkazis S. Resonant localization, enhancement, and polarization of optical fields in nano-scale interface regions for photo-catalytic applications. J Nanosci Nanotechnol 11, 2814–2822 (2011). doi: 10.1166/jnn.2011.3920

    CrossRef Google Scholar

    [42] Kaiser W, Garrett CGB. Two-photon excitation in CaF2: Eu2+. Phys Rev Lett 7, 229–231 (1961). doi: 10.1103/PhysRevLett.7.229

    CrossRef Google Scholar

    [43] Malinauskas M, Farsari M, Piskarskas A, Juodkazis S. Ultrafast laser nanostructuring of photopolymers: a decade of advances. Phys Rep 533, 1–31 (2013). doi: 10.1016/j.physrep.2013.07.005

    CrossRef Google Scholar

    [44] Denk W, Strickler JH, Webb WW. Two-photon laser scanning fluorescence microscopy. Science 248, 73–76 (1990). doi: 10.1126/science.2321027

    CrossRef Google Scholar

    [45] Kawata S, Sun HB, Tanaka T, Takada K. Finer features for functional microdevices. Nature 412, 697–698 (2001). doi: 10.1038/35089130

    CrossRef Google Scholar

    [46] Sugioka K, Cheng Y. Femtosecond laser three-dimensional micro- and nanofabrication. Appl Phys Rev 1, 041303 (2014). doi: 10.1063/1.4904320

    CrossRef Google Scholar

    [47] Joglekar AP, Liu HH, Meyhöfer E, Mourou G, Hunt AJ. Optics at critical intensity: applications to nanomorphing. Proc Natl Acad Sci USA 101, 5856–5861 (2004). doi: 10.1073/pnas.0307470101

    CrossRef Google Scholar

    [48] Jin F, Liu J, Zhao YY, Dong XZ, Zheng ML et al. λ/30 inorganic features achieved by multi-photon 3D lithography. Nat Commun 13, 1357 (2022). doi: 10.1038/s41467-022-29036-7

    CrossRef Google Scholar

    [49] Roberts DE, du Plessis A, Botha LR. Femtosecond laser ablation of silver foil with single and double pulses. Appl Surf Sci 256, 1784–1792 (2010). doi: 10.1016/j.apsusc.2009.10.004

    CrossRef Google Scholar

    [50] Liu CP, Wang HE, Ng TW, Chen ZH, Zhang WF et al. Hybrid photovoltaic cells based on ZnO/Sb2S3/P3HT heterojunctions. Phys Status Solidi B 249, 627–633 (2012). doi: 10.1002/pssb.201147393

    CrossRef Google Scholar

    [51] Zhou Y, Hong MH. Formation of a three-dimensional bottle beam via an engineered microsphere. Photonics Res 9, 1598–1606 (2021). doi: 10.1364/PRJ.430514

    CrossRef Google Scholar

    [52] Zhou Y, Ji R, Teng JH, Hong MH. Wavelength-tunable focusing via a Fresnel zone microsphere. Opt Lett 45, 852–855 (2020). doi: 10.1364/OL.382872

    CrossRef Google Scholar

  • Supplementary information for Microsphere femtosecond laser sub-50 nm structuring in far field via non-linear absorption
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Article Metrics

Article views(5124) PDF downloads(958) Cited by(0)

Access History

Other Articles By Authors

Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint