Jing JY, Liu K, Jiang JF, Xu TH, Wang S et al. Highly sensitive and stable probe refractometer based on configurable plasmonic resonance with nano-modified fiber core. Opto-Electron Adv 6, 220072 (2023). doi: 10.29026/oea.2023.220072
Citation: Jing JY, Liu K, Jiang JF, Xu TH, Wang S et al. Highly sensitive and stable probe refractometer based on configurable plasmonic resonance with nano-modified fiber core. Opto-Electron Adv 6, 220072 (2023). doi: 10.29026/oea.2023.220072

Article Open Access

Highly sensitive and stable probe refractometer based on configurable plasmonic resonance with nano-modified fiber core

More Information
  • A dispersion model is developed to provide a generic tool for configuring plasmonic resonance spectral characteristics. The customized design of the resonance curve aiming at specific detection requirements can be achieved. According to the model, a probe-type nano-modified fiber optic configurable plasmonic resonance (NMF-CPR) sensor with tip hot spot enhancement is demonstrated for the measurement of the refractive index in the range of 1.3332–1.3432 corresponding to the low-concentration biomarker solution. The new-type sensing structure avoids excessive broadening and redshift of the resonance dip, which provides more possibilities for the surface modification of other functional nanomaterials. The tip hot spots in nanogaps between the Au layer and Au nanostars (AuNSs), the tip electric field enhancement of AuNSs, and the high carrier mobility of the WSe2 layer synergistically and significantly enhance the sensitivity of the sensor. Experimental results show that the sensitivity and the figure of merit of the tip hot spot enhanced fiber NMF-CPR sensor can achieve up to 2995.70 nm/RIU and 25.04 RIU−1, respectively, which are 1.68 times and 1.29 times higher than those of the conventional fiber plasmonic resonance sensor. The results achieve good agreements with numerical simulations, demonstrate a better level compared to similar reported studies, and verify the correctness of the dispersion model. The detection resolution of the sensor reaches up to 2.00×10−5 RIU, which is obviously higher than that of the conventional side-polished fiber plasmonic resonance sensor. This indicates a high detection accuracy of the sensor. The dense Au layer effectively prevents the intermediate nanomaterials from shedding and chemical degradation, which enables the sensor with high stability. Furthermore, the terminal reflective sensing structure can be used as a practical probe and can allow a more convenient operation.
  • 加载中
  • [1] Liu T, Li H, He T, Fan CZ, Yan ZJ et al. Ultra-high resolution strain sensor network assisted with an LS-SVM based hysteresis model. Opto-Electron Adv 4, 200037 (2021). doi: 10.29026/oea.2021.200037

    CrossRef Google Scholar

    [2] Guan BO, Jin L, Ma J, Liang YZ, Bai X. Flexible fiber-laser ultrasound sensor for multiscale photoacoustic imaging. Opto-Electron Adv 4, 200081 (2021). doi: 10.29026/oea.2021.200081

    CrossRef Google Scholar

    [3] Wang RL, Zhang HZ, Liu QY, Liu F, Han XL et al. Operando monitoring of ion activities in aqueous batteries with plasmonic fiber-optic sensors. Nat Commun 13, 547 (2022). doi: 10.1038/s41467-022-28267-y

    CrossRef Google Scholar

    [4] Caucheteur C, Guo T, Liu F, Guan BO, Albert J. Ultrasensitive plasmonic sensing in air using optical fibre spectral combs. Nat Commun 7, 13371 (2016). doi: 10.1038/ncomms13371

    CrossRef Google Scholar

    [5] Lee C, Lawrie B, Pooser R, Lee KG, Rockstuhl C et al. Quantum plasmonic sensors. Chem Rev 121, 4743–4804 (2021). doi: 10.1021/acs.chemrev.0c01028

    CrossRef Google Scholar

    [6] Liu Y, Peng W. Fiber-optic surface Plasmon resonance sensors and biochemical applications: a review. J Lightwave Technol 39, 3781–3791 (2021). doi: 10.1109/JLT.2020.3045068

    CrossRef Google Scholar

    [7] Zhao Y, Tong RJ, Xia F, Peng Y. Current status of optical fiber biosensor based on surface Plasmon resonance. Biosens Bioelectron 142, 111505 (2019). doi: 10.1016/j.bios.2019.111505

    CrossRef Google Scholar

    [8] Jing JY, Liu K, Jiang JF, Xu TH, Wang S et al. Performance improvement approaches for optical fiber SPR sensors and their sensing applications. Photonics Res 10, 126–147 (2022). doi: 10.1364/PRJ.439861

    CrossRef Google Scholar

    [9] Singh Y, Raghuwanshi SK. Titanium dioxide (TiO2) coated optical fiber-based SPR sensor in near-infrared region with bimetallic structure for enhanced sensitivity. Optik 226, 165842 (2021). doi: 10.1016/j.ijleo.2020.165842

    CrossRef Google Scholar

    [10] Li LK, Zhang YN, Zhou YF, Zheng WL, Sun YT et al. Optical fiber optofluidic bio-chemical sensors: a review. Laser Photonics Rev 15, 2000526 (2021). doi: 10.1002/lpor.202000526

    CrossRef Google Scholar

    [11] Singh R, Kumar S, Liu FZ, Shuang C, Zhang BY et al. Etched multicore fiber sensor using copper oxide and gold nanoparticles decorated graphene oxide structure for cancer cells detection. Biosens Bioelectron 168, 112557 (2020). doi: 10.1016/j.bios.2020.112557

    CrossRef Google Scholar

    [12] Wang GY, Lu Y, Duan LC, Yao JQ. A refractive index sensor based on PCF with ultra-wide detection range. IEEE J Sel Top Quant 27, 5600108 (2021). doi: 10.1109/JSTQE.2020.2993866

    CrossRef Google Scholar

    [13] Urrutia A, Del Villar I, Zubiate P, Zamarreño CR. A comprehensive review of optical fiber refractometers: toward a standard comparative criterion. Laser Photonics Rev 13, 1900094 (2019). doi: 10.1002/lpor.201900094

    CrossRef Google Scholar

    [14] Liu LH, Zhang XJ, Zhu Q, Li KW, Lu Y et al. Ultrasensitive detection of endocrine disruptors via superfine plasmonic spectral combs. Light Sci Appl 10, 181 (2021). doi: 10.1038/s41377-021-00618-2

    CrossRef Google Scholar

    [15] Weng SJ, Pei L, Wang JS, Ning TG, Li J. High sensitivity D-shaped hole fiber temperature sensor based on surface Plasmon resonance with liquid filling. Photonics Res 5, 103–107 (2017). doi: 10.1364/PRJ.5.000103

    CrossRef Google Scholar

    [16] Wang D, Li W, Zhang QR, Liang BQ, Peng ZK et al. High-performance tapered fiber surface Plasmon resonance sensor based on the graphene/Ag/TiO2 layer. Plasmonics 16, 2291–2303 (2021). doi: 10.1007/s11468-021-01483-w

    CrossRef Google Scholar

    [17] Song H, Wang Q, Zhao WM. A novel SPR sensor sensitivity-enhancing method for immunoassay by inserting MoS2 nanosheets between metal film and fiber. Opt Laser Eng 132, 106135 (2020). doi: 10.1016/j.optlaseng.2020.106135

    CrossRef Google Scholar

    [18] Jing JY, Liu K, Jiang JF, Xu TH, Wang S et al. Double-antibody sandwich immunoassay and plasmonic coupling synergistically improved long-range SPR biosensor with low detection limit. Nanomaterials 11, 2137 (2021). doi: 10.3390/nano11082137

    CrossRef Google Scholar

    [19] Chien FC, Chen SJ. A sensitivity comparison of optical biosensors based on four different surface Plasmon resonance modes. Biosens Bioelectron 20, 633–642 (2004). doi: 10.1016/j.bios.2004.03.014

    CrossRef Google Scholar

    [20] Jain S, Paliwal A, Gupta V, Tomar M. Smartphone integrated handheld Long Range Surface Plasmon Resonance based fiber-optic biosensor with tunable SiO2 sensing matrix. Biosens Bioelectron 201, 113919 (2022). doi: 10.1016/j.bios.2021.113919

    CrossRef Google Scholar

    [21] Shrivastav AM, Satish L, Kushmaro A, Shvalya V, Cvelbar U et al. Engineering the penetration depth of nearly guided wave surface Plasmon resonance towards application in bacterial cells monitoring. Sensor Actuators B:Chem 345, 130338 (2021). doi: 10.1016/j.snb.2021.130338

    CrossRef Google Scholar

    [22] Jiang XD, Xu WR, Ilyas N, Li MC, Guo RK et al. High-Performance coupled Plasmon waveguide resonance optical sensor based on SiO2: Ag film. Results Phys 26, 104308 (2021). doi: 10.1016/j.rinp.2021.104308

    CrossRef Google Scholar

    [23] Ma JY, Liu K, Jiang JF, Xu TH, Wang S et al. All optic-fiber coupled Plasmon waveguide resonance sensor using ZrS2 based dielectric layer. Opt Express 28, 11280–11289 (2020). doi: 10.1364/OE.389279

    CrossRef Google Scholar

    [24] Ji LT, Yang SQ, Shi RN, Fu YJ, Su J et al. Polymer waveguide coupled surface Plasmon refractive index sensor: a theoretical study. Photonic Sens 10, 353–363 (2020). doi: 10.1007/s13320-020-0589-y

    CrossRef Google Scholar

    [25] Ross MB, Ku JC, Lee B, Mirkin CA, Schatz GC. Plasmonic metallurgy enabled by DNA. Adv Mater 28, 2790–2794 (2016). doi: 10.1002/adma.201505806

    CrossRef Google Scholar

    [26] Zhang WJ, Zeng XL, Yang A, Teng LP, Zhu Y. Research on evanescent field ammonia detection with gold-nanosphere coated microfibers. Opto-Electron Eng 48, 200451 (2021).

    Google Scholar

    [27] Jing JY, Zhu Q, Dai ZX, Li SY, Wang Q et al. Sensing self-referenced fiber optic long-range surface Plasmon resonance sensor based on electronic coupling between surface Plasmon polaritons. Appl Opt 58, 6329–6334 (2019). doi: 10.1364/AO.58.006329

    CrossRef Google Scholar

    [28] Yang YL, Chen HJ, Zou XX, Shi XL, Liu WD et al. Flexible carbon-fiber/semimetal Bi nanosheet arrays as separable and recyclable plasmonic photocatalysts and photoelectrocatalysts. ACS Appl Mater Interfaces 12, 24845–24854 (2020). doi: 10.1021/acsami.0c05695

    CrossRef Google Scholar

    [29] Kabashin AV, Evans P, Pastkovsky S, Hendren W, Wurtz GA et al. Plasmonic nanorod metamaterials for biosensing. Nat Mater 8, 867–871 (2009). doi: 10.1038/nmat2546

    CrossRef Google Scholar

    [30] Kant R, Tabassum R, Gupta BD. Xanthine oxidase functionalized Ta2O5 nanostructures as a novel scaffold for highly sensitive SPR based fiber optic xanthine sensor. Biosens Bioelectron 99, 637–645 (2018). doi: 10.1016/j.bios.2017.08.040

    CrossRef Google Scholar

    [31] Chen JN, Badioli M, Alonso-González P, Thongrattanasiri S, Huth F et al. Optical nano-imaging of gate-tunable graphene plasmons. Nature 487, 77–81 (2012). doi: 10.1038/nature11254

    CrossRef Google Scholar

    [32] Singh Y, Paswan MK, Raghuwanshi SK. Sensitivity enhancement of SPR sensor with the black phosphorus and graphene with Bi-layer of gold for chemical sensing. Plasmonics 16, 1781–1790 (2021). doi: 10.1007/s11468-020-01315-3

    CrossRef Google Scholar

    [33] Liu LX, Ye K, Jia ZY, Xue TY, Nie AM et al. High-sensitivity and versatile plasmonic biosensor based on grain boundaries in polycrystalline 1L WS2 films. Biosens Bioelectron 194, 113596 (2021). doi: 10.1016/j.bios.2021.113596

    CrossRef Google Scholar

    [34] Wu Q, Li NB, Wang Y, Xu YC, Wu JD et al. Ultrasensitive and selective determination of carcinoembryonic antigen using multifunctional ultrathin amino-functionalized Ti3C2-MXene nanosheets. Anal Chem 92, 3354–3360 (2020). doi: 10.1021/acs.analchem.9b05372

    CrossRef Google Scholar

    [35] Yang S, Bao W, Liu XZ, Kim J, Zhao RK et al. Subwavelength-scale lasing perovskite with ultrahigh Purcell enhancement. Matter 4, 4042–4050 (2021). doi: 10.1016/j.matt.2021.10.024

    CrossRef Google Scholar

    [36] Shalabney A, Abdulhalim I. Sensitivity-enhancement methods for surface Plasmon sensors. Laser Photonics Rev 5, 571–606 (2011). doi: 10.1002/lpor.201000009

    CrossRef Google Scholar

    [37] Zhao Y, Lei M, Liu SX, Zhao Q. Smart hydrogel-based optical fiber SPR sensor for pH measurements. Sensor Actuators B:Chem 261, 226–232 (2018). doi: 10.1016/j.snb.2018.01.120

    CrossRef Google Scholar

    [38] Zhao ZH, Wang Q. Gold nanoparticles (AuNPs) and graphene oxide heterostructures with gold film coupling for an enhanced sensitivity surface Plasmon resonance (SPR) fiber sensor. Instrum Sci Technol 50, 530–542 (2022). doi: 10.1080/10739149.2022.2044845

    CrossRef Google Scholar

    [39] Kravets VG, Kabashin AV, Barnes WL, Grigorenko AN. Plasmonic surface lattice resonances: a review of properties and applications. Chem Rev 118, 5912–5951 (2018). doi: 10.1021/acs.chemrev.8b00243

    CrossRef Google Scholar

    [40] Shi S, Wang LB, Su RX, Liu BS, Huang RL et al. A polydopamine-modified optical fiber SPR biosensor using electroless-plated gold films for immunoassays. Biosens Bioelectron 74, 454–460 (2015). doi: 10.1016/j.bios.2015.06.080

    CrossRef Google Scholar

    [41] Chiavaioli F, Gouveia CAJ, Jorge PAS, Baldini F. Towards a uniform metrological assessment of grating-based optical fiber sensors: from refractometers to biosensors. Biosensors 7, 23 (2017). doi: 10.3390/bios7020023

    CrossRef Google Scholar

    [42] Zhang XZ, Yang BY, Jiang JF, Liu K, Fan XJ et al. Side-polished SMS based RI sensor employing macro-bending perfluorinated POF. Opto-Electron Adv 4, 200041 (2021). doi: 10.29026/oea.2021.200041

    CrossRef Google Scholar

    [43] Dastmalchi B, Tassin P, Koschny T, Soukoulis CM. A new perspective on plasmonics: confinement and propagation length of surface plasmons for different materials and geometries. Adv Opt Mater 4, 177–184 (2016). doi: 10.1002/adom.201500446

    CrossRef Google Scholar

    [44] Zheng WL, Zhang YN, Li LK, Li XG, Zhao Y. A plug-and-play optical fiber SPR sensor for simultaneous measurement of glucose and cholesterol concentrations. Biosens Bioelectron 198, 113798 (2022). doi: 10.1016/j.bios.2021.113798

    CrossRef Google Scholar

    [45] Ciracì C, Hill RT, Mock JJ, Urzhumov Y, Fernández-Domínguez AI et al. Probing the ultimate limits of plasmonic enhancement. Science 337, 1072–1074 (2012). doi: 10.1126/science.1224823

    CrossRef Google Scholar

    [46] Vasimalla Y, Pradhan HS, Pandya RJ. SPR performance enhancement for DNA hybridization employing black phosphorus, silver, and silicon. Appl Opt 59, 7299–7307 (2020). doi: 10.1364/AO.397452

    CrossRef Google Scholar

    [47] Gu HG, Song BK, Fang MS, Hong YL, Chen XG et al. Layer-dependent dielectric and optical properties of centimeter-scale 2D WSe2: evolution from a single layer to few layers. Nanoscale 11, 22762–22771 (2019). doi: 10.1039/C9NR04270A

    CrossRef Google Scholar

    [48] Malitson IH. Interspecimen comparison of the refractive index of fused silica. J Opt Soc Am 55, 1205–1209 (1965). doi: 10.1364/JOSA.55.001205

    CrossRef Google Scholar

    [49] Krüger M, Schenk M, Hommelhoff P. Attosecond control of electrons emitted from a nanoscale metal tip. Nature 475, 78–81 (2011). doi: 10.1038/nature10196

    CrossRef Google Scholar

    [50] Chen Q, Liang L, Zheng QL, Zhang YX, Wen L. On-chip readout plasmonic mid-IR gas sensor. Opto-Electron Adv 3, 190040 (2020). doi: 10.29026/oea.2020.190040

    CrossRef Google Scholar

    [51] Wu Q, Sun Y, Zhang D, Li S, Zhang Y et al. Ultrasensitive magnetic field-assisted surface Plasmon resonance immunoassay for human cardiac troponin I. Biosens Bioelectron 96, 288–293 (2017). doi: 10.1016/j.bios.2017.05.023

    CrossRef Google Scholar

    [52] Jensen JS, Sigmund O. Topology optimization for Nano-photonics. Laser Photonics Rev 5, 308–321 (2011). doi: 10.1002/lpor.201000014

    CrossRef Google Scholar

    [53] Xue M, Liu K, Wang T, Chang PX, Jiang JF et al. Single mode fiber SPR refractive index sensor based on U-shaped structure. Acta Photonica Sin 46, 1006004 (2017). doi: 10.3788/gzxb20174610.1006004

    CrossRef Google Scholar

    [54] You EM, Chen YQ, Yi J, Meng ZD, Chen Q et al. Nanobridged rhombic antennas supporting both dipolar and high-order plasmonic modes with spatially superimposed hotspots in the mid-infrared. Opto-Electron Adv 4, 210076 (2021). doi: 10.29026/oea.2021.210076

    CrossRef Google Scholar

    [55] Wu TS, Shao Y, Wang Y, Cao SQ, Cao WP et al. Surface Plasmon resonance biosensor based on gold-coated side-polished hexagonal structure photonic crystal fiber. Opt Express 25, 20313–20322 (2017). doi: 10.1364/OE.25.020313

    CrossRef Google Scholar

    [56] Shen Y, Zhou JH, Liu TR, Tao YT, Jiang RB et al. Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit. Nat Commun 4, 2381 (2013). doi: 10.1038/ncomms3381

    CrossRef Google Scholar

    [57] Zhu WQ, Esteban R, Borisov AG, Baumberg JJ, Nordlander P et al. Quantum mechanical effects in plasmonic structures with subnanometre gaps. Nat Commun 7, 11495 (2016). doi: 10.1038/ncomms11495

    CrossRef Google Scholar

    [58] Homola J. Surface Plasmon resonance sensors for detection of chemical and biological species. Chem Rev 108, 462–493 (2008). doi: 10.1021/cr068107d

    CrossRef Google Scholar

    [59] Wang XM, Zhao CL, Wang YR, Jin SZ. A proposal of T-structure fiber-optic refractive index sensor based on surface Plasmon resonance. Opt Commun 369, 189–193 (2016). doi: 10.1016/j.optcom.2016.02.006

    CrossRef Google Scholar

    [60] Harutyunyan H, Martinson ABF, Rosenmann D, Khorashad LK, Besteiro LV et al. Anomalous ultrafast dynamics of hot plasmonic electrons in nanostructures with hot spots. Nat Nanotechnol 10, 770–774 (2015). doi: 10.1038/nnano.2015.165

    CrossRef Google Scholar

    [61] Wang GQ, Wang KQ, Ren J, Ma S, Li ZH. A novel doublet-based surface Plasmon resonance biosensor via a digital Gaussian filter method. Sensor Actuators B:Chem 360, 131680 (2022). doi: 10.1016/j.snb.2022.131680

    CrossRef Google Scholar

    [62] Wang Q, Jing JY, Zhao WM, Fan XC, Wang XZ. A novel fiber-based symmetrical long-range surface Plasmon resonance biosensor with high quality factor and temperature self-reference. IEEE Trans Nanotechnol 18, 1137–1143 (2019). doi: 10.1109/TNANO.2019.2947697

    CrossRef Google Scholar

    [63] Zakaria R, Zainuddin NM, Fahri MASA, Thirunavakkarasu PM, Patel SK et al. High sensitivity refractive index sensor in long-range surface Plasmon resonance based on side polished optical fiber. Opt Fiber Technol 61, 102449 (2021). doi: 10.1016/j.yofte.2020.102449

    CrossRef Google Scholar

    [64] Hou DL, Ji XX, Luan NN, Song L, Hu YS et al. Surface Plasmon resonance sensor based on double-sided polished microstructured optical fiber with hollow core. IEEE Photonics J 13, 6800408 (2021). doi: 10.1109/JPHOT.2022.3161958

    CrossRef Google Scholar

    [65] Zakaria R, Zainuddin NAM, Raya SA, Alwi SAK, Anwar T et al. Sensitivity comparison of refractive index transducer optical fiber based on surface Plasmon resonance using Ag, Cu, and bimetallic Ag-Cu layer. Micromachines 11, 77 (2020). doi: 10.3390/mi11010077

    CrossRef Google Scholar

    [66] Zainuddin NAM, Ariannejad MM, Arasu PT, Harun SW, Zakaria R. Investigation of cladding thicknesses on silver SPR based side-polished optical fiber refractive-index sensor. Results Phys 13, 102255 (2019). doi: 10.1016/j.rinp.2019.102255

    CrossRef Google Scholar

    [67] Amiri IS, Alwi SAK, Raya SA, Zainuddin NAM, Rohizat NS et al. Graphene oxide effect on improvement of silver surface Plasmon resonance D-shaped optical fiber sensor. J Opt Commun https://doi.org/10.1515/joc-2019-0094.

    Google Scholar

    [68] Cennamo N, Massarotti D, Conte L, Zeni L. Low cost sensors based on SPR in a plastic optical fiber for biosensor implementation. Sensors 11, 11752–11760 (2011). doi: 10.3390/s111211752

    CrossRef Google Scholar

    [69] Cao YZ, Ma JY, Liu K, Huang XD, Jiang JF et al. Optical fiber SPR sensing demodulation algorithm based on all-phase filters. Acta Phys Sin 66, 074202 (2017). doi: 10.7498/aps.66.074202

    CrossRef Google Scholar

    [70] Jing WC, Wang GH, Liu K, Zhang YM, Dong H et al. Application of weighted wavelength algorithm on the demodulation of a fiber Bragg grating optical sensing system. J Optoelectron·Laser 18, 1022–1025 (2007). doi: 10.23919/ChiCC.2019.8866493

    CrossRef Google Scholar

  • Supplementary information for Highly sensitive and stable probe refractometer based on configurable plasmonic resonance with nano-modified fiber core
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Tables(3)

Article Metrics

Article views(4604) PDF downloads(689) Cited by(0)

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint