Citation: | Xu XJ, Wang R, Yang ZN. The second fusion of laser and aerospace—an inspiration for high energy lasers. Opto-Electron Adv 6, 220113 (2023). doi: 10.29026/oea.2023.220113 |
[1] | Gordon JP, Zeiger HJ, Townes CH. Molecular microwave oscillator and new hyperfine structure in the microwave spectrum of NH3. Phys Rev 95, 282–284 (1954). doi: 10.1103/PhysRev.95.282 |
[2] | Taylor N. Laser: The Inventor, the Nobel Laureate, and the 30-year Patent War (Simon & Schuster, 2000). |
[3] | Schawlow AL, Townes CH. Infrared and optical masers. Phys Rev 112, 1940–1949 (1958). doi: 10.1103/PhysRev.112.1940 |
[4] | Maiman TH. Stimulated optical radiation in ruby. Nature 187, 493–494 (1960). doi: 10.1038/187493a0 |
[5] | Zarubin PV. Academician Basov, high-power lasers and the antimissile defence problem. Quantum Electron 32, 1048–1064 (2002). doi: 10.1070/QE2002v032n12ABEH002348 |
[6] | Hecht J. A short history of laser development. Appl Opt 49, F99–F122 (2010). doi: 10.1364/AO.49.000F99 |
[7] | Carroll D. Overview of high energy lasers: past, present, and future? In 42nd AIAA Plasmadynamics and Lasers Conference (AIAA, 2011);https://doi.org/10.2514/6.2011-3102. |
[8] | Cook JR. High-energy laser weapons since the early 1960s. Opt Eng 52, 021007 (2012). doi: 10.1117/1.OE.52.2.021007 |
[9] | Hecht J. Lasers, Death Rays, and the Long, Strange Quest for the Ultimate Weapon. (Prometheus Books, 2019). |
[10] | Snitzer E. Optical maser action of Nd+3 in a barium crown glass. Phys Rev Lett 7, 444–446 (1961). doi: 10.1103/PhysRevLett.7.444 |
[11] | Geusic J, Marcos HM, Van Uitert LG. Laser oscillations in Nd‐doped yttrium aluminum, yttrium gallium and gadolinium garnets. Appl Phys Lett 4, 182–184 (1964). doi: 10.1063/1.1753928 |
[12] | Patel CKN. Continuous-wave laser action on vibrational-rotational transitions of CO2. Phys Rev 136, A1187–A1193 (1964). doi: 10.1103/PhysRev.136.A1187 |
[13] | Basov NG, Oraevskii AN, Shcheglov VA. Production of a population inversion in molecules of a working gas mixed with a thermally excited auxiliary gas. Sov Phys Tech Phys 15, 126 (1970). |
[14] | Gerry ET. Gasdynamic lasers. IEEE Spectr 7, 51–58 (1970). doi: 10.1109/MSPEC.1970.5213037 |
[15] | Siegman AE. Unstable optical resonators. Appl Opt 13, 353–367 (1974). doi: 10.1364/AO.13.000353 |
[16] | Spencer DJ, Jacobs TA, Mirels H, Gross RWF. Continuous‐wave chemical laser. Int J Chem Kinet 1, 493–494 (1969). doi: 10.1002/kin.550010510 |
[17] | Spencer DJ, Mirels H, Jacobs TA. Initial performance of a CW chemical laser. Opto-electronics 2, 155–160 (1970). doi: 10.1007/BF01415092 |
[18] | Meinzer RA. A continuous‐wave combustion laser. Int J Chem Kinet 2, 335 (1970). doi: 10.1002/kin.550020408 |
[19] | Horizons. Airborne laser shoots down missile in mid-flight.https://www.csmonitor.com/Technology/Horizons/2010/0212/Airborne-laser-shoots-down-missile-in-mid-flight. |
[20] | Chronology of MDA’s plans for laser boost-phase defense (August 26, 2016).https://mostlymissiledefense.com/2016/08/26/chronology-of-mdas-plans-for-laser-boost-phase-defense-august-26-2016/. |
[21] | Keyes RJ, Quist TM. Recombination radiation emitted by gallium arsenide. Proc IRE 50, 1822–1823 (1962). doi: 10.1109/JRPROC.1962.288223 |
[22] | Welch DF. A brief history of high-power semiconductor lasers. IEEE J Sel Top Quantum Electron 6, 1470–1477 (2000). doi: 10.1109/2944.902203 |
[23] | Sakamoto M, Endriz JG, Scifres DR. 120 W CW output power from monolithic AlGaAs (800 nm) laser diode array mounted on diamond heatsink. Electron Lett 28, 197–199 (1992). doi: 10.1049/el:19920123 |
[24] | Lacovara P, Choi HK, Wang CA, Aggarwal RL, Fan TY. Room-temperature diode-pumped Yb: YAG laser. Opt Lett 16, 1089–1091 (1991). doi: 10.1364/OL.16.001089 |
[25] | McNaught SJ, Asman CP, Injeyan H, Jankevics A, Johnson AMF et al. 100-kW coherently combined Nd: YAG MOPA laser array. In Proceedings of the Frontiers in Optics 2009 FThD2 (Optical Society of America, 2009);https://doi.org/10.1364/FIO.2009.FThD2. |
[26] | Wilmington MA. Textron defense systems awarded funding for the DARPA HELLADS program. https://investor.textron.com/news/news-releases/press-release-details/2008/Textron-Defense-Systems-Awarded-Funding-for-the-DARPA-HELLADS-Program/default.aspx |
[27] | Snitzer E, Po H, Hakimi F, Tumminelli R, McCollum B. Double clad, offset core Nd fiber laser. In Optical Fiber Sensors PD5 (Optical Society of America, 1988);https://doi.org/10.1364/OFS.1988.PD5. |
[28] | O’Connor M, Gapontsev V, Fomin V, Abramov M, Ferin A. Power scaling of SM fiber lasers toward 10kW. In Conference on Lasers and Electro-Optics CThA3 (Optical Society of America, 2009); https://doi.org/10.1364/CLEO.2009.CThA3. |
[29] | Missile defense agency for president’s budget submission FY 2015: RDT&E Program. |
[30] | Tang XJ, Wang G, Liu J, Geng L, Jiang DS. Development of high brightness solid-state laser technology. Strateg Study Chin Acad Eng 22, 49–55 (2020). doi: 10.15302/J-SSCAE-2020.03.008 |
[31] | Krupke WF. Diode pumped alkali laser. US Patent Application , 99272 (2001). |
[32] | Krupke WF, Beach RJ, Kanz VK, Payne SA. Resonance transition 795-nm rubidium laser. Opt Lett 28, 2336–2338 (2003). doi: 10.1364/OL.28.002336 |
[33] | Krupke WF, Beach RJ, Kanz VK, Payne SA, Early JT. New class of cw high-power diode-pumped alkali lasers (DPALs)(plenary paper). Proc SPIE 5448, 7–17 (2004). doi: 10.1117/12.547954 |
[34] | Krupke W. Diode-pumped alkali lasers aim for single-aperture power scaling. SPIE Newsroom, (2008).https://spie.org/news/1356-diode-pumped-alkali-lasers-aim-for-single-aperture-power-scaling?SSO=1 |
[35] | Wisoff PJ. Diode pumped alkaline laser system: a high powered, low SWaP directed energy option for ballistic missile defense high-level summary-April 2017. Report No. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States), 2017. https://doi.org/10.2172/1357366 |
[36] | Liu ZJ, Wang HY, Xu XJ. High energy diode pumped gas laser. Chin J Lasers 48, 0401001 (2021). doi: 10.3788/CJL202148.0401001 |
[37] | Han JD, Heaven MC. Gain and lasing of optically pumped metastable rare gas atoms. Opt Lett 37, 2157–2159 (2012). doi: 10.1364/OL.37.002157 |
[38] | Choueiri EY. A critical history of electric propulsion: the first 50 years (1906–1956). J Propuls Power 20, 193–203 (2004). doi: 10.2514/1.9245 |
[39] | Bapat A, Salunkhe PB, Patil AV. Hall-effect thrusters for deep-space missions: a review. IEEE Trans Plasma Sci 50, 189–202 (2022). doi: 10.1109/TPS.2022.3143032 |
[40] | Brophy J. Advanced ion propulsion systems for affordable deep-space missions. Acta Astronaut 52, 309–316 (2003). doi: 10.1016/S0094-5765(02)00170-4 |
[41] | Rawlins WT, Galbally-Kinney KL, Davis SJ, Hoskinson AR, Hopwood JA et al. Optically pumped microplasma rare gas laser. Opt Express 23, 4804–4813 (2015). doi: 10.1364/OE.23.004804 |
[42] | Han J, Heaven MC, Moran PJ, Pitz GA, Guild EM et al. Demonstration of a CW diode-pumped Ar metastable laser operating at 4 W. Opt Lett 42, 4627–4630 (2017). doi: 10.1364/OL.42.004627 |
[43] | Zhang Z, Lei P, Song Z, Sun P, Zuo D et al. Optically pumped argon metastable laser with repetitively pulsed discharge in a closed chamber. J Appl Phys 129, 143103 (2021). doi: 10.1063/5.0041297 |
[44] | Wang R, Yang ZN, Li K, Wang HY, Xu XJ. Experiment and modeling of the pulsed lasing in a diode-pumped argon metastable laser. J Appl Phys 131, 023104 (2022). doi: 10.1063/5.0079512 |
[45] | Mikheyev PA, Han JD, Heaven MC. Lasing in optically pumped Ar: He mixture excited in a dielectric barrier discharge. Proc SPIE 11042, 1104206 (2019). |
[46] | Lei P, Zhang ZF, Wang XB, Zuo DL. Demonstration of transversely pumped Ar* laser with continuous-wave diode stack and repetitively pulsed discharge. Opt Commun 513, 128116 (2022). doi: 10.1016/j.optcom.2022.128116 |
[47] | Eshel B, Perram GP. Five-level argon–helium discharge model for characterization of a diode-pumped rare-gas laser. J Opt Soc Am B 35, 164–173 (2018). doi: 10.1364/JOSAB.35.000164 |
[48] | Moran PJ, Lockwood NP, Lange MA, Hostutler DA, Guild EM et al. Plasma and laser kinetics and field emission from carbon nanotube fibers for an advanced noble gas laser (ANGL). Proc SPIE 9729, 97290C (2016). |
[49] | Kim H, Hopwood J. Scalable microplasma array for argon metastable lasing medium. J Appl Phys 126, 163301 (2019). doi: 10.1063/1.5119511 |
[50] | Yang J, Yokota S, Kaneko R, Komurasaki K. Diagnosing on plasma plume from xenon Hall thruster with collisional-radiative model. Phys Plasmas 17, 103504 (2010). doi: 10.1063/1.3486530 |
[51] | Berenguer C, Katsonis K. Plasma reactors and plasma thrusters modeling by Ar complete global models. Int J Aerosp Eng 2012, 740869 (2012). |
[52] | Yamamoto N, Tomita K, Sugita K, Kurita T, Nakashima H et al. Measurement of xenon plasma properties in an ion thruster using laser Thomson scattering technique. Rev Sci Instrum 83, 073106 (2012). doi: 10.1063/1.4737144 |
[53] | Wang R, Yang ZN, Liu QS, Han K, Wang HY et al. Demonstration of a diode-pumped plasma jet-type rare gas laser. Opt Lett 47, 3279–3282 (2022). doi: 10.1364/OL.463906 |
Transition from chemical rocket-engine to gas flow and chemical lasers.
Experimental setup of an Ar-based DPRGL in a plasma jet. The insets demonstrate the structure and picture of the plasma jet used in this experiment. Figure reproduced with permission from ref.53, © 2022 Optica Publishing Group.
Envision from electric rocket-engine to future HELs.