Tang DL, Shao ZL, Xie X, Zhou YJ, Zhang XH et al. Flat multifunctional liquid crystal elements through multi-dimensional information multiplexing. Opto-Electron Adv 6, 220063 (2023). doi: 10.29026/oea.2023.220063
Citation: Tang DL, Shao ZL, Xie X, Zhou YJ, Zhang XH et al. Flat multifunctional liquid crystal elements through multi-dimensional information multiplexing. Opto-Electron Adv 6, 220063 (2023). doi: 10.29026/oea.2023.220063

Article Open Access

Flat multifunctional liquid crystal elements through multi-dimensional information multiplexing

More Information
  • Flat optical elements have attracted enormous attentions and act as promising candidates for the next generation of optical components. As one of the most outstanding representatives, liquid crystal (LC) has been widely applied in flat panel display industries and inspires the wavefront modulation with the development of LC alignment techniques. However, most LC elements perform only one type of optical manipulation and are difficult to realize the multifunctionality and light integration. Here, flat multifunctional liquid crystal elements (FMLCEs), merely composed of anisotropic LC molecules with space-variant orientations, are presented for multichannel information manipulation by means of polarization, space and wavelength multiplexing. Specifically, benefiting from the unique light response with the change of the incident polarization, observation plane, and working wavelength, a series of FMLCEs are demonstrated to achieve distinct near- and far-field display functions. The proposed strategy takes full advantage of basic optical parameters as the decrypted keys to improve the information capacity and security, and we expect it to find potential applications in information encryption, optical anti-counterfeiting, virtual/augmented reality, etc.
  • 加载中
  • [1] Yu NF, Capasso F. Flat optics with designer metasurfaces. Nat Mater 13, 139–150 (2014). doi: 10.1038/nmat3839

    CrossRef Google Scholar

    [2] Aieta F, Kats MA, Genevet P, Capasso F. Multiwavelength achromatic metasurfaces by dispersive phase compensation. Science 347, 1342–1345 (2015). doi: 10.1126/science.aaa2494

    CrossRef Google Scholar

    [3] Chen WT, Zhu AY, Capasso F. Flat optics with dispersion-engineered metasurfaces. Nat Rev Mater 5, 604–620 (2020). doi: 10.1038/s41578-020-0203-3

    CrossRef Google Scholar

    [4] Banerji S, Meem M, Majumder A, Vasquez FG, Sensale-Rodriguez B et al. Imaging with flat optics: metalenses or diffractive lenses. Optica 6, 805–810 (2019). doi: 10.1364/OPTICA.6.000805

    CrossRef Google Scholar

    [5] Jeon DS, Baek SH, Yi S, Fu Q, Dun X et al. Compact snapshot hyperspectral imaging with diffracted rotation. ACM Trans Graph 38, 1-13 (2019). doi: 10.1145/3306346.3322946

    CrossRef Google Scholar

    [6] Dun X, Ikoma H, Wetzstein G, Wang ZS, Cheng XB et al. Learned rotationally symmetric diffractive achromat for full-spectrum computational imaging. Optica 7, 913–922 (2020). doi: 10.1364/OPTICA.394413

    CrossRef Google Scholar

    [7] Gao H, Fan XH, Xiong W, Hong MH. Recent advances in optical dynamic meta-holography. Opto-Electron Adv 4, 210030 (2021). doi: 10.29026/oea.2021.210030

    CrossRef Google Scholar

    [8] Ni XJ, Kildishev AV, Shalaev VM. Metasurface holograms for visible light. Nat Commun 4, 2807 (2013). doi: 10.1038/ncomms3807

    CrossRef Google Scholar

    [9] Yu NF, Genevet P, Kats MA, Aieta F, Tetienne JP et al. Light propagation with phase discontinuities: Generalized laws of reflection and refraction. Science 334, 333–337 (2011). doi: 10.1126/science.1210713

    CrossRef Google Scholar

    [10] Wang SM, Wu PC, Su VC, Lai YC, Chen MK et al. A broadband achromatic metalens in the visible. Nat Nanotechnol 13, 227–232 (2018). doi: 10.1038/s41565-017-0052-4

    CrossRef Google Scholar

    [11] Wang HT, Hao CL, Lin H, Wang YT, Lan T et al. Generation of super-resolved optical needle and multifocal array using graphene oxide metalenses. Opto-Electron Adv 4, 200031 (2021). doi: 10.29026/oea.2021.200031

    CrossRef Google Scholar

    [12] Chen WT, Zhu AY, Sisler J, Huang YW, Yousef KMA et al. Broadband achromatic metasurface-refractive optics. Nano Lett 18, 7801–7808 (2018). doi: 10.1021/acs.nanolett.8b03567

    CrossRef Google Scholar

    [13] Tang DL, Wang CT, Zhao ZY, Wang YQ, Pu MB et al. Ultrabroadband superoscillatory lens composed by plasmonic metasurfaces for subdiffraction light focusing. Laser Photonics Rev 9, 713–719 (2015). doi: 10.1002/lpor.201500182

    CrossRef Google Scholar

    [14] Pu MB, Li X, Ma XL, Wang YQ, Zhao ZY et al. Catenary optics for achromatic generation of perfect optical angular momentum. Sci Adv 1, e1500396 (2015). doi: 10.1126/sciadv.1500396

    CrossRef Google Scholar

    [15] Zhu YC, Chen XL, Yuan WZ, Chu ZQ, Wong KY et al. A waveguide metasurface based quasi-far-field transverse-electric superlens. Opto-Electron Adv 4, 210013 (2021). doi: 10.29026/oea.2021.210013

    CrossRef Google Scholar

    [16] Xie X, Pu MB, Jin JJ, Xu MF, Guo YH et al. Generalized pancharatnam-berry phase in rotationally symmetric meta-atoms. Phys Rev Lett 126, 183902 (2021). doi: 10.1103/PhysRevLett.126.183902

    CrossRef Google Scholar

    [17] Li JX, Wang YQ, Chen C, Fu R, Zhou Z et al. From lingering to rift: metasurface decoupling for near‐ and far‐field functionalization. Adv Mater 33, 2007507 (2021). doi: 10.1002/adma.202007507

    CrossRef Google Scholar

    [18] Li LL, Ruan HX, Liu C, Li Y, Shuang Y et al. Machine-learning reprogrammable metasurface imager. Nat Commun 10, 1082 (2019). doi: 10.1038/s41467-019-09103-2

    CrossRef Google Scholar

    [19] Chen WT, Zhu AY, Sisler J, Bharwani Z, Capasso F. A broadband achromatic polarization-insensitive metalens consisting of anisotropic nanostructures. Nat Commun 10, 355 (2019). doi: 10.1038/s41467-019-08305-y

    CrossRef Google Scholar

    [20] Fang CZ, Yang QY, Yuan QC, Gan XT, Zhao JL et al. High-Q resonances governed by the quasi-bound states in the continuum in all-dielectric metasurfaces. Opto-Electron Adv 4, 200030 (2021). doi: 10.29026/oea.2021.200030

    CrossRef Google Scholar

    [21] Luo XG. Metamaterials and metasurfaces. Adv Opt Mater 7, 1900885 (2019). doi: 10.1002/adom.201900885

    CrossRef Google Scholar

    [22] Luo XG. Metasurface waves in digital optics. J Phys Photonics 2, 041003 (2020). doi: 10.1088/2515-7647/ab9bf8

    CrossRef Google Scholar

    [23] Luo XG, Pu MB, Guo YH, Li X, Zhang F et al. Catenary functions meet electromagnetic waves: opportunities and promises. Adv Opt Mater 8, 2001194 (2020). doi: 10.1002/adom.202001194

    CrossRef Google Scholar

    [24] Zhang F, Pu MB, Li X, Ma XL, Guo YH et al. Extreme‐angle silicon infrared optics enabled by streamlined surfaces. Adv Mater 33, 2008157 (2021). doi: 10.1002/adma.202008157

    CrossRef Google Scholar

    [25] Wang YL, Fan QB, Xu T. Design of high efficiency achromatic metalens with large operation bandwidth using bilayer architecture. Opto-Electron Adv 4, 200008 (2021). doi: 10.29026/oea.2021.200008

    CrossRef Google Scholar

    [26] Chen P, Wei BY, Hu W, Lu YQ. Liquid‐crystal‐mediated geometric phase: from transmissive to broadband reflective planar optics. Adv Mater 32, 1903665 (2019). doi: 10.1002/adma.201903665

    CrossRef Google Scholar

    [27] Wei BY, Liu S, Chen P, Qi SX, Zhang Y et al. Vortex Airy beams directly generated via liquid crystal q-Airy-plates. Appl Phys Lett 112, 121101 (2018). doi: 10.1063/1.5019813

    CrossRef Google Scholar

    [28] Xiong JH, Wu ST. Planar liquid crystal polarization optics for augmented reality and virtual reality: from fundamentals to applications. eLight 1, 3 (2021). doi: 10.1186/s43593-021-00003-x

    CrossRef Google Scholar

    [29] He ZQ, Lee YH, Chen R, Chanda D, Wu ST. Switchable Pancharatnam–Berry microlens array with nano-imprinted liquid crystal alignment. Opt Lett 43, 5062–5065 (2018). doi: 10.1364/OL.43.005062

    CrossRef Google Scholar

    [30] Wei T, Chen P, Tang MJ, Wu GX, Chen ZX et al. Liquid‐crystal‐mediated active waveguides toward programmable integrated optics. Adv Opt Mater 8, 1902033 (2020). doi: 10.1002/adom.201902033

    CrossRef Google Scholar

    [31] Zhou YJ, Yuan YD, Zeng TB, Wang XR, Tang DL et al. Liquid crystal bifocal lens with adjustable intensities through polarization controls. Opt Lett 45, 5716–5719 (2020). doi: 10.1364/OL.405722

    CrossRef Google Scholar

    [32] Lou SZ, Zhou YQ, Yuan YD, Lin TG, Fan F et al. Generation of arbitrary vector vortex beams on hybrid-order Poincaré sphere based on liquid crystal device. Opt Express 27, 8596–8604 (2019). doi: 10.1364/OE.27.008596

    CrossRef Google Scholar

    [33] Shen ZX, Tang MJ, Chen P, Zhou SH, Ge SJ et al. Planar terahertz photonics mediated by liquid crystal polymers. Adv Opt Mater 8, 1902124 (2020). doi: 10.1002/adom.201902124

    CrossRef Google Scholar

    [34] Wei BY, Zhang Y, Li P, Liu S, Hu W et al. Liquid-crystal splitter for generating and separating autofocusing and autodefocusing circular Airy beams. Opt Express 28, 26151–26160 (2020). doi: 10.1364/OE.400636

    CrossRef Google Scholar

    [35] Schadt M, Schmitt K, Kozinkov V, Chigrinov V. Surface-induced parallel alignment of liquid crystals by linearly polymerized photopolymers. Jpn J Appl Phys 31, 2155–2164 (1992). doi: 10.1143/JJAP.31.2155

    CrossRef Google Scholar

    [36] Schadt M, Seiberle H, Schuster A. Optical patterning of multi-domain liquid-crystal displays with wide viewing angles. Nature 381, 212–215 (1996). doi: 10.1038/381212a0

    CrossRef Google Scholar

    [37] Yaroshchuk O, Reznikov Y. Photoalignment of liquid crystals: basics and current trends. J Mater Chem 22, 286–300 (2012). doi: 10.1039/C1JM13485J

    CrossRef Google Scholar

    [38] Shen ZX, Zhou SH, Ge SJ, Duan W, Ma LL et al. Liquid crystal tunable terahertz lens with spin-selected focusing property. Opt Express 27, 8800–8807 (2019). doi: 10.1364/OE.27.008800

    CrossRef Google Scholar

    [39] Born M, Wolf E. Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Pergamon Press, London, 1959).

    Google Scholar

    [40] Goodman JW. Introduction to Fourier Optics 3rd ed (Roberts & Company Publishers, Greenwoood Village, 2005).

    Google Scholar

    [41] Zhang F, Xie X, Pu MB, Guo YH, Ma XL et al. Multistate switching of photonic angular momentum coupling in phase-change metadevices. Adv Mater 32, 1908194 (2020).

    Google Scholar

    [42] Deng LG, Deng J, Guan ZQ, Tao J, Chen Y et al. Malus-metasurface-assisted polarization multiplexing. Light Sci Appl 9, 101 (2020). doi: 10.1038/s41377-020-0327-7

    CrossRef Google Scholar

    [43] Li ZL, Chen C, Guan ZQ, Tao J, Chang S et al. Three‐channel metasurfaces for simultaneous meta‐holography and meta‐nanoprinting: a single‐cell design approach. Laser Photonics Rev 14, 2000032 (2020). doi: 10.1002/lpor.202000032

    CrossRef Google Scholar

    [44] Dai Q, Guan ZQ, Chang S, Deng LG, Tao J et al. A single‐celled Tri‐functional metasurface enabled with triple manipulations of light. Adv Funct Mater 30, 2003990 (2020). doi: 10.1002/adfm.202003990

    CrossRef Google Scholar

    [45] Deng J, Deng LG, Guan ZQ, Tao J, Li GF et al. Multiplexed anticounterfeiting meta-image displays with single-sized nanostructures. Nano Lett 20, 1830–1838 (2020). doi: 10.1021/acs.nanolett.9b05053

    CrossRef Google Scholar

    [46] Ren RY, Li ZL, Deng LG, Shan X, Dai Q et al. Non-orthogonal polarization multiplexed metasurfaces for tri-channel polychromatic image displays and information encryption. Nanophotonics 10, 2903–2914 (2021). doi: 10.1515/nanoph-2021-0259

    CrossRef Google Scholar

    [47] Chen KX, Xu CT, Zhou Z, Li ZL, Chen P et al. Multifunctional liquid crystal device for grayscale pattern display and holography with tunable spectral‐response. Laser Photonics Rev 16, 2100591 (2022). doi: 10.1002/lpor.202100591

    CrossRef Google Scholar

  • Supplementary information for Flat multifunctional liquid crystal elements through multi-dimensional information multiplexing
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Article Metrics

Article views(6459) PDF downloads(859) Cited by(0)

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint