Citation: | Tang DL, Shao ZL, Xie X, Zhou YJ, Zhang XH et al. Flat multifunctional liquid crystal elements through multi-dimensional information multiplexing. Opto-Electron Adv 6, 220063 (2023). doi: 10.29026/oea.2023.220063 |
[1] | Yu NF, Capasso F. Flat optics with designer metasurfaces. Nat Mater 13, 139–150 (2014). doi: 10.1038/nmat3839 |
[2] | Aieta F, Kats MA, Genevet P, Capasso F. Multiwavelength achromatic metasurfaces by dispersive phase compensation. Science 347, 1342–1345 (2015). doi: 10.1126/science.aaa2494 |
[3] | Chen WT, Zhu AY, Capasso F. Flat optics with dispersion-engineered metasurfaces. Nat Rev Mater 5, 604–620 (2020). doi: 10.1038/s41578-020-0203-3 |
[4] | Banerji S, Meem M, Majumder A, Vasquez FG, Sensale-Rodriguez B et al. Imaging with flat optics: metalenses or diffractive lenses. Optica 6, 805–810 (2019). doi: 10.1364/OPTICA.6.000805 |
[5] | Jeon DS, Baek SH, Yi S, Fu Q, Dun X et al. Compact snapshot hyperspectral imaging with diffracted rotation. ACM Trans Graph 38, 1-13 (2019). doi: 10.1145/3306346.3322946 |
[6] | Dun X, Ikoma H, Wetzstein G, Wang ZS, Cheng XB et al. Learned rotationally symmetric diffractive achromat for full-spectrum computational imaging. Optica 7, 913–922 (2020). doi: 10.1364/OPTICA.394413 |
[7] | Gao H, Fan XH, Xiong W, Hong MH. Recent advances in optical dynamic meta-holography. Opto-Electron Adv 4, 210030 (2021). doi: 10.29026/oea.2021.210030 |
[8] | Ni XJ, Kildishev AV, Shalaev VM. Metasurface holograms for visible light. Nat Commun 4, 2807 (2013). doi: 10.1038/ncomms3807 |
[9] | Yu NF, Genevet P, Kats MA, Aieta F, Tetienne JP et al. Light propagation with phase discontinuities: Generalized laws of reflection and refraction. Science 334, 333–337 (2011). doi: 10.1126/science.1210713 |
[10] | Wang SM, Wu PC, Su VC, Lai YC, Chen MK et al. A broadband achromatic metalens in the visible. Nat Nanotechnol 13, 227–232 (2018). doi: 10.1038/s41565-017-0052-4 |
[11] | Wang HT, Hao CL, Lin H, Wang YT, Lan T et al. Generation of super-resolved optical needle and multifocal array using graphene oxide metalenses. Opto-Electron Adv 4, 200031 (2021). doi: 10.29026/oea.2021.200031 |
[12] | Chen WT, Zhu AY, Sisler J, Huang YW, Yousef KMA et al. Broadband achromatic metasurface-refractive optics. Nano Lett 18, 7801–7808 (2018). doi: 10.1021/acs.nanolett.8b03567 |
[13] | Tang DL, Wang CT, Zhao ZY, Wang YQ, Pu MB et al. Ultrabroadband superoscillatory lens composed by plasmonic metasurfaces for subdiffraction light focusing. Laser Photonics Rev 9, 713–719 (2015). doi: 10.1002/lpor.201500182 |
[14] | Pu MB, Li X, Ma XL, Wang YQ, Zhao ZY et al. Catenary optics for achromatic generation of perfect optical angular momentum. Sci Adv 1, e1500396 (2015). doi: 10.1126/sciadv.1500396 |
[15] | Zhu YC, Chen XL, Yuan WZ, Chu ZQ, Wong KY et al. A waveguide metasurface based quasi-far-field transverse-electric superlens. Opto-Electron Adv 4, 210013 (2021). doi: 10.29026/oea.2021.210013 |
[16] | Xie X, Pu MB, Jin JJ, Xu MF, Guo YH et al. Generalized pancharatnam-berry phase in rotationally symmetric meta-atoms. Phys Rev Lett 126, 183902 (2021). doi: 10.1103/PhysRevLett.126.183902 |
[17] | Li JX, Wang YQ, Chen C, Fu R, Zhou Z et al. From lingering to rift: metasurface decoupling for near‐ and far‐field functionalization. Adv Mater 33, 2007507 (2021). doi: 10.1002/adma.202007507 |
[18] | Li LL, Ruan HX, Liu C, Li Y, Shuang Y et al. Machine-learning reprogrammable metasurface imager. Nat Commun 10, 1082 (2019). doi: 10.1038/s41467-019-09103-2 |
[19] | Chen WT, Zhu AY, Sisler J, Bharwani Z, Capasso F. A broadband achromatic polarization-insensitive metalens consisting of anisotropic nanostructures. Nat Commun 10, 355 (2019). doi: 10.1038/s41467-019-08305-y |
[20] | Fang CZ, Yang QY, Yuan QC, Gan XT, Zhao JL et al. High-Q resonances governed by the quasi-bound states in the continuum in all-dielectric metasurfaces. Opto-Electron Adv 4, 200030 (2021). doi: 10.29026/oea.2021.200030 |
[21] | Luo XG. Metamaterials and metasurfaces. Adv Opt Mater 7, 1900885 (2019). doi: 10.1002/adom.201900885 |
[22] | Luo XG. Metasurface waves in digital optics. J Phys Photonics 2, 041003 (2020). doi: 10.1088/2515-7647/ab9bf8 |
[23] | Luo XG, Pu MB, Guo YH, Li X, Zhang F et al. Catenary functions meet electromagnetic waves: opportunities and promises. Adv Opt Mater 8, 2001194 (2020). doi: 10.1002/adom.202001194 |
[24] | Zhang F, Pu MB, Li X, Ma XL, Guo YH et al. Extreme‐angle silicon infrared optics enabled by streamlined surfaces. Adv Mater 33, 2008157 (2021). doi: 10.1002/adma.202008157 |
[25] | Wang YL, Fan QB, Xu T. Design of high efficiency achromatic metalens with large operation bandwidth using bilayer architecture. Opto-Electron Adv 4, 200008 (2021). doi: 10.29026/oea.2021.200008 |
[26] | Chen P, Wei BY, Hu W, Lu YQ. Liquid‐crystal‐mediated geometric phase: from transmissive to broadband reflective planar optics. Adv Mater 32, 1903665 (2019). doi: 10.1002/adma.201903665 |
[27] | Wei BY, Liu S, Chen P, Qi SX, Zhang Y et al. Vortex Airy beams directly generated via liquid crystal q-Airy-plates. Appl Phys Lett 112, 121101 (2018). doi: 10.1063/1.5019813 |
[28] | Xiong JH, Wu ST. Planar liquid crystal polarization optics for augmented reality and virtual reality: from fundamentals to applications. eLight 1, 3 (2021). doi: 10.1186/s43593-021-00003-x |
[29] | He ZQ, Lee YH, Chen R, Chanda D, Wu ST. Switchable Pancharatnam–Berry microlens array with nano-imprinted liquid crystal alignment. Opt Lett 43, 5062–5065 (2018). doi: 10.1364/OL.43.005062 |
[30] | Wei T, Chen P, Tang MJ, Wu GX, Chen ZX et al. Liquid‐crystal‐mediated active waveguides toward programmable integrated optics. Adv Opt Mater 8, 1902033 (2020). doi: 10.1002/adom.201902033 |
[31] | Zhou YJ, Yuan YD, Zeng TB, Wang XR, Tang DL et al. Liquid crystal bifocal lens with adjustable intensities through polarization controls. Opt Lett 45, 5716–5719 (2020). doi: 10.1364/OL.405722 |
[32] | Lou SZ, Zhou YQ, Yuan YD, Lin TG, Fan F et al. Generation of arbitrary vector vortex beams on hybrid-order Poincaré sphere based on liquid crystal device. Opt Express 27, 8596–8604 (2019). doi: 10.1364/OE.27.008596 |
[33] | Shen ZX, Tang MJ, Chen P, Zhou SH, Ge SJ et al. Planar terahertz photonics mediated by liquid crystal polymers. Adv Opt Mater 8, 1902124 (2020). doi: 10.1002/adom.201902124 |
[34] | Wei BY, Zhang Y, Li P, Liu S, Hu W et al. Liquid-crystal splitter for generating and separating autofocusing and autodefocusing circular Airy beams. Opt Express 28, 26151–26160 (2020). doi: 10.1364/OE.400636 |
[35] | Schadt M, Schmitt K, Kozinkov V, Chigrinov V. Surface-induced parallel alignment of liquid crystals by linearly polymerized photopolymers. Jpn J Appl Phys 31, 2155–2164 (1992). doi: 10.1143/JJAP.31.2155 |
[36] | Schadt M, Seiberle H, Schuster A. Optical patterning of multi-domain liquid-crystal displays with wide viewing angles. Nature 381, 212–215 (1996). doi: 10.1038/381212a0 |
[37] | Yaroshchuk O, Reznikov Y. Photoalignment of liquid crystals: basics and current trends. J Mater Chem 22, 286–300 (2012). doi: 10.1039/C1JM13485J |
[38] | Shen ZX, Zhou SH, Ge SJ, Duan W, Ma LL et al. Liquid crystal tunable terahertz lens with spin-selected focusing property. Opt Express 27, 8800–8807 (2019). doi: 10.1364/OE.27.008800 |
[39] | Born M, Wolf E. Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Pergamon Press, London, 1959). |
[40] | Goodman JW. Introduction to Fourier Optics 3rd ed (Roberts & Company Publishers, Greenwoood Village, 2005). |
[41] | Zhang F, Xie X, Pu MB, Guo YH, Ma XL et al. Multistate switching of photonic angular momentum coupling in phase-change metadevices. Adv Mater 32, 1908194 (2020). |
[42] | Deng LG, Deng J, Guan ZQ, Tao J, Chen Y et al. Malus-metasurface-assisted polarization multiplexing. Light Sci Appl 9, 101 (2020). doi: 10.1038/s41377-020-0327-7 |
[43] | Li ZL, Chen C, Guan ZQ, Tao J, Chang S et al. Three‐channel metasurfaces for simultaneous meta‐holography and meta‐nanoprinting: a single‐cell design approach. Laser Photonics Rev 14, 2000032 (2020). doi: 10.1002/lpor.202000032 |
[44] | Dai Q, Guan ZQ, Chang S, Deng LG, Tao J et al. A single‐celled Tri‐functional metasurface enabled with triple manipulations of light. Adv Funct Mater 30, 2003990 (2020). doi: 10.1002/adfm.202003990 |
[45] | Deng J, Deng LG, Guan ZQ, Tao J, Li GF et al. Multiplexed anticounterfeiting meta-image displays with single-sized nanostructures. Nano Lett 20, 1830–1838 (2020). doi: 10.1021/acs.nanolett.9b05053 |
[46] | Ren RY, Li ZL, Deng LG, Shan X, Dai Q et al. Non-orthogonal polarization multiplexed metasurfaces for tri-channel polychromatic image displays and information encryption. Nanophotonics 10, 2903–2914 (2021). doi: 10.1515/nanoph-2021-0259 |
[47] | Chen KX, Xu CT, Zhou Z, Li ZL, Chen P et al. Multifunctional liquid crystal device for grayscale pattern display and holography with tunable spectral‐response. Laser Photonics Rev 16, 2100591 (2022). doi: 10.1002/lpor.202100591 |
Supplementary information for Flat multifunctional liquid crystal elements through multi-dimensional information multiplexing |
Principle of a multifunctional LC element utilizing the incident polarization, observation position and working wavelength to decode their associated information. Information multiplexing FMLCE generates a pattern at the sample surface under an orthogonal-polarization optical path, and different holographic images in Fresnel region depending on the incident polarization state (polarization channel), observation position (space channel), and working wavelength (wavelength channel).
Flowchart of designing a multifunctional LC element for simultaneous near-field display and far-field holography. (a) Schematic of the anisotropic LC molecule. (b) Normalized transmitted intensity follows the relation of sin2(2θ) under an orthogonal-polarization optical path. (c) Phase of the transmitted component follows the linear relation of 2θ or −2θ when LCP or RCP illumination is converted to its cross-polarized light. (d) LC orientation has four options for an equal intensity under an orthogonal-polarization optical path but provides different geometric phase shifts under LCP and RCP illumination. With the powerful GA optimization to compare the difference between the possible holographic image and target far-field image, a suitable LC orientation arrangement can be obtained. Target far-field images can be chosen with various polarization, position and wavelength information.
Experimental results of the polarization multiplexing LC element. (a) Home-built experimental setups for near-field and far-field measurements. (b) Measured results of FMLCE A at the wavelengths of 638 nm, 520 nm and 445 nm, respectively. The element can generate a near-field pattern (and its complementary pattern) under an orthogonal-polarization optical setup, and two different far-field holographic images under LCP and RCP illuminations. Scalar bars are 300 μm.
Experimental results of the space multiplexing FMLCE B at the wavelengths of 638 nm, 520 nm and 445 nm. It can generate a near-field pattern under an orthogonal-polarization optical setup, and two far-field holographic images at two different space positions under circular polarized illuminations. Scalar bars are 300 μm.
Simulated and experimental results of the wavelength multiplexing LC element. (a–d) represent the simulation results and (e–h) represent the experimental results. FMLCE C generates (a, e) a near-field pattern under an orthogonal-polarization optical path and far-field holographic images containing, (b, f) an English alphabet of “A” under red LCP illumination, (c, g) an English alphabet of “B” under green LCP illumination, and (d, h) an English alphabet of “C” under blue LCP illumination. Three holographic images are observed at the same plane. The polarizer and analyzer are orthogonal and indicated by double-ended arrows. Scalar bars are 300 μm.