Citation: | Juodkazis S. Top-down control of bottom-up material synthesis @ nanoscale. Opto-Electron Adv 6, 230023 (2023). doi: 10.29026/oea.2023.230023 |
[1] | Merkininkaitė G, Aleksandravičius E, Malinauskas M, Gailevičius D, Šakirzanovas S. Laser additive manufacturing of Si/ZrO2 tunable crystalline phase 3D nanostructures. Opto-Electron Adv 5, 210077 (2022). doi: 10.29026/oea.2022.210077 |
[2] | Gailevičius D, Padolskytė V, Mikoliūnaitė L, Šakirzanovas S, Juodkazis S et al. Additive-manufacturing of 3D glass-ceramics down to nanoscale resolution. Nanoscale Horiz 4, 647–651 (2019). doi: 10.1039/C8NH00293B |
[3] | Cooperstein I, Indukuri SRKC, Bouketov A, Levy U, Magdassi S. 3D printing of micrometer-sized transparent ceramics with on-demand optical-gain properties. Adv Mater 32, 2001675 (2020). doi: 10.1002/adma.202001675 |
[4] | Vyatskikh A, Edwards R N B, Briggs R, Greer J. Additive manufacturing of high-refractive-index, nanoarchitected titanium dioxide for 3d dielectric photonic crystals. Nano Lett 20, 3513–3520 (2020). |
[5] | Wang DW, Han HL, Sa B, Li KL, Yan JJ et al. A review and a statistical analysis of porosity in metals additively manufactured by laser powder bed fusion. Opto-Electron Adv 5, 210058 (2022). doi: 10.29026/oea.2022.210058 |
[6] | Seniutinas G, Weber A, Padeste C, Sakellari I, Farsari M et al. Beyond 100 nm resolution in 3D laser lithography — Post processing solutions. Microelectron Eng 191, 25–31 (2018). doi: 10.1016/j.mee.2018.01.018 |
[7] | Gonzalez-Hernandez D, Varapnickas S, Merkininkaitė G, Čiburys A, Gailevičius D et al. Laser 3D printing of inorganic free-form micro-optics. Photonics 8, 577 (2021). doi: 10.3390/photonics8120577 |
[8] | Bettes B, Xie Y. Synthesis and processing of transparent polycrystalline doped yttrium aluminum garnet: a review. Mater Res Lett 11, 1–20 (2023). doi: 10.1080/21663831.2022.2109441 |
[9] | Noginov MA, Zhu G, Belgrave AM, Bakker R, Shalaev VM et al. Demonstration of a spaser-based nanolaser. Nature 460, 1110–1112 (2009). doi: 10.1038/nature08318 |
[10] | Datsuyk VV, Juodkazis S, Misawa H. Properties of a laser based on evanescent-wave amplification. J Opt Soc Am B 22, 1471–1478 (2005). doi: 10.1364/JOSAB.22.001471 |
[11] | Malinauskas M, Žukauskas A, Hasegawa S, Hayasaki Y, Mizeikis V et al. Ultrafast laser processing of materials: from science to industry. Light Sci Appl 5, e16133 (2016). doi: 10.1038/lsa.2016.133 |
[12] | Han M, Smith D, Ng SH, Anand V, Katkus T et al. Ultra-short-pulse lasers—materials—applications. Eng Proc 11, 44 (2021). doi: 10.3390/ASEC2021-11143 |
[13] | Rosu-Finsen A, Davies MB, Amon A, Wu H, Sella A et al. Medium-density amorphous ice. Science 379, 474–478 (2023). doi: 10.1126/science.abq2105 |
Top-down (a) and bottom-up (b) steps of nanomaterial synthesis. (c) Glass, crystalline, ceramic material is tuned via initial composition of a photo-curable precursor mixture and its thermal annealing at the required temperature, pressure, gas ambience. Surface tension driven reshaping is shown in scanning electron microscopy images in (b), where the same scale applies to both images before and after high temperature annealing.