Citation: | Pei JJ, Liu X, del Águila AG, Bao D, Liu S et al. Switching of K-Q intervalley trions fine structure and their dynamics in n-doped monolayer WS2. Opto-Electron Adv 6, 220034 (2023). doi: 10.29026/oea.2023.220034 |
[1] | Mak KF, Shan J. Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides. Nat Photonics 10, 216–226 (2016). doi: 10.1038/nphoton.2015.282 |
[2] | Liu Y, Weiss NO, Duan XD, Cheng HC, Huang Y et al. Van der Waals heterostructures and devices. Nat Rev Mater 1, 16042 (2016). doi: 10.1038/natrevmats.2016.42 |
[3] | Pei JJ, Yang J, Yildirim T, Zhang H, Lu YR. Many-body complexes in 2D semiconductors. Adv Mater 31, 1706945 (2019). doi: 10.1002/adma.201706945 |
[4] | Wang JY, Verzhbitskiy I, Eda G. Electroluminescent devices based on 2D semiconducting transition metal dichalcogenides. Adv Mater 30, 1802687 (2018). doi: 10.1002/adma.201802687 |
[5] | Sarkar S, Goswami S, Trushin M, Saha S, Panahandeh-Fard M et al. Polaronic trions at the MoS2/SrTiO3 interface. Adv Mater 31, 1903569 (2019). doi: 10.1002/adma.201903569 |
[6] | Chen SY, Goldstein T, Taniguchi T, Watanabe K, Yan J. Coulomb-bound four- and five-particle intervalley states in an atomically-thin semiconductor. Nat Commun 9, 3717 (2018). doi: 10.1038/s41467-018-05558-x |
[7] | Ross JS, Wu SF, Yu HY, Ghimire NJ, Jones AM et al. Electrical control of neutral and charged excitons in a monolayer semiconductor. Nat Commun 4, 1474 (2013). doi: 10.1038/ncomms2498 |
[8] | Mak KF, He KL, Lee C, Lee GH, Hone J et al. Tightly bound trions in monolayer MoS2. Nat Mater 12, 207–211 (2013). doi: 10.1038/nmat3505 |
[9] | Zhang XX, Cao T, Lu ZG, Lin YC, Zhang F et al. Magnetic brightening and control of dark excitons in monolayer WSe2. Nat Nanotechnol 12, 883–888 (2017). doi: 10.1038/nnano.2017.105 |
[10] | Jones AM, Yu HY, Ghimire NJ, Wu SF, Aivazian G et al. Optical generation of excitonic valley coherence in monolayer WSe2. Nat Nanotechnol 8, 634–638 (2013). doi: 10.1038/nnano.2013.151 |
[11] | Plechinger G, Nagler P, Arora A, Schmidt R, Chernikov A et al. Trion fine structure and coupled spin-valley dynamics in monolayer tungsten disulfide. Nat Commun 7, 12715 (2016). doi: 10.1038/ncomms12715 |
[12] | Liu EF, Van Baren J, Lu ZG, Altaiary MM, Taniguchi T et al. Gate tunable dark trions in monolayer WSe2. Phys Rev Lett 123, 027401 (2019). doi: 10.1103/PhysRevLett.123.027401 |
[13] | Lyons TP, Dufferwiel S, Brooks M, Withers F, Taniguchi T et al. The valley Zeeman effect in inter- and intra-valley trions in monolayer WSe2. Nat Commun 10, 2330 (2019). doi: 10.1038/s41467-019-10228-7 |
[14] | Li ZW, Yang W, Huang M, Yang X, Zhu CG et al. Light-triggered interfacial charge transfer and enhanced photodetection in CdSe/ZnS quantum dots/MoS2 mixed-dimensional phototransistors. Opto-Electron Adv 4, 210017 (2021). doi: 10.29026/oea.2021.210017 |
[15] | Katoch J, Ulstrup S, Koch RJ, Moser S, McCreary KM et al. Giant spin-splitting and gap renormalization driven by trions in single-layer WS2/h-BN heterostructures. Nat Phys 14, 355–359 (2018). doi: 10.1038/s41567-017-0033-4 |
[16] | Steinhoff A, Florian M, Singh A, Tran K, Kolarczik M et al. Biexciton fine structure in monolayer transition metal dichalcogenides. Nat Phys 14, 1199–1204 (2018). doi: 10.1038/s41567-018-0282-x |
[17] | Xu WG, Liu WW, Schmidt JF, Zhao WJ, Lu X et al. Correlated fluorescence blinking in two-dimensional semiconductor heterostructures. Nature 541, 62–67 (2017). doi: 10.1038/nature20601 |
[18] | He YM, Iff O, Lundt N, Baumann V, Davanco M et al. Cascaded emission of single photons from the biexciton in monolayered WSe2. Nat Commun 7, 13409 (2016). doi: 10.1038/ncomms13409 |
[19] | Schaibley JR, Yu HY, Clark G, Rivera P, Ross JS et al. Valleytronics in 2D materials. Nat Rev Mater 1, 16055 (2016). doi: 10.1038/natrevmats.2016.55 |
[20] | Xu XD, Yao W, Xiao D, Heinz TF. Spin and pseudospins in layered transition metal dichalcogenides. Nat Phys 10, 343–350 (2014). doi: 10.1038/nphys2942 |
[21] | Zhang H, Lu SB, Zheng J, Du J, Wen SC et al. Molybdenum disulfide (MoS2) as a broadband saturable absorber for ultra-fast photonics. Opt Express 22, 7249–7260 (2014). doi: 10.1364/OE.22.007249 |
[22] | Sidler M, Back P, Cotlet O, Srivastava A, Fink T et al. Fermi polaron-polaritons in charge-tunable atomically thin semiconductors. Nat Phys 13, 255–261 (2017). doi: 10.1038/nphys3949 |
[23] | Back P, Sidler M, Cotlet O, Srivastava A, Takemura N et al. Giant paramagnetism-induced valley polarization of electrons in charge-tunable monolayer MoSe2. Phys Rev Lett 118, 237404 (2017). doi: 10.1103/PhysRevLett.118.237404 |
[24] | Liu ML, Wu HB, Liu XM, Wang YR, Lei M et al. Optical properties and applications of SnS2 SAs with different thickness. Opto-Electron Adv 4 4, 200029 (2021). doi: 10.29026/oea.2021.200029 |
[25] | Pei JJ, Yang J, Wang XB, Wang F, Mokkapati S et al. Excited state biexcitons in atomically thin MoSe2. ACS Nano 11, 7468–7475 (2017). doi: 10.1021/acsnano.7b03909 |
[26] | Pei JJ, Yang J, Xu RJ, Zeng YH, Myint YW et al. Exciton and trion dynamics in bilayer MoS2. Small 11, 6384–6390 (2015). doi: 10.1002/smll.201501949 |
[27] | Malic E, Selig M, Feierabend M, Brem S, Christiansen D et al. Dark excitons in transition metal dichalcogenides. Phys Rev Mater 2, 014002 (2018). doi: 10.1103/PhysRevMaterials.2.014002 |
[28] | Zhang XX, You YM, Zhao SYF, Heinz TF. Experimental evidence for dark excitons in monolayer WSe2. Phys Rev Lett 115, 257403 (2015). doi: 10.1103/PhysRevLett.115.257403 |
[29] | Selig M, Berghäuser G, Raja A, Nagler P, Schüller C et al. Excitonic linewidth and coherence lifetime in monolayer transition metal dichalcogenides. Nat Commun 7, 13279 (2016). doi: 10.1038/ncomms13279 |
[30] | Wang G, Robert C, Glazov MM, Cadiz F, Courtade E et al. In-plane propagation of light in transition metal dichalcogenide monolayers: optical selection rules. Phys Rev Lett 119, 047401 (2017). doi: 10.1103/PhysRevLett.119.047401 |
[31] | Park KD, Jiang T, Clark G, Xu XD, Raschke MB. Radiative control of dark excitons at room temperature by nano-optical antenna-tip Purcell effect. Nat Nanotechnol 13, 59–64 (2018). doi: 10.1038/s41565-017-0003-0 |
[32] | You YM, Zhang XX, Berkelbach TC, Hybertsen MS, Reichman DR et al. Observation of biexcitons in monolayer WSe2. Nat Phys 11, 477–481 (2015). doi: 10.1038/nphys3324 |
[33] | Shang JZ, Shen XN, Cong CX, Peimyoo N, Cao BC et al. Observation of excitonic fine structure in a 2D transition-metal dichalcogenide semiconductor. ACS Nano 9, 647–655 (2015). doi: 10.1021/nn5059908 |
[34] | Nagler P, Ballottin MV, Mitioglu AA, Durnev MV, Taniguchi T et al. Zeeman splitting and inverted polarization of biexciton emission in monolayer WS2. Phys Rev Lett 121, 057402 (2018). doi: 10.1103/PhysRevLett.121.057402 |
[35] | Barbone M, Montblanch ARP, Kara DM, Palacios-Berraquero C, Cadore AR et al. Charge-tuneable biexciton complexes in monolayer WSe2. Nat Commun 9, 3721 (2018). doi: 10.1038/s41467-018-05632-4 |
[36] | Li ZP, Wang TM, Lu ZG, Jin CH, Chen YW et al. Revealing the biexciton and trion-exciton complexes in BN encapsulated WSe2. Nat Commun 9, 3719 (2018). doi: 10.1038/s41467-018-05863-5 |
[37] | Roldán R, Silva-Guillén JA, López-Sancho MP, Guinea F, Cappelluti E et al. Electronic properties of single-layer and multilayer transition metal dichalcogenides MX2 (M = Mo, W and X = S, Se). Ann Phys 526, 347–357 (2014). doi: 10.1002/andp.201400128 |
[38] | Lo PY, Peng GH, Li WH, Yang Y, Cheng SJ. Full-zone valley polarization landscape of finite-momentum exciton in transition metal dichalcogenide monolayers. Phys Rev Res 3, 043198 (2021). doi: 10.1103/PhysRevResearch.3.043198 |
[39] | Peng GH, Lo PY, Li WH, Huang YC, Chen YH et al. Distinctive signatures of the spin- and momentum-forbidden dark exciton states in the photoluminescence of strained WSe2 monolayers under thermalization. Nano Lett 19, 2299–2312 (2019). doi: 10.1021/acs.nanolett.8b04786 |
[40] | Madéo J, Man MKL, Sahoo C, Campbell M, Pareek V et al. Directly visualizing the momentum-forbidden dark excitons and their dynamics in atomically thin semiconductors. Science 370, 1199–1204 (2020). doi: 10.1126/science.aba1029 |
[41] | Wallauer R, Perea-Causin R, Munster L, Zajusch S, Brem S et al. Momentum-resolved observation of exciton formation dynamics in monolayer WS2. Nano Lett 21, 5867–5873 (2021). doi: 10.1021/acs.nanolett.1c01839 |
[42] | Bao D, Del Águila AG, Do TTH, Liu S, Pei JJ et al. Probing momentum-indirect excitons by near-resonance photoluminescence excitation spectroscopy in WS2 monolayer. 2D Mater 7, 031002 (2020). doi: 10.1088/2053-1583/ab817a |
[43] | He MH, Rivera P, Van Tuan D, Wilson NP, Yang M et al. Valley phonons and exciton complexes in a monolayer semiconductor. Nat Commun 11, 618 (2020). doi: 10.1038/s41467-020-14472-0 |
[44] | Plechinger G, Nagler P, Kraus J, Paradiso N, Strunk C et al. Identification of excitons, trions and biexcitons in single-layer WS2. Phys Status Solidi (RRL) - Rapid Res Lett 9, 457–461 (2015). doi: 10.1002/pssr.201510224 |
[45] | Paur M, Molina-Mendoza AJ, Bratschitsch R, Watanabe K, Taniguchi T et al. Electroluminescence from multi-particle exciton complexes in transition metal dichalcogenide semiconductors. Nat Commun 10, 1709 (2019). doi: 10.1038/s41467-019-09781-y |
[46] | Shi HY, Yan RS, Bertolazzi S, Brivio J, Gao B et al. Exciton dynamics in suspended monolayer and few-layer MoS2 2D crystals. ACS Nano 7, 1072–1080 (2013). doi: 10.1021/nn303973r |
[47] | Li YZ, Shi J, Mi Y, Sui XY, Xu HY et al. Ultrafast carrier dynamics in two-dimensional transition metal dichalcogenides. J Mater Chem C 7, 4304–4319 (2019). doi: 10.1039/C8TC06343E |
[48] | Chernikov A, Van Der Zande AM, Hill HM, Rigosi AF, Velauthapillai A et al. Electrical tuning of exciton binding energies in monolayer WS2. Phys Rev Lett 115, 126802 (2015). doi: 10.1103/PhysRevLett.115.126802 |
[49] | Zibouche N, Philipsen P, Heine T, Kuc A. Electron transport in MoWSeS monolayers in the presence of an external electric field. Phys Chem Chem Phys 16, 11251–11255 (2014). doi: 10.1039/C4CP00966E |
[50] | Li ZP, Wang TM, Lu ZG, Khatoniar M, Lian Z et al. Direct observation of gate-tunable dark trions in monolayer WSe2. Nano Lett 19, 6886–6893 (2019). doi: 10.1021/acs.nanolett.9b02132 |
[51] | Van Tuan D, Scharf B, Wang ZF, Shan J, Mak KF et al. Probing many-body interactions in monolayer transition-metal dichalcogenides. Phys Rev B 99, 085301 (2019). doi: 10.1103/PhysRevB.99.085301 |
[52] | Roch JG, Miserev D, Froehlicher G, Leisgang N, Sponfeldner L et al. First-order magnetic phase transition of mobile electrons in monolayer MoS2. Phys Rev Lett 124, 187602 (2020). doi: 10.1103/PhysRevLett.124.187602 |
[53] | Castellanos-Gomez A, Buscema M, Molenaar R, Singh V, Janssen L et al. Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping. 2D Mater 1, 011002 (2014). doi: 10.1088/2053-1583/1/1/011002 |
Supplementary information for Switching of K-Q intervalley trions fine structure and their dynamics in n-doped monolayer WS2 |
Schematic diagram and device characterization. (a) Schematic drawing of the spin configurations for monolayer WS2 in the conduction band and valence band at K and K’ point of the first Brillouin zone. The bands with two different spin configurations are schematically drawn using two different colors (blue and red), annotated with arrows representing different spins. The symbols “e” and “h” represent electrons and holes, respectively. Scattering pathways of electrons are denoted by the orange arrows. The green wavy arrow represents the excitation photons. (b) The possible valley exciton and trions emissions from KV valley in the momentum space. Upon linear optical excitation, the landscape of excitons and trions with opposite spin configurations degenerates. Here, we display the valley excitons and trions for only one spin configuration. Fermi level changes are represented by orange and green dashed lines. The Coulomb interactions of exciton and trions are denoted by the filled areas with red, orange, and green colors. (c) Optical micrograph of the h-BN/1L-WS2/h-BN sandwiched sample. The scale bar is 5 μm. (d) Schematic plot of the heterostructure device. (e) The drain-source current as a function of back-gate voltage for various source-drain biases. With this transition curve, it is found the WS2 monolayer is an n-type semiconductor. Note that the gate-dependent PL measurement in the main text is measured at zero source-drain bias.
Electrical tuning of the PL spectra of excitonic species. (a) A typical PL spectrum of the monolayer WS2 at T=10 K excited by 2.33 eV laser. The label X0 and XT represent bright exciton and trion, respectively. The labels
Influence of electrical doping on the carrier dynamics of excitonic species. (a, b) Normalized PL spectra at per μW excitation power for monolayer WS2 as a function of excitation power at –60 V and 60 V back gate voltages. The dashed lines are guided to the eye showing the peak positions of X0 and
Temperature-dependent PL spectra of the monolayer WS2. (a) PL spectra at different temperatures from 295 K to 10 K. The spectra are vertically shifted for clarity. The dashed lines are a guide to the eye showing the peak positions of X0, XT and