Pei JJ, Liu X, del Águila AG, Bao D, Liu S et al. Switching of K-Q intervalley trions fine structure and their dynamics in n-doped monolayer WS2. Opto-Electron Adv 6, 220034 (2023). doi: 10.29026/oea.2023.220034
Citation: Pei JJ, Liu X, del Águila AG, Bao D, Liu S et al. Switching of K-Q intervalley trions fine structure and their dynamics in n-doped monolayer WS2. Opto-Electron Adv 6, 220034 (2023). doi: 10.29026/oea.2023.220034

Article Open Access

Switching of K-Q intervalley trions fine structure and their dynamics in n-doped monolayer WS2

More Information
  • Monolayer group VI transition metal dichalcogenides (TMDs) have recently emerged as promising candidates for photonic and opto-valleytronic applications. The optoelectronic properties of these atomically-thin semiconducting crystals are strongly governed by the tightly bound electron-hole pairs such as excitons and trions (charged excitons). The anomalous spin and valley configurations at the conduction band edges in monolayer WS2 give rise to even more fascinating valley many-body complexes. Here we find that the indirect Q valley in the first Brillouin zone of monolayer WS2 plays a critical role in the formation of a new excitonic state, which has not been well studied. By employing a high-quality h-BN encapsulated WS2 field-effect transistor, we are able to switch the electron concentration within K-Q valleys at conduction band edges. Consequently, a distinct emission feature could be excited at the high electron doping region. Such feature has a competing population with the K valley trion, and experiences nonlinear power-law response and lifetime dynamics under doping. Our findings open up a new avenue for the study of valley many-body physics and quantum optics in semiconducting 2D materials, as well as provide a promising way of valley manipulation for next-generation entangled photonic devices.
  • 加载中
  • [1] Mak KF, Shan J. Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides. Nat Photonics 10, 216–226 (2016). doi: 10.1038/nphoton.2015.282

    CrossRef Google Scholar

    [2] Liu Y, Weiss NO, Duan XD, Cheng HC, Huang Y et al. Van der Waals heterostructures and devices. Nat Rev Mater 1, 16042 (2016). doi: 10.1038/natrevmats.2016.42

    CrossRef Google Scholar

    [3] Pei JJ, Yang J, Yildirim T, Zhang H, Lu YR. Many-body complexes in 2D semiconductors. Adv Mater 31, 1706945 (2019). doi: 10.1002/adma.201706945

    CrossRef Google Scholar

    [4] Wang JY, Verzhbitskiy I, Eda G. Electroluminescent devices based on 2D semiconducting transition metal dichalcogenides. Adv Mater 30, 1802687 (2018). doi: 10.1002/adma.201802687

    CrossRef Google Scholar

    [5] Sarkar S, Goswami S, Trushin M, Saha S, Panahandeh-Fard M et al. Polaronic trions at the MoS2/SrTiO3 interface. Adv Mater 31, 1903569 (2019). doi: 10.1002/adma.201903569

    CrossRef Google Scholar

    [6] Chen SY, Goldstein T, Taniguchi T, Watanabe K, Yan J. Coulomb-bound four- and five-particle intervalley states in an atomically-thin semiconductor. Nat Commun 9, 3717 (2018). doi: 10.1038/s41467-018-05558-x

    CrossRef Google Scholar

    [7] Ross JS, Wu SF, Yu HY, Ghimire NJ, Jones AM et al. Electrical control of neutral and charged excitons in a monolayer semiconductor. Nat Commun 4, 1474 (2013). doi: 10.1038/ncomms2498

    CrossRef Google Scholar

    [8] Mak KF, He KL, Lee C, Lee GH, Hone J et al. Tightly bound trions in monolayer MoS2. Nat Mater 12, 207–211 (2013). doi: 10.1038/nmat3505

    CrossRef Google Scholar

    [9] Zhang XX, Cao T, Lu ZG, Lin YC, Zhang F et al. Magnetic brightening and control of dark excitons in monolayer WSe2. Nat Nanotechnol 12, 883–888 (2017). doi: 10.1038/nnano.2017.105

    CrossRef Google Scholar

    [10] Jones AM, Yu HY, Ghimire NJ, Wu SF, Aivazian G et al. Optical generation of excitonic valley coherence in monolayer WSe2. Nat Nanotechnol 8, 634–638 (2013). doi: 10.1038/nnano.2013.151

    CrossRef Google Scholar

    [11] Plechinger G, Nagler P, Arora A, Schmidt R, Chernikov A et al. Trion fine structure and coupled spin-valley dynamics in monolayer tungsten disulfide. Nat Commun 7, 12715 (2016). doi: 10.1038/ncomms12715

    CrossRef Google Scholar

    [12] Liu EF, Van Baren J, Lu ZG, Altaiary MM, Taniguchi T et al. Gate tunable dark trions in monolayer WSe2. Phys Rev Lett 123, 027401 (2019). doi: 10.1103/PhysRevLett.123.027401

    CrossRef Google Scholar

    [13] Lyons TP, Dufferwiel S, Brooks M, Withers F, Taniguchi T et al. The valley Zeeman effect in inter- and intra-valley trions in monolayer WSe2. Nat Commun 10, 2330 (2019). doi: 10.1038/s41467-019-10228-7

    CrossRef Google Scholar

    [14] Li ZW, Yang W, Huang M, Yang X, Zhu CG et al. Light-triggered interfacial charge transfer and enhanced photodetection in CdSe/ZnS quantum dots/MoS2 mixed-dimensional phototransistors. Opto-Electron Adv 4, 210017 (2021). doi: 10.29026/oea.2021.210017

    CrossRef Google Scholar

    [15] Katoch J, Ulstrup S, Koch RJ, Moser S, McCreary KM et al. Giant spin-splitting and gap renormalization driven by trions in single-layer WS2/h-BN heterostructures. Nat Phys 14, 355–359 (2018). doi: 10.1038/s41567-017-0033-4

    CrossRef Google Scholar

    [16] Steinhoff A, Florian M, Singh A, Tran K, Kolarczik M et al. Biexciton fine structure in monolayer transition metal dichalcogenides. Nat Phys 14, 1199–1204 (2018). doi: 10.1038/s41567-018-0282-x

    CrossRef Google Scholar

    [17] Xu WG, Liu WW, Schmidt JF, Zhao WJ, Lu X et al. Correlated fluorescence blinking in two-dimensional semiconductor heterostructures. Nature 541, 62–67 (2017). doi: 10.1038/nature20601

    CrossRef Google Scholar

    [18] He YM, Iff O, Lundt N, Baumann V, Davanco M et al. Cascaded emission of single photons from the biexciton in monolayered WSe2. Nat Commun 7, 13409 (2016). doi: 10.1038/ncomms13409

    CrossRef Google Scholar

    [19] Schaibley JR, Yu HY, Clark G, Rivera P, Ross JS et al. Valleytronics in 2D materials. Nat Rev Mater 1, 16055 (2016). doi: 10.1038/natrevmats.2016.55

    CrossRef Google Scholar

    [20] Xu XD, Yao W, Xiao D, Heinz TF. Spin and pseudospins in layered transition metal dichalcogenides. Nat Phys 10, 343–350 (2014). doi: 10.1038/nphys2942

    CrossRef Google Scholar

    [21] Zhang H, Lu SB, Zheng J, Du J, Wen SC et al. Molybdenum disulfide (MoS2) as a broadband saturable absorber for ultra-fast photonics. Opt Express 22, 7249–7260 (2014). doi: 10.1364/OE.22.007249

    CrossRef Google Scholar

    [22] Sidler M, Back P, Cotlet O, Srivastava A, Fink T et al. Fermi polaron-polaritons in charge-tunable atomically thin semiconductors. Nat Phys 13, 255–261 (2017). doi: 10.1038/nphys3949

    CrossRef Google Scholar

    [23] Back P, Sidler M, Cotlet O, Srivastava A, Takemura N et al. Giant paramagnetism-induced valley polarization of electrons in charge-tunable monolayer MoSe2. Phys Rev Lett 118, 237404 (2017). doi: 10.1103/PhysRevLett.118.237404

    CrossRef Google Scholar

    [24] Liu ML, Wu HB, Liu XM, Wang YR, Lei M et al. Optical properties and applications of SnS2 SAs with different thickness. Opto-Electron Adv 4 4, 200029 (2021). doi: 10.29026/oea.2021.200029

    CrossRef Google Scholar

    [25] Pei JJ, Yang J, Wang XB, Wang F, Mokkapati S et al. Excited state biexcitons in atomically thin MoSe2. ACS Nano 11, 7468–7475 (2017). doi: 10.1021/acsnano.7b03909

    CrossRef Google Scholar

    [26] Pei JJ, Yang J, Xu RJ, Zeng YH, Myint YW et al. Exciton and trion dynamics in bilayer MoS2. Small 11, 6384–6390 (2015). doi: 10.1002/smll.201501949

    CrossRef Google Scholar

    [27] Malic E, Selig M, Feierabend M, Brem S, Christiansen D et al. Dark excitons in transition metal dichalcogenides. Phys Rev Mater 2, 014002 (2018). doi: 10.1103/PhysRevMaterials.2.014002

    CrossRef Google Scholar

    [28] Zhang XX, You YM, Zhao SYF, Heinz TF. Experimental evidence for dark excitons in monolayer WSe2. Phys Rev Lett 115, 257403 (2015). doi: 10.1103/PhysRevLett.115.257403

    CrossRef Google Scholar

    [29] Selig M, Berghäuser G, Raja A, Nagler P, Schüller C et al. Excitonic linewidth and coherence lifetime in monolayer transition metal dichalcogenides. Nat Commun 7, 13279 (2016). doi: 10.1038/ncomms13279

    CrossRef Google Scholar

    [30] Wang G, Robert C, Glazov MM, Cadiz F, Courtade E et al. In-plane propagation of light in transition metal dichalcogenide monolayers: optical selection rules. Phys Rev Lett 119, 047401 (2017). doi: 10.1103/PhysRevLett.119.047401

    CrossRef Google Scholar

    [31] Park KD, Jiang T, Clark G, Xu XD, Raschke MB. Radiative control of dark excitons at room temperature by nano-optical antenna-tip Purcell effect. Nat Nanotechnol 13, 59–64 (2018). doi: 10.1038/s41565-017-0003-0

    CrossRef Google Scholar

    [32] You YM, Zhang XX, Berkelbach TC, Hybertsen MS, Reichman DR et al. Observation of biexcitons in monolayer WSe2. Nat Phys 11, 477–481 (2015). doi: 10.1038/nphys3324

    CrossRef Google Scholar

    [33] Shang JZ, Shen XN, Cong CX, Peimyoo N, Cao BC et al. Observation of excitonic fine structure in a 2D transition-metal dichalcogenide semiconductor. ACS Nano 9, 647–655 (2015). doi: 10.1021/nn5059908

    CrossRef Google Scholar

    [34] Nagler P, Ballottin MV, Mitioglu AA, Durnev MV, Taniguchi T et al. Zeeman splitting and inverted polarization of biexciton emission in monolayer WS2. Phys Rev Lett 121, 057402 (2018). doi: 10.1103/PhysRevLett.121.057402

    CrossRef Google Scholar

    [35] Barbone M, Montblanch ARP, Kara DM, Palacios-Berraquero C, Cadore AR et al. Charge-tuneable biexciton complexes in monolayer WSe2. Nat Commun 9, 3721 (2018). doi: 10.1038/s41467-018-05632-4

    CrossRef Google Scholar

    [36] Li ZP, Wang TM, Lu ZG, Jin CH, Chen YW et al. Revealing the biexciton and trion-exciton complexes in BN encapsulated WSe2. Nat Commun 9, 3719 (2018). doi: 10.1038/s41467-018-05863-5

    CrossRef Google Scholar

    [37] Roldán R, Silva-Guillén JA, López-Sancho MP, Guinea F, Cappelluti E et al. Electronic properties of single-layer and multilayer transition metal dichalcogenides MX2 (M = Mo, W and X = S, Se). Ann Phys 526, 347–357 (2014). doi: 10.1002/andp.201400128

    CrossRef Google Scholar

    [38] Lo PY, Peng GH, Li WH, Yang Y, Cheng SJ. Full-zone valley polarization landscape of finite-momentum exciton in transition metal dichalcogenide monolayers. Phys Rev Res 3, 043198 (2021). doi: 10.1103/PhysRevResearch.3.043198

    CrossRef Google Scholar

    [39] Peng GH, Lo PY, Li WH, Huang YC, Chen YH et al. Distinctive signatures of the spin- and momentum-forbidden dark exciton states in the photoluminescence of strained WSe2 monolayers under thermalization. Nano Lett 19, 2299–2312 (2019). doi: 10.1021/acs.nanolett.8b04786

    CrossRef Google Scholar

    [40] Madéo J, Man MKL, Sahoo C, Campbell M, Pareek V et al. Directly visualizing the momentum-forbidden dark excitons and their dynamics in atomically thin semiconductors. Science 370, 1199–1204 (2020). doi: 10.1126/science.aba1029

    CrossRef Google Scholar

    [41] Wallauer R, Perea-Causin R, Munster L, Zajusch S, Brem S et al. Momentum-resolved observation of exciton formation dynamics in monolayer WS2. Nano Lett 21, 5867–5873 (2021). doi: 10.1021/acs.nanolett.1c01839

    CrossRef Google Scholar

    [42] Bao D, Del Águila AG, Do TTH, Liu S, Pei JJ et al. Probing momentum-indirect excitons by near-resonance photoluminescence excitation spectroscopy in WS2 monolayer. 2D Mater 7, 031002 (2020). doi: 10.1088/2053-1583/ab817a

    CrossRef Google Scholar

    [43] He MH, Rivera P, Van Tuan D, Wilson NP, Yang M et al. Valley phonons and exciton complexes in a monolayer semiconductor. Nat Commun 11, 618 (2020). doi: 10.1038/s41467-020-14472-0

    CrossRef Google Scholar

    [44] Plechinger G, Nagler P, Kraus J, Paradiso N, Strunk C et al. Identification of excitons, trions and biexcitons in single-layer WS2. Phys Status Solidi (RRL) - Rapid Res Lett 9, 457–461 (2015). doi: 10.1002/pssr.201510224

    CrossRef Google Scholar

    [45] Paur M, Molina-Mendoza AJ, Bratschitsch R, Watanabe K, Taniguchi T et al. Electroluminescence from multi-particle exciton complexes in transition metal dichalcogenide semiconductors. Nat Commun 10, 1709 (2019). doi: 10.1038/s41467-019-09781-y

    CrossRef Google Scholar

    [46] Shi HY, Yan RS, Bertolazzi S, Brivio J, Gao B et al. Exciton dynamics in suspended monolayer and few-layer MoS2 2D crystals. ACS Nano 7, 1072–1080 (2013). doi: 10.1021/nn303973r

    CrossRef Google Scholar

    [47] Li YZ, Shi J, Mi Y, Sui XY, Xu HY et al. Ultrafast carrier dynamics in two-dimensional transition metal dichalcogenides. J Mater Chem C 7, 4304–4319 (2019). doi: 10.1039/C8TC06343E

    CrossRef Google Scholar

    [48] Chernikov A, Van Der Zande AM, Hill HM, Rigosi AF, Velauthapillai A et al. Electrical tuning of exciton binding energies in monolayer WS2. Phys Rev Lett 115, 126802 (2015). doi: 10.1103/PhysRevLett.115.126802

    CrossRef Google Scholar

    [49] Zibouche N, Philipsen P, Heine T, Kuc A. Electron transport in MoWSeS monolayers in the presence of an external electric field. Phys Chem Chem Phys 16, 11251–11255 (2014). doi: 10.1039/C4CP00966E

    CrossRef Google Scholar

    [50] Li ZP, Wang TM, Lu ZG, Khatoniar M, Lian Z et al. Direct observation of gate-tunable dark trions in monolayer WSe2. Nano Lett 19, 6886–6893 (2019). doi: 10.1021/acs.nanolett.9b02132

    CrossRef Google Scholar

    [51] Van Tuan D, Scharf B, Wang ZF, Shan J, Mak KF et al. Probing many-body interactions in monolayer transition-metal dichalcogenides. Phys Rev B 99, 085301 (2019). doi: 10.1103/PhysRevB.99.085301

    CrossRef Google Scholar

    [52] Roch JG, Miserev D, Froehlicher G, Leisgang N, Sponfeldner L et al. First-order magnetic phase transition of mobile electrons in monolayer MoS2. Phys Rev Lett 124, 187602 (2020). doi: 10.1103/PhysRevLett.124.187602

    CrossRef Google Scholar

    [53] Castellanos-Gomez A, Buscema M, Molenaar R, Singh V, Janssen L et al. Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping. 2D Mater 1, 011002 (2014). doi: 10.1088/2053-1583/1/1/011002

    CrossRef Google Scholar

  • Supplementary information for Switching of K-Q intervalley trions fine structure and their dynamics in n-doped monolayer WS2
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(4)

Article Metrics

Article views(7413) PDF downloads(979) Cited by(0)

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint