Li X, Chen QM, Zhang X, Zhao RZ, Xiao SM et al. Time-sequential color code division multiplexing holographic display with metasurface. Opto-Electron Adv 6, 220060 (2023). doi: 10.29026/oea.2023.220060
Citation: Li X, Chen QM, Zhang X, Zhao RZ, Xiao SM et al. Time-sequential color code division multiplexing holographic display with metasurface. Opto-Electron Adv 6, 220060 (2023). doi: 10.29026/oea.2023.220060

Article Open Access

Time-sequential color code division multiplexing holographic display with metasurface

More Information
  • Color metasurface holograms are powerful and versatile platforms for modulating the amplitude, phase, polarization, and other properties of light at multiple operating wavelengths. However, the current color metasurface holography can only realize static manipulation. In this study, we propose and demonstrate a multiplexing metasurface technique combined with multiwavelength code-division multiplexing (CDM) to realize dynamic manipulation. Multicolor code references are utilized to record information within a single metasurface and increase the information capacity and security for anti-cracks. A total of 48 monochrome images consisting of pure color characters and multilevel color video frames were reconstructed in dual polarization channels of the birefringent metasurface to exhibit high information density, and a video was displayed via sequential illumination of the corresponding code patterns to verify the ability of dynamic manipulation. Our approach demonstrates significant application potential in optical data storage, optical encryption, multiwavelength-versatile diffractive optical elements, and stimulated emission depletion microscopy.
  • 加载中
  • [1] Ackermann G K, Eichler J. Holography: A Practical Approach (WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2007).

    Google Scholar

    [2] Xue GL, Liu J, Li X, Jia J, Zhang Z, et al. Multiplexing encoding method for full-color dynamic 3D holographic display. Opt Express 22, 18473–18482 (2014). doi: 10.1364/OE.22.018473

    CrossRef Google Scholar

    [3] Zheng HD, Zhou CJ, Shui XH, Yu YJ. Computer-generated full-color phase-only hologram using a multiplane iterative algorithm with dynamic compensation. Appl Opt 61, B262–B270 (2022). doi: 10.1364/AO.444756

    CrossRef Google Scholar

    [4] Li X, Liu J, Zhao T, Wang YT. Color dynamic holographic display with wide viewing angle by improved complex amplitude modulation. Opt Express 26, 2349–2358 (2018). doi: 10.1364/OE.26.002349

    CrossRef Google Scholar

    [5] Jia J, Wang YT, Liu J, Li X, Pan YJ, et al. Reducing the memory usage for effectivecomputer-generated hologram calculation using compressed look-up table in full-color holographic display. Appl Opt 52, 1404–1412 (2013). doi: 10.1364/AO.52.001404

    CrossRef Google Scholar

    [6] Li J, Zhang YT, Li JN, Yan X, Liang LJ, et al. Amplitude modulation of anomalously reflected terahertz beams using all-optical active Pancharatnam–Berry coding metasurfaces. Nanoscale 11, 5746–5753 (2019). doi: 10.1039/C9NR00675C

    CrossRef Google Scholar

    [7] Huang K, Liu H, Garcia-Vidal FJ, Hong MH, Luk’yanchuk B, et al. Ultrahigh-capacity non-periodic photon sieves operating in visible light. Nat Commun 6, 7059 (2015). doi: 10.1038/ncomms8059

    CrossRef Google Scholar

    [8] Yu NF, Genevet P, Kats MA, Aieta F, Tetienne JP, et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334, 333–337 (2011). doi: 10.1126/science.1210713

    CrossRef Google Scholar

    [9] Decker M, Staude I, Falkner M, Dominguez J, Neshev DN, et al. High‐efficiency dielectric Huygens’ surfaces. Adv Opt Mater 3, 813–820 (2015). doi: 10.1002/adom.201400584

    CrossRef Google Scholar

    [10] Zhu LX, Liu X, Sain B, Wang MY, Schlickriede C, et al. A dielectric metasurface optical chip for the generation of cold atoms. Sci Adv 6, eabb6667 (2020). doi: 10.1126/sciadv.abb6667

    CrossRef Google Scholar

    [11] Sain B, Meier C, Zentgraf T. Nonlinear optics in all-dielectric nanoantennas and metasurfaces: a review. Adv Photonics 1, 024002 (2019).

    Google Scholar

    [12] Guo XX, Ding YM, Duan Y, Ni XJ. Nonreciprocal metasurface with space–time phase modulation. Light Sci Appl 8, 123 (2019). doi: 10.1038/s41377-019-0225-z

    CrossRef Google Scholar

    [13] Rubin NA, D’Aversa G, Chevalier P, Shi ZJ, Chen WT, et al. Matrix Fourier optics enables a compact full-Stokes polarization camera. Science 365, eaax1839 (2019). doi: 10.1126/science.aax1839

    CrossRef Google Scholar

    [14] Bao YJ, Wen L, Chen Q, Qiu CW, Li BJ. Toward the capacity limit of 2D planar Jones matrix with a single-layer metasurface. Sci Adv 7, eabh0365 (2021). doi: 10.1126/sciadv.abh0365

    CrossRef Google Scholar

    [15] Sroor H, Huang YW, Sephton B, Naidoo D, Vallés A, et al. High-purity orbital angular momentum states from a visible metasurface laser. Nat Photonics 14, 498–503 (2020). doi: 10.1038/s41566-020-0623-z

    CrossRef Google Scholar

    [16] Guo XX, Ding YM, Chen X, Duan Y, Ni XJ. Molding free-space light with guided wave–driven metasurfaces. Sci Adv 6, eabb4142 (2020). doi: 10.1126/sciadv.abb4142

    CrossRef Google Scholar

    [17] Kim J, Yang Y, Badloe T, Kim I, Yoon G, et al. Geometric and physical configurations of meta-atoms for advanced metasurface holography. InfoMat 3, 739–754 (2021). doi: 10.1002/inf2.12191

    CrossRef Google Scholar

    [18] Jung C, Kim G, Jeong M, Jang J, Dong ZG, et al. Metasurface-driven optically variable devices. Chem Rev 121, 13013–13050 (2021). doi: 10.1021/acs.chemrev.1c00294

    CrossRef Google Scholar

    [19] Gao H, Fan XH, Xiong W, Hong MH. Recent advances in optical dynamic meta-holography. Opto-Electron Adv 4, 210030 (2021). doi: 10.29026/oea.2021.210030

    CrossRef Google Scholar

    [20] Zhao RZ, Huang LL, Wang YT. Recent advances in multi-dimensional metasurfaces holographic technologies. PhotoniX 1, 20 (2020). doi: 10.1186/s43074-020-00020-y

    CrossRef Google Scholar

    [21] Wen DD, Cadusch JJ, Meng JJ, Crozier KB. Light field on a chip: metasurface-based multicolor holograms. Adv Photonics 3, 024001 (2021).

    Google Scholar

    [22] Fang XY, Ren HR, Gu M. Orbital angular momentum holography for high-security encryption. Nat Photonics 14, 102–108 (2020). doi: 10.1038/s41566-019-0560-x

    CrossRef Google Scholar

    [23] Kim G, Kim S, Kim H, Lee J, Badloe T, et al. Metasurface-empowered spectral and spatial light modulation for disruptive holographic displays. Nanoscale 14, 4380–4410 (2022). doi: 10.1039/D1NR07909C

    CrossRef Google Scholar

    [24] Li X, Chen LW, Li Y, Zhang XH, Pu MB, et al. Multicolor 3D meta-holography by broadband plasmonic modulation. Sci Adv 2, e1601102 (2016). doi: 10.1126/sciadv.1601102

    CrossRef Google Scholar

    [25] Wan WW, Gao J, Yang XD. Full-color plasmonic metasurface holograms. ACS Nano 10, 10671–10680 (2016). doi: 10.1021/acsnano.6b05453

    CrossRef Google Scholar

    [26] Deng ZL, Jin MK, Ye X, Wang S, Shi T, et al. Full-color complex-amplitude vectorial holograms based on multi-freedom metasurfaces. Adv Funct Mater 30, 1910610 (2020). doi: 10.1002/adfm.201910610

    CrossRef Google Scholar

    [27] Hu YQ, Li L, Wang YJ, Meng M, Jin L, et al. Trichromatic and tripolarization-channel holography with noninterleaved dielectric metasurface. Nano Lett 20, 994–1002 (2020). doi: 10.1021/acs.nanolett.9b04107

    CrossRef Google Scholar

    [28] Wang B, Dong FL, Li QT, Yang D, Sun CW, et al. Visible-frequency dielectric metasurfaces for multiwavelength achromatic and highly dispersive holograms. Nano Lett 16, 5235–5240 (2016). doi: 10.1021/acs.nanolett.6b02326

    CrossRef Google Scholar

    [29] Huang YW, Chen WT, Tsai WY, Wu PC, Wang CM, et al. Aluminum plasmonic multicolor meta-hologram. Nano Lett 15, 3122–3127 (2015). doi: 10.1021/acs.nanolett.5b00184

    CrossRef Google Scholar

    [30] Bao YJ, Yu Y, Xu HF, Guo C, Li JT, et al. Full-colour nanoprint-hologram synchronous metasurface with arbitrary hue-saturation-brightness control. Light Sci Appl 8, 95 (2019). doi: 10.1038/s41377-019-0206-2

    CrossRef Google Scholar

    [31] Wei QS, Sain B, Wang YT, Reineke B, Li XW, et al. Simultaneous spectral and spatial modulation for color printing and holography using all-dielectric metasurfaces. Nano Lett 19, 8964–8971 (2019). doi: 10.1021/acs.nanolett.9b03957

    CrossRef Google Scholar

    [32] Kim I, Jeong H, Kim J, Yang Y, Lee D, et al. Dual-band operating metaholograms with heterogeneous meta-atoms in the visible and near-infrared. Adv Opt Mater 9, 2100609 (2021). doi: 10.1002/adom.202100609

    CrossRef Google Scholar

    [33] Kim J, Jeon D, Seong J, Badloe T, Jeon N, et al. Photonic encryption platform via dual-band vectorial metaholograms in the ultraviolet and visible. ACS Nano 16, 3546–3553 (2022). doi: 10.1021/acsnano.1c10100

    CrossRef Google Scholar

    [34] Frese D, Wei QS, Wang YT, Cinchetti M, Huang LL, et al. Nonlinear bicolor holography using plasmonic metasurfaces. ACS Photonics 8, 1013–1019 (2021). doi: 10.1021/acsphotonics.1c00028

    CrossRef Google Scholar

    [35] Yoon G, Kim J, Mun J, Lee D, Nam KT, et al. Wavelength-decoupled geometric metasurfaces by arbitrary dispersion control. Commun Phys 2, 129 (2019). doi: 10.1038/s42005-019-0232-7

    CrossRef Google Scholar

    [36] Shi ZJ, Khorasaninejad M, Huang YW, Roques-Carmes C, Zhu AY, et al. Single-layer metasurface with controllable multiwavelength functions. Nano Lett 18, 2420–2427 (2018). doi: 10.1021/acs.nanolett.7b05458

    CrossRef Google Scholar

    [37] Shaltout AM, Shalaev VM, Brongersma ML. Spatiotemporal light control with active metasurfaces. Science 364, eaat3100 (2019). doi: 10.1126/science.aat3100

    CrossRef Google Scholar

    [38] Kim J, Seong J, Yang Y, Moon SW, Badloe T, et al. Tunable metasurfaces towards versatile metalenses and metaholograms: a review. Adv Photonics 4, 024001 (2022).

    Google Scholar

    [39] Kim I, Kim WS, Kim K, Ansari MA, Mehmood MQ, et al. Holographic metasurface gas sensors for instantaneous visual alarms. Sci Adv 7, eabe9943 (2021). doi: 10.1126/sciadv.abe9943

    CrossRef Google Scholar

    [40] Kim I, Jang J, Kim G, Lee J, Badloe T, et al. Pixelated bifunctional metasurface-driven dynamic vectorial holographic color prints for photonic security platform. Nat Commun 12, 3614 (2021). doi: 10.1038/s41467-021-23814-5

    CrossRef Google Scholar

    [41] Li X, Zhao RZ, Wei QS, Geng GZ, Li JJ, et al. Code division multiplexing inspired dynamic metasurface holography. Adv Funct Mater 31, 2103326 (2021). doi: 10.1002/adfm.202103326

    CrossRef Google Scholar

    [42] Rao R, Dianat S. Basics of Code Division Multiple Access (CDMA) (SPIE, Bellingham, Washington, 2005).

    Google Scholar

    [43] Cox IJ, Sheppard CJR. Information capacity and resolution in an optical system. J Opt Soc Am A 3, 1152–1158 (1986). doi: 10.1364/JOSAA.3.001152

    CrossRef Google Scholar

    [44] Zhan T, Xiong JH, Zou JY, Wu ST. Multifocal displays: review and prospect. PhotoniX 1, 10 (2020). doi: 10.1186/s43074-020-00010-0

    CrossRef Google Scholar

    [45] Bao YJ, Yan JH, Yang XG, Qiu CW, Li BJ. Point-source geometric metasurface holography. Nano Lett 21, 2332–2338 (2021). doi: 10.1021/acs.nanolett.0c04485

    CrossRef Google Scholar

    [46] Ren HR, Fang XY, Jang J, Bürger J, Rho J, et al. Complex-amplitude metasurface-based orbital angular momentum holography in momentum space. Nat Nanotechnol 15, 948–955 (2020). doi: 10.1038/s41565-020-0768-4

    CrossRef Google Scholar

  • Supplementary information for Time-sequential color code division multiplexing holographic display with metasurface
    Supplementary video
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Article Metrics

Article views(9577) PDF downloads(1516) Cited by(0)

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint