Zheng Z, Xu L, Huang LJ, Smirnova D, Kamali KZ et al. Third-harmonic generation and imaging with resonant Si membrane metasurface. Opto-Electron Adv 6, 220174 (2023). doi: 10.29026/oea.2023.220174
Citation: Zheng Z, Xu L, Huang LJ, Smirnova D, Kamali KZ et al. Third-harmonic generation and imaging with resonant Si membrane metasurface. Opto-Electron Adv 6, 220174 (2023). doi: 10.29026/oea.2023.220174

Article Open Access

Third-harmonic generation and imaging with resonant Si membrane metasurface

More Information
  • Dielectric metasurfaces play an increasingly important role in enhancing optical nonlinear generations owing to their ability to support strong light-matter interactions based on Mie-type multipolar resonances. Compared to metasurfaces composed of the periodic arrangement of nanoparticles, inverse, so-called, membrane metasurfaces offer unique possibilities for supporting multipolar resonances, while maintaining small unit cell size, large mode volume and high field enhancement for enhancing nonlinear frequency conversion. Here, we theoretically and experimentally investigate the formation of bound states in the continuum (BICs) from silicon dimer-hole membrane metasurfaces. We demonstrate that our BIC-formed resonance features a strong and tailorable electric near-field confinement inside the silicon membrane films. Furthermore, we show that by tuning the gap between the holes, one can open a leaky channel to transform these regular BICs into quasi-BICs, which can be excited directly under normal plane wave incidence. To prove the capabilities of such metasurfaces, we demonstrate the conversion of an infrared image to the visible range, based on the Third-harmonic generation (THG) process with the resonant membrane metasurfaces. Our results suggest a new paradigm for realising efficient nonlinear photonics metadevices and hold promise for extending the applications of nonlinear structuring surfaces to new types of all-optical near-infrared imaging technologies.
  • 加载中
  • [1] Mesch M, Metzger B, Hentschel M, Giessen H. Nonlinear plasmonic sensing. Nano Lett 16, 3155–3159 (2016). doi: 10.1021/acs.nanolett.6b00478

    CrossRef Google Scholar

    [2] Abarca A, Gómez-Sal P, Martín A, Mena M, Poblet JM et al. Ammonolysis of mono(pentamethylcyclopentadienyl) titanium(IV) derivatives. Inorg Chem 39, 642–651 (2000). doi: 10.1021/ic9907718

    CrossRef Google Scholar

    [3] Verma MS, Chandra M. Nonlinear plasmonic sensing for label-free and selective detection of mercury at picomolar level. ACS Sens 5, 645–649 (2020). doi: 10.1021/acssensors.9b02404

    CrossRef Google Scholar

    [4] Kravtsov V, Ulbricht R, Atkin JM, Raschke MB. Plasmonic nanofocused four-wave mixing for femtosecond near-field imaging. Nat Nanotechnol 11, 459–464 (2016). doi: 10.1038/nnano.2015.336

    CrossRef Google Scholar

    [5] Deka G, Sun CK, Fujita K, Chu SW. Nonlinear plasmonic imaging techniques and their biological applications. Nanophotonics 6, 31–49 (2017). doi: 10.1515/nanoph-2015-0149

    CrossRef Google Scholar

    [6] Frischwasser K, Cohen K, Kher-Alden J, Dolev S, Tsesses S et al. Real-time sub-wavelength imaging of surface waves with nonlinear near-field optical microscopy. Nat Photonics 15, 442–448 (2021). doi: 10.1038/s41566-021-00782-2

    CrossRef Google Scholar

    [7] Wang K, Titchener JG, Kruk SS, Xu L, Chung HP et al. Quantum metasurface for multiphoton interference and state reconstruction. Science 361, 1104–1108 (2018). doi: 10.1126/science.aat8196

    CrossRef Google Scholar

    [8] Stav T, Faerman A, Maguid E, Oren D, Kleiner V et al. Quantum entanglement of the spin and orbital angular momentum of photons using metamaterials. Science 361, 1101–1104 (2018). doi: 10.1126/science.aat9042

    CrossRef Google Scholar

    [9] Marino G, Solntsev AS, Xu L, Gili VF, Carletti L et al. Spontaneous photon-pair generation from a dielectric nanoantenna. Optica 6, 1416–1422 (2019). doi: 10.1364/OPTICA.6.001416

    CrossRef Google Scholar

    [10] Santiago-Cruz T, Fedotova A, Sultanov V, Weissflog MA, Arslan D et al. Photon pairs from resonant metasurfaces. Nano Lett 21, 4423–4429 (2021). doi: 10.1021/acs.nanolett.1c01125

    CrossRef Google Scholar

    [11] Parry M, Mazzanti A, Poddubny AN, Della Valle G, Neshev DN et al. Enhanced generation of nondegenerate photon pairs in nonlinear metasurfaces. Advanced Photonics 3, 055001 (2021). doi: 10.1117/1.AP.3.5.055001

    CrossRef Google Scholar

    [12] Liu J, Shi MQ, Chen Z, Wang SM, Wang ZL et al. Quantum photonics based on metasurfaces. Opto-Electron Adv 4, 200092 (2021). doi: 10.29026/oea.2021.200092

    CrossRef Google Scholar

    [13] Li GX, Zhang S, Zentgraf T. Nonlinear photonic metasurfaces. Nat Rev Mater 2, 17010 (2017). doi: 10.1038/natrevmats.2017.10

    CrossRef Google Scholar

    [14] Grinblat G. Nonlinear dielectric nanoantennas and metasurfaces: frequency conversion and wavefront control. ACS Photonics 8, 3406–3432 (2021). doi: 10.1021/acsphotonics.1c01356

    CrossRef Google Scholar

    [15] Gigli C, Leo G. All-dielectric χ(2) metasurfaces: recent progress. Opto-Electron Adv 5, 210093 (2022). doi: 10.29026/oea.2022.210093

    CrossRef Google Scholar

    [16] Fu R, Chen KX, Li ZL, Yu SH, Zheng GX. Metasurface-based nanoprinting: principle, design and advances. Opto-Electron Sci 1, 220011 (2022). doi: 10.29026/oes.2022.220011

    CrossRef Google Scholar

    [17] Bonacina L, Brevet PF, Finazzi M, Celebrano M. Harmonic generation at the nanoscale. J Appl Phys 127, 230901 (2020). doi: 10.1063/5.0006093

    CrossRef Google Scholar

    [18] Gao XW, Hsu CW, Zhen B, Lin X, Joannopoulos JD et al. Formation mechanism of guided resonances and bound states in the continuum in photonic crystal slabs. Sci Rep 6, 31908 (2016). doi: 10.1038/srep31908

    CrossRef Google Scholar

    [19] Jin JC, Lu J, Zhen B. Resonance-forbidden second-harmonic generation in nonlinear photonic crystals. Nanophotonics 10, 4233–4239 (2021). doi: 10.1515/nanoph-2021-0379

    CrossRef Google Scholar

    [20] Huang LJ, Yu YL, Cao LY. General modal properties of optical resonances in subwavelength nonspherical dielectric structures. Nano Lett 13, 3559–3565 (2013). doi: 10.1021/nl401150j

    CrossRef Google Scholar

    [21] Huang LJ, Xu L, Rahmani M, Neshev DN, Miroshnichenko AE. Pushing the limit of high-Q mode of a single dielectric nanocavity. Adv Photonics 3, 016004 (2021). doi: 10.1117/1.AP.3.1.016004

    CrossRef Google Scholar

    [22] Smirnova D, Kivshar YS. Multipolar nonlinear nanophotonics. Optica 3, 1241–1255 (2016). doi: 10.1364/OPTICA.3.001241

    CrossRef Google Scholar

    [23] Cui J H, Ma X L, Pu M B et al. Extraordinary strong optical rotation in weak chiral metasurface. Opto-Electron Eng 47, 190052 (2020). doi: 10.12086/oee.2020.190052

    CrossRef Google Scholar

    [24] Lyu J, Rondepierre F, Jonin C, Brevet PF, Hamon C et al. Shape-controlled second-harmonic scattering from gold nanotetrapods. J Phys Chem C 126, 9831–9835 (2022). doi: 10.1021/acs.jpcc.2c01867

    CrossRef Google Scholar

    [25] Celebrano M, Rocco D, Gandolfi M, Zilli A, Rusconi F et al. Optical tuning of dielectric nanoantennas for thermo-optically reconfigurable nonlinear metasurfaces. Opt Lett 46, 2453–2456 (2021). doi: 10.1364/OL.420790

    CrossRef Google Scholar

    [26] Carletti L, Zilli A, Moia F, Toma A, Finazzi M et al. Steering and encoding the polarization of the second harmonic in the visible with a monolithic LiNbO3 metasurface. ACS Photonics 8, 731–737 (2021). doi: 10.1021/acsphotonics.1c00026

    CrossRef Google Scholar

    [27] Vabishchevich PP, Liu S, Sinclair MB, Keeler GA, Peake GM et al. Enhanced second-harmonic generation using broken symmetry III–V semiconductor fano metasurfaces. ACS Photonics 5, 1685–1690 (2018). doi: 10.1021/acsphotonics.7b01478

    CrossRef Google Scholar

    [28] Löchner FJF, Fedotova AN, Liu S, Keeler GA, Peake GM et al. Polarization-dependent second harmonic diffraction from resonant GaAs metasurfaces. ACS Photonics 5, 1786–1793 (2018). doi: 10.1021/acsphotonics.7b01533

    CrossRef Google Scholar

    [29] Liu S, Sinclair MB, Saravi S, Keeler GA, Yang YM et al. Resonantly enhanced second-harmonic generation using III–V semiconductor all-dielectric metasurfaces. Nano Lett 16, 5426–5432 (2016). doi: 10.1021/acs.nanolett.6b01816

    CrossRef Google Scholar

    [30] Okhlopkov KI, Zilli A, Tognazzi A, Rocco D, Fagiani L et al. Tailoring third-harmonic diffraction efficiency by hybrid modes in high-Q metasurfaces. Nano Lett 21, 10438–10445 (2021). doi: 10.1021/acs.nanolett.1c03790

    CrossRef Google Scholar

    [31] Gandolfi M, Tognazzi A, Rocco D, De Angelis C, Carletti L. Near-unity third-harmonic circular dichroism driven by a quasibound state in the continuum in asymmetric silicon metasurfaces. Phys Rev A 104, 023524 (2021). doi: 10.1103/PhysRevA.104.023524

    CrossRef Google Scholar

    [32] Xu L, Smirnova DA, Camacho-Morales R, Aoni RA, Kamali KZ et al. Enhanced four-wave mixing from multi-resonant silicon dimer-hole membrane metasurfaces. New J Phys 24, 035002 (2022). doi: 10.1088/1367-2630/ac55b2

    CrossRef Google Scholar

    [33] Carletti L, Kruk SS, Bogdanov AA, De Angelis C, Kivshar Y. High-harmonic generation at the nanoscale boosted by bound states in the continuum. Phys Rev Res 1, 023016 (2019). doi: 10.1103/PhysRevResearch.1.023016

    CrossRef Google Scholar

    [34] Hsu CW, Zhen B, Stone AD, Joannopoulos JD, Soljačić M. Bound states in the continuum. Nat Rev Mater 1, 16048 (2016). doi: 10.1038/natrevmats.2016.48

    CrossRef Google Scholar

    [35] Anthur AP, Zhang HZ, Paniagua-Dominguez R, Kalashnikov DA, Ha ST et al. Continuous wave second harmonic generation enabled by quasi-bound-states in the continuum on gallium phosphide metasurfaces. Nano Lett 20, 8745–8751 (2020). doi: 10.1021/acs.nanolett.0c03601

    CrossRef Google Scholar

    [36] Koshelev K, Tang YT, Li KF, Choi DY, Li GX et al. Nonlinear metasurfaces governed by bound states in the continuum. ACS Photonics 6, 1639–1644 (2019). doi: 10.1021/acsphotonics.9b00700

    CrossRef Google Scholar

    [37] Xu L, Zangeneh Kamali K, Huang LJ, Rahmani M, Smirnov A et al. Dynamic nonlinear image tuning through magnetic dipole quasi-BIC ultrathin resonators. Adv Sci 6, 1802119 (2019). doi: 10.1002/advs.201802119

    CrossRef Google Scholar

    [38] Hsu CW, Zhen B, Lee J, Chua SL, Johnson SG et al. Observation of trapped light within the radiation continuum. Nature 499, 188–191 (2013). doi: 10.1038/nature12289

    CrossRef Google Scholar

    [39] Yin XF, Jin JC, Soljačić M, Peng C, Zhen B. Observation of topologically enabled unidirectional guided resonances. Nature 580, 467–471 (2020). doi: 10.1038/s41586-020-2181-4

    CrossRef Google Scholar

    [40] Hong PL, Xu L, Rahmani M. Dual bound states in the continuum enhanced second harmonic generation with transition metal dichalcogenides monolayer. Opto-Electron Adv 5, 200097 (2022). doi: 10.29026/oea.2022.200097

    CrossRef Google Scholar

    [41] Yang QL, Liu MK, Kruk S, Xu YH, Srivastava YK et al. Polarization-sensitive dielectric membrane metasurfaces. Adv Opt Mater 8, 2000555 (2020). doi: 10.1002/adom.202000555

    CrossRef Google Scholar

    [42] Yang QL, Kruk S, Xu YH, Wang QW, Srivastava YK et al. Mie-resonant membrane huygens’ metasurfaces. Adv Funct Mater 30, 1906851 (2020). doi: 10.1002/adfm.201906851

    CrossRef Google Scholar

    [43] Tognazzi A, Rocco D, Gandolfi M, Locatelli A, Carletti L et al. High quality factor silicon membrane metasurface for intensity-based refractive index sensing. Optics 2, 193–199 (2021). doi: 10.3390/opt2030018

    CrossRef Google Scholar

    [44] Jin JC, Yin XF, Ni LF, Soljačić M, Zhen B et al. Topologically enabled ultrahigh-Q guided resonances robust to out-of-plane scattering. Nature 574, 501–504 (2019). doi: 10.1038/s41586-019-1664-7

    CrossRef Google Scholar

    [45] Burns PN, Simpson DH, Averkiou MA. Nonlinear imaging. Ultrasound Med Biol 26, S19–S22 (2000). doi: 10.1016/S0301-5629(00)00155-1

    CrossRef Google Scholar

    [46] Del Rocio Camacho-Morales M, Rocco D, Xu L, Gili VF, Dimitrov N et al. Infrared upconversion imaging in nonlinear metasurfaces. Adv Photonics 3, 036002 (2021). doi: 10.1117/1.AP.3.3.036002

    CrossRef Google Scholar

    [47] Schlickriede C, Kruk SS, Wang L, Sain B, Kivshar Y et al. Nonlinear imaging with all-dielectric metasurfaces. Nano Lett 20, 4370–4376 (2020). doi: 10.1021/acs.nanolett.0c01105

    CrossRef Google Scholar

    [48] Johnson SG, Joannopoulos JD. Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis. Opt Express 8, 173–190 (2001). doi: 10.1364/OE.8.000173

    CrossRef Google Scholar

    [49] He Y, Guo GT, Feng TH, Xu Y, Miroshnichenko AE. Toroidal dipole bound states in the continuum. Phys Rev B 98, 161112 (2018). doi: 10.1103/PhysRevB.98.161112

    CrossRef Google Scholar

    [50] Gurvitz EA, Ladutenko KS, Dergachev PA, Evlyukhin AB, Miroshnichenko AE et al. The high-order toroidal moments and anapole states in all-dielectric photonics. Laser Photonics Rev 13, 1800266 (2019). doi: 10.1002/lpor.201800266

    CrossRef Google Scholar

    [51] Grahn P, Shevchenko A, Kaivola M. Electromagnetic multipole theory for optical nanomaterials. New J Phys 14, 093033 (2012). doi: 10.1088/1367-2630/14/9/093033

    CrossRef Google Scholar

    [52] Campione S, Liu S, Basilio LI, Warne LK, Langston WL et al. Broken symmetry dielectric resonators for high quality factor Fano Metasurfaces. ACS Photonics 3, 2362–2367 (2016). doi: 10.1021/acsphotonics.6b00556

    CrossRef Google Scholar

    [53] Liu ZJ, Xu Y, Lin Y, Xiang J, Feng TH et al. High-Q quasibound states in the continuum for nonlinear metasurfaces. Phys Rev Lett 123, 253901 (2019). doi: 10.1103/PhysRevLett.123.253901

    CrossRef Google Scholar

    [54] Volkovskaya I, Xu L, Huang LJ, Smirnov AI, Miroshnichenko AE et al. Multipolar second-harmonic generation from high-Q quasi-BIC states in subwavelength resonators. Nanophotonics 9, 3953–3963 (2020). doi: 10.1515/nanoph-2020-0156

    CrossRef Google Scholar

    [55] Shcherbakov MR, Neshev DN, Hopkins B, Shorokhov AS, Staude I et al. Enhanced third-harmonic generation in silicon nanoparticles driven by magnetic response. Nano Lett 14, 6488–6492 (2014). doi: 10.1021/nl503029j

    CrossRef Google Scholar

    [56] Yang YM, Wang WY, Boulesbaa A, Kravchenko II, Briggs DP et al. Nonlinear Fano-resonant dielectric metasurfaces. Nano Lett 15, 7388–7393 (2015). doi: 10.1021/acs.nanolett.5b02802

    CrossRef Google Scholar

  • Supplementary information for Third-harmonic generation and imaging with resonant Si membrane metasurface
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Article Metrics

Article views() PDF downloads() Cited by()

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint