Citation: | Zheng Z, Xu L, Huang LJ, Smirnova D, Kamali KZ et al. Third-harmonic generation and imaging with resonant Si membrane metasurface. Opto-Electron Adv 6, 220174 (2023). doi: 10.29026/oea.2023.220174 |
[1] | Mesch M, Metzger B, Hentschel M, Giessen H. Nonlinear plasmonic sensing. Nano Lett 16, 3155–3159 (2016). doi: 10.1021/acs.nanolett.6b00478 |
[2] | Abarca A, Gómez-Sal P, Martín A, Mena M, Poblet JM et al. Ammonolysis of mono(pentamethylcyclopentadienyl) titanium(IV) derivatives. Inorg Chem 39, 642–651 (2000). doi: 10.1021/ic9907718 |
[3] | Verma MS, Chandra M. Nonlinear plasmonic sensing for label-free and selective detection of mercury at picomolar level. ACS Sens 5, 645–649 (2020). doi: 10.1021/acssensors.9b02404 |
[4] | Kravtsov V, Ulbricht R, Atkin JM, Raschke MB. Plasmonic nanofocused four-wave mixing for femtosecond near-field imaging. Nat Nanotechnol 11, 459–464 (2016). doi: 10.1038/nnano.2015.336 |
[5] | Deka G, Sun CK, Fujita K, Chu SW. Nonlinear plasmonic imaging techniques and their biological applications. Nanophotonics 6, 31–49 (2017). doi: 10.1515/nanoph-2015-0149 |
[6] | Frischwasser K, Cohen K, Kher-Alden J, Dolev S, Tsesses S et al. Real-time sub-wavelength imaging of surface waves with nonlinear near-field optical microscopy. Nat Photonics 15, 442–448 (2021). doi: 10.1038/s41566-021-00782-2 |
[7] | Wang K, Titchener JG, Kruk SS, Xu L, Chung HP et al. Quantum metasurface for multiphoton interference and state reconstruction. Science 361, 1104–1108 (2018). doi: 10.1126/science.aat8196 |
[8] | Stav T, Faerman A, Maguid E, Oren D, Kleiner V et al. Quantum entanglement of the spin and orbital angular momentum of photons using metamaterials. Science 361, 1101–1104 (2018). doi: 10.1126/science.aat9042 |
[9] | Marino G, Solntsev AS, Xu L, Gili VF, Carletti L et al. Spontaneous photon-pair generation from a dielectric nanoantenna. Optica 6, 1416–1422 (2019). doi: 10.1364/OPTICA.6.001416 |
[10] | Santiago-Cruz T, Fedotova A, Sultanov V, Weissflog MA, Arslan D et al. Photon pairs from resonant metasurfaces. Nano Lett 21, 4423–4429 (2021). doi: 10.1021/acs.nanolett.1c01125 |
[11] | Parry M, Mazzanti A, Poddubny AN, Della Valle G, Neshev DN et al. Enhanced generation of nondegenerate photon pairs in nonlinear metasurfaces. Advanced Photonics 3, 055001 (2021). doi: 10.1117/1.AP.3.5.055001 |
[12] | Liu J, Shi MQ, Chen Z, Wang SM, Wang ZL et al. Quantum photonics based on metasurfaces. Opto-Electron Adv 4, 200092 (2021). doi: 10.29026/oea.2021.200092 |
[13] | Li GX, Zhang S, Zentgraf T. Nonlinear photonic metasurfaces. Nat Rev Mater 2, 17010 (2017). doi: 10.1038/natrevmats.2017.10 |
[14] | Grinblat G. Nonlinear dielectric nanoantennas and metasurfaces: frequency conversion and wavefront control. ACS Photonics 8, 3406–3432 (2021). doi: 10.1021/acsphotonics.1c01356 |
[15] | Gigli C, Leo G. All-dielectric χ(2) metasurfaces: recent progress. Opto-Electron Adv 5, 210093 (2022). doi: 10.29026/oea.2022.210093 |
[16] | Fu R, Chen KX, Li ZL, Yu SH, Zheng GX. Metasurface-based nanoprinting: principle, design and advances. Opto-Electron Sci 1, 220011 (2022). doi: 10.29026/oes.2022.220011 |
[17] | Bonacina L, Brevet PF, Finazzi M, Celebrano M. Harmonic generation at the nanoscale. J Appl Phys 127, 230901 (2020). doi: 10.1063/5.0006093 |
[18] | Gao XW, Hsu CW, Zhen B, Lin X, Joannopoulos JD et al. Formation mechanism of guided resonances and bound states in the continuum in photonic crystal slabs. Sci Rep 6, 31908 (2016). doi: 10.1038/srep31908 |
[19] | Jin JC, Lu J, Zhen B. Resonance-forbidden second-harmonic generation in nonlinear photonic crystals. Nanophotonics 10, 4233–4239 (2021). doi: 10.1515/nanoph-2021-0379 |
[20] | Huang LJ, Yu YL, Cao LY. General modal properties of optical resonances in subwavelength nonspherical dielectric structures. Nano Lett 13, 3559–3565 (2013). doi: 10.1021/nl401150j |
[21] | Huang LJ, Xu L, Rahmani M, Neshev DN, Miroshnichenko AE. Pushing the limit of high-Q mode of a single dielectric nanocavity. Adv Photonics 3, 016004 (2021). doi: 10.1117/1.AP.3.1.016004 |
[22] | Smirnova D, Kivshar YS. Multipolar nonlinear nanophotonics. Optica 3, 1241–1255 (2016). doi: 10.1364/OPTICA.3.001241 |
[23] | Cui J H, Ma X L, Pu M B et al. Extraordinary strong optical rotation in weak chiral metasurface. Opto-Electron Eng 47, 190052 (2020). doi: 10.12086/oee.2020.190052 |
[24] | Lyu J, Rondepierre F, Jonin C, Brevet PF, Hamon C et al. Shape-controlled second-harmonic scattering from gold nanotetrapods. J Phys Chem C 126, 9831–9835 (2022). doi: 10.1021/acs.jpcc.2c01867 |
[25] | Celebrano M, Rocco D, Gandolfi M, Zilli A, Rusconi F et al. Optical tuning of dielectric nanoantennas for thermo-optically reconfigurable nonlinear metasurfaces. Opt Lett 46, 2453–2456 (2021). doi: 10.1364/OL.420790 |
[26] | Carletti L, Zilli A, Moia F, Toma A, Finazzi M et al. Steering and encoding the polarization of the second harmonic in the visible with a monolithic LiNbO3 metasurface. ACS Photonics 8, 731–737 (2021). doi: 10.1021/acsphotonics.1c00026 |
[27] | Vabishchevich PP, Liu S, Sinclair MB, Keeler GA, Peake GM et al. Enhanced second-harmonic generation using broken symmetry III–V semiconductor fano metasurfaces. ACS Photonics 5, 1685–1690 (2018). doi: 10.1021/acsphotonics.7b01478 |
[28] | Löchner FJF, Fedotova AN, Liu S, Keeler GA, Peake GM et al. Polarization-dependent second harmonic diffraction from resonant GaAs metasurfaces. ACS Photonics 5, 1786–1793 (2018). doi: 10.1021/acsphotonics.7b01533 |
[29] | Liu S, Sinclair MB, Saravi S, Keeler GA, Yang YM et al. Resonantly enhanced second-harmonic generation using III–V semiconductor all-dielectric metasurfaces. Nano Lett 16, 5426–5432 (2016). doi: 10.1021/acs.nanolett.6b01816 |
[30] | Okhlopkov KI, Zilli A, Tognazzi A, Rocco D, Fagiani L et al. Tailoring third-harmonic diffraction efficiency by hybrid modes in high-Q metasurfaces. Nano Lett 21, 10438–10445 (2021). doi: 10.1021/acs.nanolett.1c03790 |
[31] | Gandolfi M, Tognazzi A, Rocco D, De Angelis C, Carletti L. Near-unity third-harmonic circular dichroism driven by a quasibound state in the continuum in asymmetric silicon metasurfaces. Phys Rev A 104, 023524 (2021). doi: 10.1103/PhysRevA.104.023524 |
[32] | Xu L, Smirnova DA, Camacho-Morales R, Aoni RA, Kamali KZ et al. Enhanced four-wave mixing from multi-resonant silicon dimer-hole membrane metasurfaces. New J Phys 24, 035002 (2022). doi: 10.1088/1367-2630/ac55b2 |
[33] | Carletti L, Kruk SS, Bogdanov AA, De Angelis C, Kivshar Y. High-harmonic generation at the nanoscale boosted by bound states in the continuum. Phys Rev Res 1, 023016 (2019). doi: 10.1103/PhysRevResearch.1.023016 |
[34] | Hsu CW, Zhen B, Stone AD, Joannopoulos JD, Soljačić M. Bound states in the continuum. Nat Rev Mater 1, 16048 (2016). doi: 10.1038/natrevmats.2016.48 |
[35] | Anthur AP, Zhang HZ, Paniagua-Dominguez R, Kalashnikov DA, Ha ST et al. Continuous wave second harmonic generation enabled by quasi-bound-states in the continuum on gallium phosphide metasurfaces. Nano Lett 20, 8745–8751 (2020). doi: 10.1021/acs.nanolett.0c03601 |
[36] | Koshelev K, Tang YT, Li KF, Choi DY, Li GX et al. Nonlinear metasurfaces governed by bound states in the continuum. ACS Photonics 6, 1639–1644 (2019). doi: 10.1021/acsphotonics.9b00700 |
[37] | Xu L, Zangeneh Kamali K, Huang LJ, Rahmani M, Smirnov A et al. Dynamic nonlinear image tuning through magnetic dipole quasi-BIC ultrathin resonators. Adv Sci 6, 1802119 (2019). doi: 10.1002/advs.201802119 |
[38] | Hsu CW, Zhen B, Lee J, Chua SL, Johnson SG et al. Observation of trapped light within the radiation continuum. Nature 499, 188–191 (2013). doi: 10.1038/nature12289 |
[39] | Yin XF, Jin JC, Soljačić M, Peng C, Zhen B. Observation of topologically enabled unidirectional guided resonances. Nature 580, 467–471 (2020). doi: 10.1038/s41586-020-2181-4 |
[40] | Hong PL, Xu L, Rahmani M. Dual bound states in the continuum enhanced second harmonic generation with transition metal dichalcogenides monolayer. Opto-Electron Adv 5, 200097 (2022). doi: 10.29026/oea.2022.200097 |
[41] | Yang QL, Liu MK, Kruk S, Xu YH, Srivastava YK et al. Polarization-sensitive dielectric membrane metasurfaces. Adv Opt Mater 8, 2000555 (2020). doi: 10.1002/adom.202000555 |
[42] | Yang QL, Kruk S, Xu YH, Wang QW, Srivastava YK et al. Mie-resonant membrane huygens’ metasurfaces. Adv Funct Mater 30, 1906851 (2020). doi: 10.1002/adfm.201906851 |
[43] | Tognazzi A, Rocco D, Gandolfi M, Locatelli A, Carletti L et al. High quality factor silicon membrane metasurface for intensity-based refractive index sensing. Optics 2, 193–199 (2021). doi: 10.3390/opt2030018 |
[44] | Jin JC, Yin XF, Ni LF, Soljačić M, Zhen B et al. Topologically enabled ultrahigh-Q guided resonances robust to out-of-plane scattering. Nature 574, 501–504 (2019). doi: 10.1038/s41586-019-1664-7 |
[45] | Burns PN, Simpson DH, Averkiou MA. Nonlinear imaging. Ultrasound Med Biol 26, S19–S22 (2000). doi: 10.1016/S0301-5629(00)00155-1 |
[46] | Del Rocio Camacho-Morales M, Rocco D, Xu L, Gili VF, Dimitrov N et al. Infrared upconversion imaging in nonlinear metasurfaces. Adv Photonics 3, 036002 (2021). doi: 10.1117/1.AP.3.3.036002 |
[47] | Schlickriede C, Kruk SS, Wang L, Sain B, Kivshar Y et al. Nonlinear imaging with all-dielectric metasurfaces. Nano Lett 20, 4370–4376 (2020). doi: 10.1021/acs.nanolett.0c01105 |
[48] | Johnson SG, Joannopoulos JD. Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis. Opt Express 8, 173–190 (2001). doi: 10.1364/OE.8.000173 |
[49] | He Y, Guo GT, Feng TH, Xu Y, Miroshnichenko AE. Toroidal dipole bound states in the continuum. Phys Rev B 98, 161112 (2018). doi: 10.1103/PhysRevB.98.161112 |
[50] | Gurvitz EA, Ladutenko KS, Dergachev PA, Evlyukhin AB, Miroshnichenko AE et al. The high-order toroidal moments and anapole states in all-dielectric photonics. Laser Photonics Rev 13, 1800266 (2019). doi: 10.1002/lpor.201800266 |
[51] | Grahn P, Shevchenko A, Kaivola M. Electromagnetic multipole theory for optical nanomaterials. New J Phys 14, 093033 (2012). doi: 10.1088/1367-2630/14/9/093033 |
[52] | Campione S, Liu S, Basilio LI, Warne LK, Langston WL et al. Broken symmetry dielectric resonators for high quality factor Fano Metasurfaces. ACS Photonics 3, 2362–2367 (2016). doi: 10.1021/acsphotonics.6b00556 |
[53] | Liu ZJ, Xu Y, Lin Y, Xiang J, Feng TH et al. High-Q quasibound states in the continuum for nonlinear metasurfaces. Phys Rev Lett 123, 253901 (2019). doi: 10.1103/PhysRevLett.123.253901 |
[54] | Volkovskaya I, Xu L, Huang LJ, Smirnov AI, Miroshnichenko AE et al. Multipolar second-harmonic generation from high-Q quasi-BIC states in subwavelength resonators. Nanophotonics 9, 3953–3963 (2020). doi: 10.1515/nanoph-2020-0156 |
[55] | Shcherbakov MR, Neshev DN, Hopkins B, Shorokhov AS, Staude I et al. Enhanced third-harmonic generation in silicon nanoparticles driven by magnetic response. Nano Lett 14, 6488–6492 (2014). doi: 10.1021/nl503029j |
[56] | Yang YM, Wang WY, Boulesbaa A, Kravchenko II, Briggs DP et al. Nonlinear Fano-resonant dielectric metasurfaces. Nano Lett 15, 7388–7393 (2015). doi: 10.1021/acs.nanolett.5b02802 |
Supplementary information for Third-harmonic generation and imaging with resonant Si membrane metasurface |
Schematic representation of the designed silicon membrane metasurface. The radius of the hole r0 is set as 100 nm. The period along x and y directions Dx and Dy are set as 600 nm and 300 nm, respectively. The offset x0 as the tunable factor is changed from 120 nm to 150 nm.
(a) Calculated bandgap structure for the metasurface with the positions of M1 (red circle) and M2 (blue circle) shown in the figure. (b) Near-field electric distributions for the mode TE(3, 1, 1) and TE(3, 1, 2).
Calculated linear transmission spectra (a1–a3), spherical (b1–b3), Cartesian multipolar structures (c1–c3) and electric energy enhancement (d1–d3) inside the silicon film for the case when the offset is 120 (a1–d1), 135 (a2–d2) and 150 (a3–d3), respectively. In the spherical multipolar expansion, the ED, MD, EQ, MQ, EO, MO respectively represent the electric dipole (ED) and magnetic dipole (MD), electric quadrupole (EQ) and magnetic quadrupole (MQ), electric octupole (EO) and magnetic octupole (MO). In the Cartesian multipolar expansion, the py and TD represent the electric dipole moment along the y-axis (py) and electric Toroidal moment (TD).
(a) SEM image of the fabricated sample. (b) The experimentally measured. (c) Simulated linear spectrum of the sample with offset being 135 nm.
Measured linear spectra of metasurface samples with different offsets (a), and experimentally measured linear spectra of the metasurface samples with different incident angles of pump (b).
(a) The schematic of experimental setup for the THG imaging. The FS laser is the femtosecond laser. L1 is the aspheric lens that focus the beam into metasurfaces (MS). O1 is the 20× objective with NA=0.4. F1–F3 are the filters aiming to filter the near-infrared signal (F1) and control the intensity of the visible signal goes into the CCD camera (F2) and the spectrometer (F3). BS is the beam splitter. The target is imaged via the L1 to the plane, overlapping with the MS. The real image of the target and MS are imaged via the objective and then detected by the CCD camera (a CCD lens is included in the CCD camera). (b) The experimentally measured THG spectra of the samples with the different offset x0.
(a) The schematic of THG imaging based on Si membrane metasurfaces. The near-infrared signal passes through the target, then being converted into the visible signal via the metasurfaces, forming the target image on the CCD camera. (b1–e1) The images of the target and the metasurfaces under white light source illumination. (b2–e2) Transformed visible images of the target via membrane metasurfaces under NIR light illumination. Here the greenish colour has been used to indicate the nonlinear radiation spectrum position (504 nm). The patterns at three different positions of the target are converted to visible images clearly by the metasurfaces.