Pirone D, Sirico D, Miccio L, Bianco V, Mugnano M et al. 3D imaging lipidometry in single cell by in-flow holographic tomography. Opto-Electron Adv 6, 220048 (2023). doi: 10.29026/oea.2023.220048
Citation: Pirone D, Sirico D, Miccio L, Bianco V, Mugnano M et al. 3D imaging lipidometry in single cell by in-flow holographic tomography. Opto-Electron Adv 6, 220048 (2023). doi: 10.29026/oea.2023.220048

Article Open Access

3D imaging lipidometry in single cell by in-flow holographic tomography

More Information
  • The most recent discoveries in the biochemical field are highlighting the increasingly important role of lipid droplets (LDs) in several regulatory mechanisms in living cells. LDs are dynamic organelles and therefore their complete characterization in terms of number, size, spatial positioning and relative distribution in the cell volume can shed light on the roles played by LDs. Until now, fluorescence microscopy and transmission electron microscopy are assessed as the gold standard methods for identifying LDs due to their high sensitivity and specificity. However, such methods generally only provide 2D assays and partial measurements. Furthermore, both can be destructive and with low productivity, thus limiting analysis of large cell numbers in a sample. Here we demonstrate for the first time the capability of 3D visualization and the full LD characterization in high-throughput with a tomographic phase-contrast flow-cytometer, by using ovarian cancer cells and monocyte cell lines as models. A strategy for retrieving significant parameters on spatial correlations and LD 3D positioning inside each cell volume is reported. The information gathered by this new method could allow more in depth understanding and lead to new discoveries on how LDs are correlated to cellular functions.
  • 加载中
  • [1] Murphy DJ. The dynamic roles of intracellular lipid droplets: from archaea to mammals. Protoplasma 249, 541–585 (2012). doi: 10.1007/s00709-011-0329-7

    CrossRef Google Scholar

    [2] Olzmann JA, Carvalho P. Dynamics and functions of lipid droplets. Nat Rev Mol Cell Biol 20, 137–155 (2019). doi: 10.1038/s41580-018-0085-z

    CrossRef Google Scholar

    [3] Welte MA, Gould AP. Lipid droplet functions beyond energy storage. Biochim Biophys Acta - Mol Cell Biol Lip 1862, 1260–1272 (2017). doi: 10.1016/j.bbalip.2017.07.006

    CrossRef Google Scholar

    [4] Wu HX, Carvalho P, Voeltz GK. Here, there, and everywhere: the importance of ER membrane contact sites. Science 361, eaan5835 (2018). doi: 10.1126/science.aan5835

    CrossRef Google Scholar

    [5] Melo RCN, Weller PF. Lipid droplets in leukocytes: organelles linked to inflammatory responses. Exp Cell Res 340, 193–197 (2016). doi: 10.1016/j.yexcr.2015.10.028

    CrossRef Google Scholar

    [6] Geltinger F, Schartel L, Wiederstein M, Tevini J, Aigner E et al. Friend or foe: lipid droplets as organelles for protein and lipid storage in cellular stress response, aging and disease. Molecules 25, 5053 (2020). doi: 10.3390/molecules25215053

    CrossRef Google Scholar

    [7] Imai Y, Cousins RS, Liu SM, Phelps BM, Promes JA. Connecting pancreatic islet lipid metabolism with insulin secretion and the development of type 2 diabetes. Ann N Y Acad Sci 1461, 53–72 (2020). doi: 10.1111/nyas.14037

    CrossRef Google Scholar

    [8] Williams KJ, Tabas I. The response-to-retention hypothesis of early atherogenesis. Arterioscler, Thromb, Vasc Biol 15, 551–561 (1995). doi: 10.1161/01.ATV.15.5.551

    CrossRef Google Scholar

    [9] Gluchowski NL, Becuwe M, Walther TC, Farese RV Jr. Lipid droplets and liver disease: from basic biology to clinical implications. Nat Rev Gastroenterol Hepatol 14, 343–355 (2017). doi: 10.1038/nrgastro.2017.32

    CrossRef Google Scholar

    [10] Bosch M, Sánchez-Álvarez M, Fajardo A, Kapetanovic R, Steiner B et al. Mammalian lipid droplets are innate immune hubs integrating cell metabolism and host defense. Science 370, eaay8085 (2020). doi: 10.1126/science.aay8085

    CrossRef Google Scholar

    [11] Liu L, Zhang K, Sandoval H, Yamamoto S, Jaiswal M et al. Glial lipid droplets and ROS induced by mitochondrial defects promote neurodegeneration. Cell 160, 177–190 (2015). doi: 10.1016/j.cell.2014.12.019

    CrossRef Google Scholar

    [12] Santos CR, Schulze A. Lipid metabolism in cancer. FEBS J 279, 2610–2623 (2012). doi: 10.1111/j.1742-4658.2012.08644.x

    CrossRef Google Scholar

    [13] Cruz ALS, de A. Barreto E, Fazolini NPB, Viola JPB, Bozza PT. Lipid droplets: platforms with multiple functions in cancer hallmarks. Cell Death Dis 11, 105 (2020). doi: 10.1038/s41419-020-2297-3

    CrossRef Google Scholar

    [14] Tirinato L, Pagliari F, Limongi T, Marini M, Falqui A et al. An overview of lipid droplets in cancer and cancer stem cells. Stem Cells Int 2017, 1656053 (2017). doi: 10.1155/2017/1656053

    CrossRef Google Scholar

    [15] Thun MJ, Jacobs EJ, Patrono C. The role of aspirin in cancer prevention. Nat Rev Clin Oncol 9, 259–267 (2012). doi: 10.1038/nrclinonc.2011.199

    CrossRef Google Scholar

    [16] Bozza PT, Melo RCN, Bandeira-Melo C. Leukocyte lipid bodies regulation and function: contribution to allergy and host defense. Pharmacol Ther 113, 30–49 (2007). doi: 10.1016/j.pharmthera.2006.06.006

    CrossRef Google Scholar

    [17] den Brok MH, Raaijmakers TK, Collado-Camps E, Adema GJ. Lipid droplets as immune modulators in myeloid cells. Trends Immunol 39, 380–392 (2018). doi: 10.1016/j.it.2018.01.012

    CrossRef Google Scholar

    [18] Monson EA, Trenerry AM, Laws JL, Mackenzie JM, Helbig KJ. Lipid droplets and lipid mediators in viral infection and immunity. FEMS Microbiol Rev 45, fuaa066 (2021). doi: 10.1093/femsre/fuaa066

    CrossRef Google Scholar

    [19] Dias SSG, Soares VC, Ferreira AC, Sacramento CQ, Fintelman-Rodrigues N et al. Lipid droplets fuel SARS-CoV-2 replication and production of inflammatory mediators. PLoS Pathog 16, e1009127 (2020). doi: 10.1371/journal.ppat.1009127

    CrossRef Google Scholar

    [20] Nardacci R, Colavita F, Castilletti C, Lapa D, Matusali G et al. Evidences for lipid involvement in SARS-CoV-2 cytopathogenesis. Cell Death Dis 12, 263 (2021). doi: 10.1038/s41419-021-03527-9

    CrossRef Google Scholar

    [21] Chen XX, Wu TL, Gong ZY, Guo JH, Liu XS et al. Lipid droplets as endogenous intracellular microlenses. Light Sci Appl 10, 242 (2021). doi: 10.1038/s41377-021-00687-3

    CrossRef Google Scholar

    [22] Martins AS, Martins IC, Santos NC. Methods for lipid droplet biophysical characterization in Flaviviridae infections. Front Microbiol 9, 1951 (2018). doi: 10.3389/fmicb.2018.01951

    CrossRef Google Scholar

    [23] Fam TK, Klymchenko AS, Collot M. Recent advances in fluorescent probes for lipid droplets. Materials 11, 1768 (2018). doi: 10.3390/ma11091768

    CrossRef Google Scholar

    [24] Lehmussola A, Ruusuvuori P, Selinummi J, Huttunen H, Yli-Harja O. Computational framework for simulating fluorescence microscope images with cell populations. IEEE Trans Med Imaging 26, 1010–1016 (2007). doi: 10.1109/TMI.2007.896925

    CrossRef Google Scholar

    [25] Fujimoto T, Ohsaki Y, Suzuki M, Cheng JL. Imaging lipid droplets by electron microscopy. Methods Cell Biol 116, 227–251 (2013). doi: 10.1016/B978-0-12-408051-5.00012-7

    CrossRef Google Scholar

    [26] Locatelli A, Iommarini L, Graziadio A, Leoni A, Porcelli AM et al. Dansyl acetyl trehalose: a novel tool to investigate the cellular fate of trehalose. RSC Adv 9, 15350–15356 (2019). doi: 10.1039/C9RA01800J

    CrossRef Google Scholar

    [27] Wilson MH, Ekker SC, Farber SA. Imaging cytoplasmic lipid droplets in vivo with fluorescent perilipin 2 and perilipin 3 knock-in zebrafish. eLife 10, e66393 (2021). doi: 10.7554/eLife.66393

    CrossRef Google Scholar

    [28] Ferraro P, Alferi D, de Nicola S, de Petrocellis L, Finizio A et al. Quantitative phase-contrast microscopy by a lateral shear approach to digital holographic image reconstruction. Opt Lett 31, 1405–1407 (2006). doi: 10.1364/OL.31.001405

    CrossRef Google Scholar

    [29] Sandoz PA, Tremblay C, van der Goot FG, Frechin M. Image-based analysis of living mammalian cells using label-free 3D refractive index maps reveals new organelle dynamics and dry mass flux. PLoS Biol 17, e3000553 (2019). doi: 10.1371/journal.pbio.3000553

    CrossRef Google Scholar

    [30] Hsieh CM, Liu PY, Chin LK, Zhang JB, Wang K et al. Regulation of lipid droplets in live preadipocytes using optical diffraction tomography and Raman spectroscopy. Opt Express 27, 22994–23008 (2019). doi: 10.1364/OE.27.022994

    CrossRef Google Scholar

    [31] Huang YQ, Xia WJ, Lu ZX, Liu Y, Chen H et al. Noise-powered disentangled representation for unsupervised speckle reduction of optical coherence tomography images. IEEE Trans Med Imaging 40, 2600–2614 (2021). doi: 10.1109/TMI.2020.3045207

    CrossRef Google Scholar

    [32] Jung JH, Hong SJ, Kim HB, Kim G, Lee M et al. Label-free non-invasive quantitative measurement of lipid contents in individual microalgal cells using refractive index tomography. Sci Rep 8, 6524 (2018). doi: 10.1038/s41598-018-24393-0

    CrossRef Google Scholar

    [33] Kim K, Lee S, Yoon J, Heo J, Choi C et al. Three-dimensional label-free imaging and quantification of lipid droplets in live hepatocytes. Sci Rep 6, 36815 (2016). doi: 10.1038/srep36815

    CrossRef Google Scholar

    [34] Park S, Ahn JW, Jo Y, Kang HY, Kim HJ et al. Label-free tomographic imaging of lipid droplets in foam cells for machine-learning-assisted therapeutic evaluation of targeted Nanodrugs. ACS Nano 14, 1856–1865 (2020). doi: 10.1021/acsnano.9b07993

    CrossRef Google Scholar

    [35] Hong YR, Dao KP, Kim T, Lee S, Shin Y et al. Label‐free quantitative analysis of Coacervates via 3D phase imaging. Adv Opt Mater 9, 2100697 (2021). doi: 10.1002/adom.202100697

    CrossRef Google Scholar

    [36] Moon I, Javidi B. 3-D visualization and identification of biological microorganisms using partially temporal incoherent light in-line computational holographic imaging. IEEE Trans Med Imaging 27, 1782–1790 (2008). doi: 10.1109/TMI.2008.927339

    CrossRef Google Scholar

    [37] Merola F, Memmolo P, Miccio L, Savoia R, Mugnano M et al. Tomographic flow cytometry by digital holography. Light Sci Appl 6, e16241 (2017). doi: 10.1038/lsa.2016.241

    CrossRef Google Scholar

    [38] Villone MM, Memmolo P, Merola F, Mugnano M, Miccio L et al. Full-angle tomographic phase microscopy of flowing quasi-spherical cells. Lab Chip 18, 126–131 (2018). doi: 10.1039/C7LC00943G

    CrossRef Google Scholar

    [39] Pirone D, Memmolo P, Merola F, Miccio L, Mugnano M et al. Rolling angle recovery of flowing cells in holographic tomography exploiting the phase similarity. Appl Opt 60, A277–A284 (2021). doi: 10.1364/AO.404376

    CrossRef Google Scholar

    [40] Ryu D, Ryu D, Baek Y, Cho H, Kim G et al. DeepRegularizer: rapid resolution enhancement of tomographic imaging using deep learning. IEEE Trans Med Imaging 40, 1508–1518 (2021). doi: 10.1109/TMI.2021.3058373

    CrossRef Google Scholar

    [41] Pirone D, Mugnano M, Memmolo P, Merola F, Lama GC et al. Three-dimensional quantitative intracellular visualization of Graphene oxide nanoparticles by tomographic flow cytometry. Nano Lett 21, 5958–5966 (2021). doi: 10.1021/acs.nanolett.1c00868

    CrossRef Google Scholar

    [42] Campos V, Rappaz B, Kuttler F, Turcatti G, Naveiras O. High-throughput, nonperturbing quantification of lipid droplets with digital holographic microscopy. J Lipid Res 59, 1301–1310 (2018). doi: 10.1194/jlr.D085217

    CrossRef Google Scholar

    [43] Yanina IY, Lazareva EN, Tuchin VV. Refractive index of adipose tissue and lipid droplet measured in wide spectral and temperature ranges. Appl Opt 57, 4839–4848 (2018). doi: 10.1364/AO.57.004839

    CrossRef Google Scholar

    [44] Sheneman L, Stephanopoulos G, Vasdekis AE. Deep learning classification of lipid droplets in quantitative phase images. PLoS One 16, e0249196 (2021). doi: 10.1371/journal.pone.0249196

    CrossRef Google Scholar

    [45] Park YK, Depeursinge C, Popescu G. Quantitative phase imaging in biomedicine. Nat Photonics 12, 578–589 (2018). doi: 10.1038/s41566-018-0253-x

    CrossRef Google Scholar

    [46] Eden E, Waisman D, Rudzsky M, Bitterman H, Brod V et al. An automated method for analysis of flow characteristics of circulating particles from in vivo video microscopy. IEEE Trans Med Imaging 24, 1011–1024 (2005). doi: 10.1109/TMI.2005.851759

    CrossRef Google Scholar

    [47] Moore MJ, Sebastian JA, Kolios MC. Determination of cell nucleus-to-cytoplasmic ratio using imaging flow cytometry and a combined ultrasound and photoacoustic technique: a comparison study. J Biomed Opt 24, 106502 (2019). doi: 10.1117/1.jbo.24.10.106502

    CrossRef Google Scholar

    [48] Walther TC, Farese RV Jr. Lipid droplets and cellular lipid metabolism. Annu Rev Biochem 81, 687–714 (2012). doi: 10.1146/annurev-biochem-061009-102430

    CrossRef Google Scholar

    [49] Farese RV, Walther TC. Lipid droplets go nuclear. J Cell Biol 212, 7–8 (2016). doi: 10.1083/jcb.201512056

    CrossRef Google Scholar

    [50] Ohsaki Y, Sołtysik K, Fujimoto T. The lipid droplet and the endoplasmic reticulum. In Organelle Contact Sites 111–120 (Springer, 2017);http://doi.org/10.1007/978-981-10-4567-7_8.

    Google Scholar

    [51] Tauchi-Sato K, Ozeki S, Houjou T, Taguchi R, Fujimoto T. The surface of lipid droplets is a phospholipid monolayer with a unique fatty acid composition. J Biol Chem 277, 44507–44512 (2002). doi: 10.1074/jbc.M207712200

    CrossRef Google Scholar

    [52] Bersuker K, Peterson CWH, To M, Sahl SJ, Savikhin V et al. A proximity labeling strategy provides insights into the composition and dynamics of lipid droplet proteomes. Dev Cell 44, 97–112.e7 (2018). doi: 10.1016/j.devcel.2017.11.020

    CrossRef Google Scholar

    [53] Dannhauser D, Rossi D, Memmolo P, Finizio A, Ferraro P et al. Biophysical investigation of living monocytes in flow by collaborative coherent imaging techniques. Biomed Opt Express 9, 5194–5204 (2018). doi: 10.1364/BOE.9.005194

    CrossRef Google Scholar

    [54] Cotte Y, Toy F, Jourdain P, Pavillon N, Boss D et al. Marker-free phase nanoscopy. Nat Photonics 7, 113–117 (2013). doi: 10.1038/nphoton.2012.329

    CrossRef Google Scholar

    [55] Miccio L, Cimmino F, Kurelac I, Villone MM, Bianco V et al. Perspectives on liquid biopsy for label‐free detection of “circulating tumor cells” through intelligent lab‐on‐chips. View 1, 20200034 (2020). doi: 10.1002/VIW.20200034

    CrossRef Google Scholar

    [56] Schneider CA, Rasband WS, Eliceiri KW. NIH image to ImageJ: 25 years of image analysis. Nat Methods 9, 671–675 (2012). doi: 10.1038/nmeth.2089

    CrossRef Google Scholar

    [57] Kim MK. Principles and techniques of digital holographic microscopy. SPIE Rev 1, 018005 (2010). doi: 10.1117/6.0000006

    CrossRef Google Scholar

    [58] Memmolo P, Miccio L, Paturzo M, di Caprio G, Coppola G et al. Recent advances in holographic 3D particle tracking. Adv Opt Photonics 7, 713–755 (2015). doi: 10.1364/AOP.7.000713

    CrossRef Google Scholar

    [59] Zhou WJ, Yu YJ, Asundi A. Study on aberration suppressing methods in digital micro-holography. Opt Lasers Eng 47, 264–270 (2009). doi: 10.1016/j.optlaseng.2008.04.026

    CrossRef Google Scholar

    [60] Kemao Q. Windowed Fourier transform for fringe pattern analysis. Appl Opt 43, 2695–2702 (2004). doi: 10.1364/AO.43.002695

    CrossRef Google Scholar

    [61] Bioucas-Dias JM, Valadao G. Phase unwrapping via graph cuts. IEEE Trans Image Process 16, 698–709 (2007). doi: 10.1109/TIP.2006.888351

    CrossRef Google Scholar

    [62] Kak AC, Slaney M. Principles of Computerized Tomographic Imaging (Society for Industrial and Applied Mathematics, Philadelphia, 2001); http://doi.org/10.1137/1.9780898719277.

    Google Scholar

  • Movie 1
    Movie 2
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Tables(1)

Article Metrics

Article views() PDF downloads() Cited by()

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint