Han DD, Zhang YL, Chen ZD, Li JC, Ma JN et al. Carnivorous plants inspired shape-morphing slippery surfaces. Opto-Electron Adv 6, 210163 (2023). doi: 10.29026/oea.2023.210163
Citation: Han DD, Zhang YL, Chen ZD, Li JC, Ma JN et al. Carnivorous plants inspired shape-morphing slippery surfaces. Opto-Electron Adv 6, 210163 (2023). doi: 10.29026/oea.2023.210163

Original Article Open Access

Carnivorous plants inspired shape-morphing slippery surfaces

More Information
  • Carnivorous plants, for instance, Dionaea muscipula and Nepenthes pitcher plant, inspired the innovation of advanced stimuli-responsive actuators and lubricant-infused slippery surfaces, respectively. However, hybrid bionic devices that combine the active and passive prey trapping capabilities of the two kinds of carnivorous plants remain a challenge. Herein, we report a moisture responsive shape-morphing slippery surface that enables both moisture responsive shape-morphing and oil-lubricated water repellency for simultaneous active- and passive-droplet manipulation. The moisture deformable slippery surface is prepared by creating biomimetic microstructures on graphene oxide (GO) membrane via femtosecond laser direct writing and subsequent lubricating with a thin layer of oil on the laser structured reduced GO (LRGO) surface. The integration of a lubricant-infused slippery surface with an LRGO/GO bilayer actuator endows the actuator with droplet sliding ability and promotes the moisture deformation performance due to oil-enhanced water repellency of the inert layer (LRGO). Based on the shape-morphing slippery surface, we prepared a series of proof-of-concept actuators, including a moisture-response Dionaea muscipula actuator, a smart frog tongue, and a smart flower, demonstrating their versatility for active/passive trapping, droplet manipulation, and sensing.
  • 加载中
  • [1] Kreder MJ, Alvarenga J, Kim P, Aizenberg J. Design of anti-icing surfaces: smooth, textured or slippery. Nat Rev Mater 1, 15003 (2016). doi: 10.1038/natrevmats.2015.3

    CrossRef Google Scholar

    [2] Peppou-Chapman S, Hong JK, Waterhouse A, Neto C. Life and death of liquid-infused surfaces: a review on the choice, analysis and fate of the infused liquid layer. Chem Soc Rev 49, 3688–3715 (2020). doi: 10.1039/D0CS00036A

    CrossRef Google Scholar

    [3] Park K C, Kim P, Grinthal A, He N, Fox D et al. Condensation on slippery asymmetric bumps. Nature 531, 78–82 (2016). doi: 10.1038/nature16956

    CrossRef Google Scholar

    [4] Villegas M, Zhang YX, Abu Jarad N, Soleymani L, Didar TF. Liquid-infused surfaces: a review of theory, design, and applications. ACS Nano 13, 8517–8536 (2019). doi: 10.1021/acsnano.9b04129

    CrossRef Google Scholar

    [5] Zhao YZ, Su YL, Hou XY, Hong MH. Directional sliding of water: biomimetic snake scale surfaces. Opto-Electron Adv 4, 210008 (2021). doi: 10.29026/oea.2021.210008

    CrossRef Google Scholar

    [6] Liu XQ, Bai BF, Chen QD, Sun HB. Etching-assisted femtosecond laser modification of hard materials. Opto-Electron Adv 2, 190021 (2019).

    Google Scholar

    [7] Cao MY, Jin X, Peng Y, Yu CM, Li K et al. Unidirectional wetting properties on multi-bioinspired magnetocontrollable slippery microcilia. Adv Mater 29, 1606869 (2017). doi: 10.1002/adma.201606869

    CrossRef Google Scholar

    [8] Wong WSY, Li MF, Nisbet DR, Craig VSJ, Wang ZK et al. Mimosa origami: a nanostructure-enabled directional self-organization regime of materials. Sci Adv 2, e1600417 (2016). doi: 10.1126/sciadv.1600417

    CrossRef Google Scholar

    [9] Li DF, Liu C, Yang YY, Wang LD, Shen YJ. Micro-rocket robot with all-optic actuating and tracking in blood. Light Sci Appl 9, 84 (2020). doi: 10.1038/s41377-020-0323-y

    CrossRef Google Scholar

    [10] Jin GX, Hu XY, Ma ZC, Li CH, Zhang YL et al. Femtosecond laser fabrication of 3D templates for mass production of artificial compound eyes. Nanotechnol Precis Eng 2, 110–117 (2019). doi: 10.1016/j.npe.2019.10.005

    CrossRef Google Scholar

    [11] Ellison AM, Gotelli NJ. Evolutionary ecology of carnivorous plants. Trends Ecol Evol 16, 623–629 (2001). doi: 10.1016/S0169-5347(01)02269-8

    CrossRef Google Scholar

    [12] Jürgens A, Sciligo A, Witt T, El-Sayed AM, Suckling DM. Pollinator-prey conflict in carnivorous plants. Biol Rev 87, 602–615 (2012). doi: 10.1111/j.1469-185X.2011.00213.x

    CrossRef Google Scholar

    [13] Suda H, Mano H, Toyota M, Fukushima K, Mimura T et al. Calcium dynamics during trap closure visualized in transgenic venus flytrap. Nat Plants 6, 1219–1224 (2020). doi: 10.1038/s41477-020-00773-1

    CrossRef Google Scholar

    [14] Volkov AG, Adesina T, Markin VS, Jovanov E. Kinetics and mechanism of Dionaea muscipula trap closing. Plant Physiol 146, 323–324 (2008).

    Google Scholar

    [15] Han B, Zhang YL, Zhu L, Li Y, Ma ZC et al. Plasmonic-assisted graphene oxide artificial muscles. Adv Mater 31, 1806386 (2019).

    Google Scholar

    [16] Lim H, Park T, Na J, Park C, Kim B et al. Construction of a photothermal venus flytrap from conductive polymer bimorphs. NPG Asia Mater 9, e399 (2017). doi: 10.1038/am.2017.101

    CrossRef Google Scholar

    [17] Zhu L, Gao YY, Han B, Zhang YL, Sun HB. Laser fabrication of graphene-based electrothermal actuators enabling predicable deformation. Opt Lett 44, 1363–1366 (2019). doi: 10.1364/OL.44.001363

    CrossRef Google Scholar

    [18] Forterre Y, Skotheim JM, Dumais J, Mahadevan L. How the venus flytrap snaps. Nature 433, 421–425 (2005). doi: 10.1038/nature03185

    CrossRef Google Scholar

    [19] Lunni D, Cianchetti M, Filippeschi C, Sinibaldi E, Mazzolai B. Plant-inspired soft bistable structures based on hygroscopic electrospun nanofibers. Adv Mater Interfaces 7, 1901310 (2020). doi: 10.1002/admi.201901310

    CrossRef Google Scholar

    [20] Must I, Sinibaldi E, Mazzolai B. A variable-stiffness tendril-like soft robot based on reversible osmotic actuation. Nat Commun 10, 344 (2019). doi: 10.1038/s41467-018-08173-y

    CrossRef Google Scholar

    [21] Taccola S, Greco F, Sinibaldi E, Mondini A, Mazzolai B et al. Toward a new generation of electrically controllable hygromorphic soft actuators. Adv Mater 27, 1668–1675 (2015). doi: 10.1002/adma.201404772

    CrossRef Google Scholar

    [22] Chen HW, Zhang PF, Zhang LW, Liu HL, Jiang Y et al. Continuous directional water transport on the peristome surface of Nepenthes alata. Nature 532, 85–89 (2016). doi: 10.1038/nature17189

    CrossRef Google Scholar

    [23] Bohn HF, Federle W. Insect aquaplaning: Nepenthes pitcher plants capture prey with the peristome, a fully wettable water-lubricated anisotropic surface. Proc Natl Acad Sci USA 101, 14138–14143 (2004). doi: 10.1073/pnas.0405885101

    CrossRef Google Scholar

    [24] Wong TS, Kang SH, Tang SKY, Smythe EJ, Hatton BD et al. Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity. Nature 477, 443–447 (2011). doi: 10.1038/nature10447

    CrossRef Google Scholar

    [25] Gulfam R, Orejon D, Choi CH, Zhang P. Phase-change slippery liquid-infused porous surfaces with thermo-responsive wetting and shedding states. ACS Appl Mater Interfaces 12, 34306–34316 (2020). doi: 10.1021/acsami.0c06441

    CrossRef Google Scholar

    [26] Gao CL, Wang L, Lin YC, Li JT, Liu YF et al. Droplets manipulated on photothermal organogel surfaces. Adv Funct Mater 28, 1803072 (2018). doi: 10.1002/adfm.201803072

    CrossRef Google Scholar

    [27] Wang J, Sun LY, Zou MH, Gao W, Liu CH et al. Bioinspired shape-memory graphene film with tunable wettability. Sci Adv 3, e1700004 (2017). doi: 10.1126/sciadv.1700004

    CrossRef Google Scholar

    [28] Li P, Cao MY, Bai HY, Zhao TH, Ning YZ et al. Unidirectional liquid manipulation via an integrated mesh with orthogonal anisotropic slippery tracks. Adv Funct Mater 29, 1904446 (2019). doi: 10.1002/adfm.201904446

    CrossRef Google Scholar

    [29] Chen C, Huang ZC, Jiao YL, Shi LA, Zhang YY et al. In situ reversible control between sliding and pinning for diverse liquids under ultra-low voltage. ACS Nano 13, 5742–5752 (2019). doi: 10.1021/acsnano.9b01180

    CrossRef Google Scholar

    [30] Lv FY, Zhao F, Cheng DL, Dong ZG, Jia HW et al. Bioinspired functional SLIPSs and wettability gradient surfaces and their synergistic cooperation and opportunities for enhanced condensate and fluid transport. Adv Colloid Interface Sci 299, 102564 (2022). doi: 10.1016/j.cis.2021.102564

    CrossRef Google Scholar

    [31] Maeda Y, Lv FY, Zhang P, Takata Y, Orejon D. Condensate droplet size distribution and heat transfer on hierarchical slippery lubricant infused porous surfaces. Appl Therm Eng 176, 115386 (2020). doi: 10.1016/j.applthermaleng.2020.115386

    CrossRef Google Scholar

    [32] Ma Q, Cui TJ. Information metamaterials: bridging the physical world and digital world. PhotoniX 1, 1 (2020). doi: 10.1186/s43074-020-00006-w

    CrossRef Google Scholar

    [33] Qiao Z, Wan ZY, Xie GQ, Wang J, Qian LJ et al. Multi-vortex laser enabling spatial and temporal encoding. PhotoniX 1, 13 (2020). doi: 10.1186/s43074-020-00013-x

    CrossRef Google Scholar

    [34] Kim Y, Van Den Berg J, Crosby AJ. Autonomous snapping and jumping polymer gels. Nat Mater 20, 1695–1701 (2021). doi: 10.1038/s41563-020-00909-w

    CrossRef Google Scholar

    [35] Manna U, Raman N, Welsh MA, Zayas-Gonzalez YM, Blackwell HE et al. Slippery liquid-infused porous surfaces that prevent microbial surface fouling and kill non-adherent pathogens in surrounding media: a controlled release approach. Adv Funct Mater 26, 3599–3611 (2016). doi: 10.1002/adfm.201505522

    CrossRef Google Scholar

    [36] Binks BP, Whitby CP. Silica particle-stabilized emulsions of silicone oil and water: aspects of emulsification. Langmuir 20, 1130–1137 (2004). doi: 10.1021/la0303557

    CrossRef Google Scholar

    [37] Horozov TS, Binks BP, Gottschalk-Gaudig T. Effect of electrolyte in silicone oil-in-water emulsions stabilised by fumed silica particles. Phys Chem Chem Phys 9, 6398–6404 (2007). doi: 10.1039/b709807n

    CrossRef Google Scholar

    [38] Gonzalez C, Resa JM, Lanz J, Iglesias M, Goenaga JM. Measurements of density and refractive index of soybean oil + short aliphatic alcohols. Int J Thermophys 27, 1463–1481 (2006). doi: 10.1007/s10765-006-0094-6

    CrossRef Google Scholar

    [39] Nogueira CA Jr, Carmo FR, Santiago DF, Nogueira VM, Fernandes FAN et al. Viscosities and densities of ternary blends of diesel + soybean biodiesel + soybean oil. J Chem Eng Data 57, 3233–3241 (2012). doi: 10.1021/je300838n

    CrossRef Google Scholar

    [40] Žemaitis A, Gaidys M, Brikas M, Gečys P, Račiukaitis G et al. Advanced laser scanning for highly-efficient ablation and ultrafast surface structuring: experiment and model. Sci Rep 8, 17376 (2018). doi: 10.1038/s41598-018-35604-z

    CrossRef Google Scholar

    [41] Žemaitis A, Gaidys M, Gečys P, Račiukaitis G, Gedvilas M. Rapid high-quality 3D micro-machining by optimised efficient ultrashort laser ablation. Opt Lasers Eng 114, 83–89 (2019). doi: 10.1016/j.optlaseng.2018.11.001

    CrossRef Google Scholar

    [42] Zou TT, Zhao B, Xin W, Wang Y, Wang B et al. High-speed femtosecond laser plasmonic lithography and reduction of graphene oxide for anisotropic photoresponse. Light Sci Appl 9, 69 (2020). doi: 10.1038/s41377-020-0311-2

    CrossRef Google Scholar

    [43] Zhang YL, Guo L, Xia H, Chen QD, Feng J et al. Photoreduction of graphene oxides: methods, properties, and applications. Adv Opt Mater 2, 10–28 (2014). doi: 10.1002/adom.201300317

    CrossRef Google Scholar

    [44] Jiang HB, Zhao B, Liu Y, Li SY, Liu J et al. Review of photoreduction and synchronous patterning of graphene oxide toward advanced applications. J Mater Sci 55, 480–497 (2020). doi: 10.1007/s10853-019-03981-z

    CrossRef Google Scholar

    [45] Smith JD, Dhiman R, Anand S, Reza-Garduno E, Cohen RE et al. Droplet mobility on lubricant-impregnated surfaces. Soft Matter 9, 1772–1780 (2013). doi: 10.1039/C2SM27032C

    CrossRef Google Scholar

    [46] Furmidge CGL. Studies at phase interfaces. I. The sliding of liquid drops on solid surfaces and a theory for spray retention. J Colloid Sci 17, 309–324 (1962). doi: 10.1016/0095-8522(62)90011-9

    CrossRef Google Scholar

    [47] Dai XM, Stogin BB, Yang SK, Wong TS. Slippery wenzel state. ACS Nano 9, 9260–9267 (2015). doi: 10.1021/acsnano.5b04151

    CrossRef Google Scholar

    [48] Zhang SN, Huang JY, Chen Z, Lai YK. Bioinspired special wettability surfaces: from fundamental research to water harvesting applications. Small 13, 1602992 (2017). doi: 10.1002/smll.201602992

    CrossRef Google Scholar

    [49] Han DD, Zhang YL, Jiang HB, Xia H, Feng J et al. Moisture-responsive graphene paper prepared by self-controlled photoreduction. Adv Mater 27, 332–338 (2015). doi: 10.1002/adma.201403587

    CrossRef Google Scholar

    [50] Han DD, Zhang YL, Liu Y, Liu YQ, Jiang HB et al. Bioinspired graphene actuators prepared by unilateral UV irradiation of graphene oxide papers. Adv Funct Mater 25, 4548–4557 (2015). doi: 10.1002/adfm.201501511

    CrossRef Google Scholar

    [51] Liu YQ, Chen ZD, Han DD, Mao JW, Ma JN et al. Bioinspired soft robots based on the moisture-responsive graphene oxide. Adv Sci 8, 2002464 (2021). doi: 10.1002/advs.202002464

    CrossRef Google Scholar

    [52] You R, Liu YQ, Hao YL, Han DD, Zhang YL et al. Laser fabrication of graphene-based flexible electronics. Adv Mater 32, 1901981 (2020). doi: 10.1002/adma.201901981

    CrossRef Google Scholar

    [53] Žemaitis A, Mimidis A, Papadopoulos A, Gečys P, Račiukaitis G et al. Controlling the wettability of stainless steel from highly-hydrophilic to super-hydrophobic by femtosecond laser-induced ripples and nanospikes. RSC Adv 10, 37956–37961 (2020). doi: 10.1039/D0RA05665K

    CrossRef Google Scholar

    [54] Zhang YL, Liu YQ, Han DD, Ma JN, Wang D et al. Quantum-confined-superfluidics-enabled moisture actuation based on unilaterally structured graphene oxide papers. Adv Mater 31, 1901585 (2019). doi: 10.1002/adma.201901585

    CrossRef Google Scholar

    [55] Xu WH, Zhou XF, Hao CL, Zheng HX, Liu Y et al. SLIPS-TENG: robust triboelectric nanogenerator with optical and charge transparency using a slippery interface. Natl Sci Rev 6, 540–550 (2019). doi: 10.1093/nsr/nwz025

    CrossRef Google Scholar

    [56] Indrišiūnas S, Voisiat B, Gedvilas M, Račiukaitis G. New opportunities for custom-shape patterning using polarization control in confocal laser beam interference setup. J Laser Appl 29, 011501 (2017). doi: 10.2351/1.4976679

    CrossRef Google Scholar

    [57] Gedvilas M, Voisiat B, Indrišiūnas S, Račiukaitis G, Veiko V et al. Thermo-chemical microstructuring of thin metal films using multi-beam interference by short (nano- & picosecond) laser pulses. Thin Solid Films 634, 134–140 (2017). doi: 10.1016/j.tsf.2017.05.010

    CrossRef Google Scholar

  • Supplementary information for Carnivorous plants inspired shape-morphing slippery surfaces
    Movie S1
    Movie S2
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Article Metrics

Article views(1565) PDF downloads(161) Cited by(0)

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint