Wang Z, Zhang B, Tan DZ, Qiu JR. Ostensibly perpetual optical data storage in glass with ultra-high stability and tailored photoluminescence. Opto-Electron Adv 6, 220008 (2023). doi: 10.29026/oea.2023.220008
Citation: Wang Z, Zhang B, Tan DZ, Qiu JR. Ostensibly perpetual optical data storage in glass with ultra-high stability and tailored photoluminescence. Opto-Electron Adv 6, 220008 (2023). doi: 10.29026/oea.2023.220008

Article Open Access

Ostensibly perpetual optical data storage in glass with ultra-high stability and tailored photoluminescence

More Information
  • Long-term optical data storage (ODS) technology is essential to break the bottleneck of high energy consumption for information storage in the current era of big data. Here, ODS with an ultralong lifetime of 2×107 years is attained with single ultrafast laser pulse induced reduction of Eu3+ ions and tailoring of optical properties inside the Eu-doped aluminosilicate glasses. We demonstrate that the induced local modifications in the glass can stand against the temperature of up to 970 K and strong ultraviolet light irradiation with the power density of 100 kW/cm2. Furthermore, the active ions of Eu2+ exhibit strong and broadband emission with the full width at half maximum reaching 190 nm, and the photoluminescence (PL) is flexibly tunable in the whole visible region by regulating the alkaline earth metal ions in the glasses. The developed technology and materials will be of great significance in photonic applications such as long-term ODS.
  • 加载中
  • [1] Zhu LW, Cao YY, Chen QQ, Ouyang X, Xu Y et al. Near-perfect fidelity polarization-encoded multilayer optical data storage based on aligned gold nanorods. Opto-Electron Adv 4, 210002 (2021). doi: 10.29026/oea.2021.210002

    CrossRef Google Scholar

    [2] Zhang B, Wang Z, Tan DZ, Liu XF, Xu BB et al. Ultrafast laser inducing continuous periodic crystallization in the glass activated via laser-prepared crystallite-seeds. Adv Opt Mater 9, 2001962 (2021). doi: 10.1002/adom.202001962

    CrossRef Google Scholar

    [3] Zhang QM, Xia ZL, Cheng YB, Gu M. High-capacity optical long data memory based on enhanced Young's modulus in nanoplasmonic hybrid glass composites. Nat Commun 9, 1183 (2018). doi: 10.1038/s41467-018-03589-y

    CrossRef Google Scholar

    [4] Chen WL, Yan Z, Tian J, Liu SY, Gao JC et al. Flexible four-dimensional optical data storage enabled by single-pulse femtosecond laser irradiation in thermoplastic polyurethane. Opt Lett 46, 3211–3214 (2021). doi: 10.1364/OL.432092

    CrossRef Google Scholar

    [5] Yu JB, Luo MT, Lv ZY, Huang SM, Hsu HH et al. Recent advances in optical and optoelectronic data storage based on luminescent nanomaterials. Nanoscale 12, 23391–23423 (2020). doi: 10.1039/D0NR06719A

    CrossRef Google Scholar

    [6] Gao L, Zhang QM, Evans RA, Gu M. 4D Ultra-high-density long data storage supported by a solid-state optically active polymeric material with high thermal stability. Adv Opt Mater 9, 2100487 (2021). doi: 10.1002/adom.202100487

    CrossRef Google Scholar

    [7] Yang ZT, Du JR, Martin LIDJ, Feng A, Cosaert E et al. Designing photochromic materials with large luminescence modulation and strong photochromic efficiency for dual-mode rewritable optical storage. Adv Opt Mater 9, 2100669 (2021). doi: 10.1002/adom.202100669

    CrossRef Google Scholar

    [8] Wang Z, Zhang B, Tan DZ, Qiu JR. Long-term optical information storage in glass with ultraviolet-light-preprocessing-induced enhancement of the signal-to-noise ratio. Opt Lett 46, 3937–3940 (2021). doi: 10.1364/OL.433674

    CrossRef Google Scholar

    [9] Zhang JY, Gecevicius M, Beresna M, Kazansky PG. Seemingly unlimited lifetime data storage in nanostructured glass. Phys Rev Lett 112, 033901 (2014). doi: 10.1103/PhysRevLett.112.033901

    CrossRef Google Scholar

    [10] Liao HX, Zhao M, Zhou YY, Molokeev MS, Liu QL et al. Polyhedron transformation toward stable narrow-band green phosphors for wide-color-gamut liquid crystal display. Adv Funct Mater 29, 1901988 (2019). doi: 10.1002/adfm.201901988

    CrossRef Google Scholar

    [11] Sun K, Tan DZ, Fang XY, Xia XT, Lin DJ et al. Three-dimensional direct lithography of stable perovskite nanocrystals in glass. Science 375, 307–310 (2022). doi: 10.1126/science.abj2691

    CrossRef Google Scholar

    [12] Fernandez TT, Gross S, Privat K, Johnston B, Withford M. Designer glasses—future of photonic device platforms. Adv Funct Mater 32, 2103103 (2022). doi: 10.1002/adfm.202103103

    CrossRef Google Scholar

    [13] Xia TF, Cao WQ, Cui YJ, Yang Y, Qian GD. Water-sensitive multicolor luminescence in lanthanide-organic framework for anti-counterfeiting. Opto-Electron Adv 4, 200063 (2021). doi: 10.29026/oea.2021.200063

    CrossRef Google Scholar

    [14] Yang ZT, Du JR, Martin LIDJ, van der Heggen D, Poelman D. Highly responsive photochromic ceramics for high-contrast rewritable information displays. Laser Photonics Rev 15, 2000525 (2021). doi: 10.1002/lpor.202000525

    CrossRef Google Scholar

    [15] Du JR, Feng A, Poelman D. Temperature dependency of trap-controlled persistent luminescence. Laser Photonics Rev 14, 2000060 (2020). doi: 10.1002/lpor.202000060

    CrossRef Google Scholar

    [16] Yang ZY, Zhou YY, Qiao JW, Molokeev MS, Xia ZG. Rapid synthesis of red-emitting Sr2Sc0.5Ga1.5O5: Eu2+ phosphors and the tunable photoluminescence via Sr/Ba substitution. Adv Opt Mater 9, 2100131 (2021). doi: 10.1002/adom.202100131

    CrossRef Google Scholar

    [17] Hu T, Ning LX, Gao Y, Qiao JW, Song EH et al. Glass crystallization making red phosphor for high-power warm white lighting. Light Sci Appl 10, 56 (2021). doi: 10.1038/s41377-021-00498-6

    CrossRef Google Scholar

    [18] Zhang B, Tan DZ, Liu XF, Tong LM, Kazansky PG et al. Self-organized periodic crystallization in unconventional glass created by an ultrafast laser for optical attenuation in the broadband near-infrared region. Adv Opt Mater 7, 1900593 (2019). doi: 10.1002/adom.201900593

    CrossRef Google Scholar

    [19] Lei YH, Sakakura M, Wang L, Yu YH, Wang HJ et al. High speed ultrafast laser anisotropic nanostructuring by energy deposition control via near-field enhancement. Optica 8, 1365–1371 (2021). doi: 10.1364/OPTICA.433765

    CrossRef Google Scholar

    [20] Tan DZ, Wang Z, Xu BB, Qiu JR. Photonic circuits written by femtosecond laser in glass: improved fabrication and recent progress in photonic devices. Adv Photonics 3, 024002 (2021). doi: 10.1117/1.AP.3.2.024002

    CrossRef Google Scholar

    [21] Zhang B, Wang L, Chen F. Recent advances in femtosecond laser processing of LiNbO3 crystals for photonic applications. Laser Photonics Rev 14, 1900407 (2020). doi: 10.1002/lpor.201900407

    CrossRef Google Scholar

    [22] Zhang S, Xu LS, Wu J, Yang Y, Zhang CX et al. Femtosecond laser micro-nano processing for boosting bubble releasing of gas evolution reactions. Nano Res 15, 1672–1679 (2022). doi: 10.1007/s12274-021-3811-3

    CrossRef Google Scholar

    [23] Zhang B, Tan DZ, Wang Z, Liu XF, Xu BB et al. Self-organized phase-transition lithography for all-inorganic photonic textures. Light Sci Appl 10, 93 (2021). doi: 10.1038/s41377-021-00534-5

    CrossRef Google Scholar

    [24] Gu M, Zhang QM, Lamon S. Nanomaterials for optical data storage. Nat Rev Mater 1, 16070 (2016). doi: 10.1038/natrevmats.2016.70

    CrossRef Google Scholar

    [25] Kallepalli DLN, Alshehri AM, Marquez DT, Andrzejewski L, Scaiano JC et al. Ultra-high density optical data storage in common transparent plastics. Sci Rep 6, 26163 (2016). doi: 10.1038/srep26163

    CrossRef Google Scholar

    [26] Montelongo Y, Yetisen AK, Butt H, Yun SH. Reconfigurable optical assembly of nanostructures. Nat Commun 7, 12002 (2016). doi: 10.1038/ncomms12002

    CrossRef Google Scholar

    [27] Wang Z, Tan DZ, Qiu JR. Single-shot photon recording for three-dimensional memory with prospects of high capacity. Opt Lett 45, 6274–6277 (2020). doi: 10.1364/OL.409171

    CrossRef Google Scholar

    [28] Kim YH, Arunkumar P, Kim BY, Unithrattil S, Kim E et al. A zero-thermal-quenching phosphor. Nat Mater 16, 543–550 (2017). doi: 10.1038/nmat4843

    CrossRef Google Scholar

    [29] Royon A, Bourhis K, Bellec M, Papon G, Bousquet B et al. Silver clusters embedded in glass as a perennial high capacity optical recording medium. Adv Mater 22, 5282–5286 (2010). doi: 10.1002/adma.201002413

    CrossRef Google Scholar

    [30] Wang L, Xie RJ, Li YQ, Wang XJ, Ma CG et al. Ca1−xLixAl1−xSi1+xN3: Eu2+ solid solutions as broadband, color-tunable and thermally robust red phosphors for superior color rendition white light-emitting diodes. Light Sci Appl 5, e16155 (2016). doi: 10.1038/lsa.2016.155

    CrossRef Google Scholar

    [31] Gu M, Li XP, Cao YY. Optical storage arrays: a perspective for future big data storage. Light Sci Appl 3, e177 (2014).

    Google Scholar

    [32] Dai PP, Li C, Zhang XT, Xu J, Chen X et al. A single Eu2+-activated high-color-rendering oxychloride white-light phosphor for white-light-emitting diodes. Light Sci Appl 5, e16024 (2016). doi: 10.1038/lsa.2016.24

    CrossRef Google Scholar

    [33] Qiao JW, Zhou GJ, Zhou YY, Zhang QY, Xia ZG. Divalent europium-doped near-infrared-emitting phosphor for light-emitting diodes. Nat Commun 10, 5267 (2019). doi: 10.1038/s41467-019-13293-0

    CrossRef Google Scholar

    [34] Joos JJ, van der Heggen D, Martin LIDJ, Amidani L, Smet PF et al. Broadband infrared LEDs based on europium-to-terbium charge transfer luminescence. Nat Commun 11, 3647 (2020). doi: 10.1038/s41467-020-17469-x

    CrossRef Google Scholar

    [35] Wang C, Peng MY, Jiang N, Jiang XW, Zhao CJ et al. Tuning the Eu luminescence in glass materials synthesized in air by adjusting glass compositions. Mater Lett 61, 3608–3611 (2007). doi: 10.1016/j.matlet.2006.11.133

    CrossRef Google Scholar

    [36] Dorenbos P. Relation between Eu2+ and Ce3+ f ↔ d-transition energies in inorganic compounds. J Phys Condens Matter 15, 4797–4807 (2003). doi: 10.1088/0953-8984/15/27/311

    CrossRef Google Scholar

    [37] Zhao M, Zhang QY, Xia ZG. Structural engineering of Eu2+-doped silicates phosphors for led applications. Acc Mater Res 1, 137–145 (2020). doi: 10.1021/accountsmr.0c00014

    CrossRef Google Scholar

  • Supplementary information for Ostensibly perpetual optical data storage in glass with ultra-high stability and tailored photoluminescence
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Article Metrics

Article views(12041) PDF downloads(920) Cited by(0)

Access History

Other Articles By Authors

Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint