Citation: | He PH, Niu LY, Fan Y, Zhang HC, Zhang LP et al. Active odd-mode-metachannel for single-conductor systems. Opto-Electron Adv 5, 210119 (2022). doi: 10.29026/oea.2022.210119 |
[1] | Goubau G. Open wire lines. IRE Trans Microw Theory Tech 4, 197–200 (1956). doi: 10.1109/TMTT.1956.1125062 |
[2] | Akalin T, Treizebré A, Bocquet B. Single-wire transmission lines at terahertz frequencies. IEEE Trans Microw Theory Tech 54, 2762–2767 (2006). doi: 10.1109/TMTT.2006.874890 |
[3] | Pendry JB, Martín-Moreno L, Garcia-Vidal FJ. Mimicking surface plasmons with structured surfaces. Science 305, 847–848 (2004). doi: 10.1126/science.1098999 |
[4] | Hibbins AP, Evans BR, Sambles JR. Experimental verification of designer surface plasmons. Science 308, 670–672 (2005). doi: 10.1126/science.1109043 |
[5] | Yu NF, Wang QJ, Kats MA, Fan JA, Khanna SP et al. Designer spoof surface Plasmon structures collimate terahertz laser beams. Nat Mater 9, 730–735 (2010). doi: 10.1038/nmat2822 |
[6] | Kats MA, Woolf D, Blanchard R, Yu NF, Capasso F. Spoof Plasmon analogue of metal-insulator-metal waveguides. Opt Express 19, 14860–14870 (2011). doi: 10.1364/OE.19.014860 |
[7] | Woolf D, Kats MA, Capasso F. Spoof surface Plasmon waveguide forces. Opt Lett 39, 517–520 (2014). doi: 10.1364/OL.39.000517 |
[8] | Erementchouk M, Joy SR, Mazumder P. Electrodynamics of spoof Plasmons in periodically corrugated waveguides. Proc Roy Soc A 472, 20160616 (2016). doi: 10.1098/rspa.2016.0616 |
[9] | Zhang HC, He PH, Liu ZX, Tang WX, Aziz A et al. Dispersion analysis of deep-subwavelength-decorated metallic surface using field-network joint solution. IEEE Trans Antenn Propag 66, 2923–2933 (2018). doi: 10.1109/TAP.2018.2823820 |
[10] | Zhang HC, He PH, Gao XX, Lu JY, Cui TJ et al. Loss analysis of plasmonic metasurfaces using field-network-joint method. IEEE Trans Antenn Propag 67, 3521–3526 (2019). doi: 10.1109/TAP.2019.2901123 |
[11] | Garcia-Vidal FJ, Fernández-Domínguez AI, Martin-Moreno L, Zhang HC, Tang W et al. Spoof surface plasmon photonics. Rev. Mod. Phys 94, 025004 (2022). doi: 10.1103/RevModPhys.94.025004 |
[12] | Wen XM, Bi YG, Yi FS, Zhang XL, Liu YF et al. Tunable surface plasmon-polariton resonance in organic light-emitting devices based on corrugated alloy electrodes. Opto-Electron Adv 4, 200024 (2021). doi: 10.29026/oea.2021.200024 |
[13] | Barnes WL, Dereux A, Ebbesen TW. Surface Plasmon subwavelength optics. Nature 424, 824–830 (2003). doi: 10.1038/nature01937 |
[14] | Jones AC, Olmon RL, Skrabalak SE, Wiley BJ, Xia YN et al. Mid-IR plasmonics: near-field imaging of coherent Plasmon modes of silver nanowires. Nano Lett 9, 2553–2558 (2009). doi: 10.1021/nl900638p |
[15] | Fang N, Lee H, Sun C, Zhang X. Sub-diffraction-limited optical imaging with a silver superlens. Science 308, 534–537 (2005). doi: 10.1126/science.1108759 |
[16] | Chen Q, Liang L, Zheng Q L, Zhang YX, Wen L. On-chip readout plasmonic mid-IR gas sensor. Opto-Electron Adv 3, 190040 (2020). doi: 10.29026/oea.2020.190040 |
[17] | Shen XP, Cui TJ, Martin-Cano D, Garcia-Vidal FJ. Conformal surface plasmons propagating on ultrathin and flexible films. Proc Natl Acad Sci USA 110, 40–45 (2013). doi: 10.1073/pnas.1210417110 |
[18] | He PH, Zhang HC, Tang W X, Wang ZX, Yan RT et al. A multi-layer spoof surface Plasmon polariton waveguide with corrugated ground. IEEE Access 5, 25306–25311 (2017). doi: 10.1109/ACCESS.2017.2768481 |
[19] | Kianinejad A, Chen ZN, Qiu CW. Full modeling, loss reduction, and mutual coupling control of spoof surface Plasmon-based meander slow wave transmission lines. IEEE Trans Microw Theory Tech 66, 3764–3772 (2018). doi: 10.1109/TMTT.2018.2841857 |
[20] | He PH, Zhang HC, Gao XX, Yun L, Tang WX et al. A novel spoof surface Plasmon polariton structure to reach ultra-strong field confinements. Opto-Electron Adv 2, 190001 (2019). |
[21] | Zhang HC, He PH, Tang WX, Luo Y, Cui TJ. Planar spoof SPP transmission lines: Applications in microwave circuits. IEEE Microw Mag 20, 73–91 (2019). |
[22] | Zhang JJ, Zhang HC, Gao XX, Zhang LP, Niu LY et al. Integrated spoof plasmonic circuits. Sci Bull 64, 843–855 (2019). doi: 10.1016/j.scib.2019.01.022 |
[23] | He PH, Fan Y, Zhang HC, Zhang LP, Tang M et al. Characteristic impedance extraction of spoof surface Plasmon polariton waveguides. J Phys D:Appl Phys 54, 385102 (2021). doi: 10.1088/1361-6463/ac0460 |
[24] | Zhang HC, Cui TJ, Zhang Q, Fan YF, Fu XJ. Breaking the challenge of signal integrity using time-domain spoof surface Plasmon polaritons. ACS Photonics 2, 1333–1340 (2015). doi: 10.1021/acsphotonics.5b00316 |
[25] | Liang Y, Yu H, Zhang HC, Yang C, Cui TJ. On-chip sub-terahertz surface Plasmon polariton transmission lines in CMOS. Sci Rep 5, 14853 (2015). doi: 10.1038/srep14853 |
[26] | Liang Y, Yu H, Feng GY, Apriyana AAA, Fu XJ et al. An energy-efficient and low-crosstalk sub-THz I/O by surface Plasmonic Polariton interconnect in CMOS. IEEE Trans Microw Theory Tech 65, 2762–2774 (2017). doi: 10.1109/TMTT.2017.2666808 |
[27] | Joy SR, Yu H, Mazumder P. Properties of spoof Plasmon in thin structures. Proc Roy Soc A 474, 20180205 (2018). doi: 10.1098/rspa.2018.0205 |
[28] | Joy SR, Erementchouk M, Yu H, Mazumder P. Spoof Plasmon interconnects—communications beyond RC limit. IEEE Trans Commun 67, 599–610 (2019). doi: 10.1109/TCOMM.2018.2874242 |
[29] | Gao XX, Zhang HC, He PH, Wang ZX, Lu JY et al. Crosstalk suppression based on mode mismatch between spoof SPP transmission line and microstrip. IEEE Trans Comp, Pack Manuf Technol 9, 2267–2275 (2019). |
[30] | Zhang HC, Tang WX, Xu J, Liu S, Liu JF et al. Reduction of shielding-box volume using SPP-Like transmission lines. IEEE Trans Comp, Pack Manuf Technol 7, 1486–1492 (2017). |
[31] | He PH, Zhang HC, Tang WX, Cui TJ. Shielding spoof surface Plasmon Polariton transmission lines using dielectric Box. IEEE Microw Wirel Compon Lett 28, 1077–1079 (2018). doi: 10.1109/LMWC.2018.2878968 |
[32] | Han YJ, Wang JF, Gong SH, Li YF, Zhang Y et al. Low RCS antennas based on dispersion engineering of spoof surface Plasmon Polaritons. IEEE Trans Antenn Propag 66, 7111–7116 (2018). doi: 10.1109/TAP.2018.2869206 |
[33] | He PH, Ren Y, Shao CZ, Zhang HC, Zhang LP et al. Suppressing high-power microwave pulses using spoof surface Plasmon Polariton mono-pulse antenna. IEEE Trans Antenn Propag 69, 8069–8079 (2021). doi: 10.1109/TAP.2021.3083836 |
[34] | Guan DF, You P, Zhang QF, Xiao K, Yong SW. Hybrid spoof surface Plasmon Polariton and substrate integrated waveguide transmission line and its application in filter. IEEE Trans Microw Theory Tech 65, 4925–4932 (2017). doi: 10.1109/TMTT.2017.2727486 |
[35] | Guan DF, You P, Zhang QF, Yang ZB, Liu HW et al. Slow-wave half-mode substrate integrated waveguide using spoof surface Plasmon Polariton structure. IEEE Trans Microw Theory Tech 66, 2946–2952 (2018). doi: 10.1109/TMTT.2018.2825385 |
[36] | Zhang HC, He PH, Gao XX, Tang WX, Cui TJ. Pass-band reconfigurable spoof surface Plasmon polaritons. J Phys:Condens Matter 30, 134004 (2018). doi: 10.1088/1361-648X/aaab85 |
[37] | Zhang HC, Cui TJ, Luo Y, Zhang JJ, Xu J et al. Active digital spoof plasmonics. Natl Sci Rev 7, 261–269 (2020). doi: 10.1093/nsr/nwz148 |
[38] | Zhang LP, Zhang HC, Tang M, He PH, Niu LY et al. Integrated multi-scheme digital modulations of spoof surface Plasmon polaritons. Sci China Inform Sci 63, 202302 (2020). doi: 10.1007/s11432-020-2972-0 |
[39] | Han YJ, Li YF, Ma H, Wang JF, Feng DY et al. Multibeam antennas based on spoof surface Plasmon Polaritons mode coupling. IEEE Trans Antenn Propag 65, 1187–1192 (2017). doi: 10.1109/TAP.2016.2647588 |
[40] | Kianinejad A, Chen ZN, Qiu CW. A single-layered spoof-Plasmon-mode leaky wave antenna with consistent gain. IEEE Trans Antenn Propag 65, 681–687 (2017). doi: 10.1109/TAP.2016.2633161 |
[41] | Kianinejad A, Chen ZN, Zhang L, Liu W, Qiu CW. Spoof Plasmon-based slow-wave excitation of dielectric resonator antennas. IEEE Trans Antenn Propag 64, 2094–2099 (2016). doi: 10.1109/TAP.2016.2545738 |
[42] | Zhang HC, Liu L, He PH, Lu JY, Zhang LP et al. A wide-angle broadband converter: from odd-mode spoof surface Plasmon Polaritons to spatial waves. IEEE Trans Antenn Propag 67, 7425–7432 (2019). doi: 10.1109/TAP.2019.2935671 |
[43] | Lu JY, Zhang HC, He PH, Zhang LP, Cui TJ. Design of miniaturized antenna using corrugated microstrip. IEEE T Antenn Propag 68, 1918–1924 (2020). doi: 10.1109/TAP.2019.2963209 |
[44] | Tian X, Lee PM, Tan YJ, Wu TLY, Yao HC et al. Wireless body sensor networks based on metamaterial textiles. Nat Electron 2, 243–251 (2019). doi: 10.1038/s41928-019-0257-7 |
[45] | Zhang HC, Zhang LP, He PH, Xu J, Qian C et al. A plasmonic route for the integrated wireless communication of subdiffraction-limited signals. Light:Sci Appl 9, 113 (2020). doi: 10.1038/s41377-020-00355-y |
[46] | Zhang HC, Liu S, Shen XP, Chen LH, Li LM et al. Broadband amplification of spoof surface Plasmon polaritons at microwave frequencies. Laser Photonics Rev 9, 83–90 (2015). doi: 10.1002/lpor.201400131 |
[47] | Maier SA. Plasmonics: Fundamentals and Applications (Springer, New York, 2007). |
The insulator-metal-insulator model.
Schematic diagram of the whole amplifier-integrated OMM.
Geometrical parameters and dispersion curves of the typical SSPP waveguide and the OMM. (a) Geometrical parameters of the typical SSPP structure, where the width of the center strip is w fixed as 4 mm, the period of the unit is p, the width of the grooves is a and the width of the narrow strip is w0. (b) Dispersion curves of the typical SSPP structure with varying a, where p = 1.5 mm, w0 = 1 mm. (c) Dispersion curves of the typical SSPP structure with varying p, where a = 0.75 mm and w0 = 1 mm. (d) Dispersion curves of the typical SSPP structure with varying w0, where p = 1.5 mm, a = 0.75 mm. (e) Geometrical parameters of the OMM, where the width of the center strip is w1 fixed as 4 mm, the period of the unit is p1, the width of the narrow strip is w01, the folding extent of the zigzag grooves is described by X and Y. (f) Dispersion curves of the typical SSPP structure with varying X, where w1 = 4 mm, w01 = 2.8 mm, a1 = 0.3 mm, p1 = 1.5 mm, Y=0.2 mm.
Cutoff frequency and decay factor curves with varying X, where the other parameters are the same with those in Fig. 3(f).
Electric-field distributions of the cross sections of the SSPP structures at 15 GHz. (a–c) Absolute value of electric-field distributions on the cross-section of (a) even-mode of the typical SSPP (X = 0 mm) waveguide, (b) even mode and (c) odd mode of the OMM (X = 0.7 mm). (d) X-component, (e) Y-component and (f) Z-component of electric field of even mode of the OMM. (g) X-component, (h) Y-component and (i) Z-component of electric field of odd mode of the OMM. (j) X-component, (k) Y-component and (l) Z-component of electric field of slot line. (m) X-component, (n) Y-component and (o) Z-component of electric field of SOMM.
The conversion structures. (a) Conversion structure between the quasi-TEM mode and odd-mode SSPPs, where 5 linearly gradient SSPP units are employed. (b) Simulated S-parameters of the conversion structure, where the OMM is composed of 46 units. (c) The compact conversion structure to convert odd-mode SSPP waves into voltage input of chips.
Experiments of the amplifier-integrated OMM. (a) Top view of the sample. (b) Bottom view of the sample. (c) Measured S-parameters of the sample. (d) The photograph of the EM scanning system composed of a VNA and a monopole probe installed in a mechanical platform in an EM shielding chamber. (e, f) The measured near-electric-field distributions of the amplifier-integrated OMM sample at (e) 14 and (f) 16 GHz.
Crosstalk suppression and low RCS properties of the OMM. (a) Coupling pair of SSPP channel. (b) Crosstalk of typical even-even coupling pair and odd-even coupling pair. (c) RCS of the OMM compared to that of a CPW with the same total size.
Flexibility test of the amplifier-integrated OMM.