He PH, Niu LY, Fan Y, Zhang HC, Zhang LP et al. Active odd-mode-metachannel for single-conductor systems. Opto-Electron Adv 5, 210119 (2022). doi: 10.29026/oea.2022.210119
Citation: He PH, Niu LY, Fan Y, Zhang HC, Zhang LP et al. Active odd-mode-metachannel for single-conductor systems. Opto-Electron Adv 5, 210119 (2022). doi: 10.29026/oea.2022.210119

Original Article Open Access

Active odd-mode-metachannel for single-conductor systems

More Information
  • Although tremendous efforts have been devoted to investigating planar single-conductor circuits, it remains challenging to provide tight confinement of electromagnetic field and compatibility with active semi-conductor components such as amplifier, harmonic generator and mixers. Single-conductor spoof surface plasmon polariton (SSPP) structure, which is one of the most promising planar single-conductor transmission media due to the outstanding field confinement, still suffers from the difficulty in integrating with the active semi-conductor components. In this paper, a new kind of odd-mode-metachannel (OMM) that can support odd-mode SSPPs is proposed to perform as the fundamental transmission channel of the single-conductor systems. By introducing zigzag decoration, the OMM can strengthen the field confinement and broaden the bandwidth of odd-mode SSPPs simultaneously. More importantly, the active semi-conductor amplifier chip integration is achieved by utilizing the intrinsic potential difference on OMM, which breaks the major obstacle in implementing the single-conductor systems. As an instance, an amplifier is successfully integrated on the single-conductor OMM, which can realize both loss compensation and signal amplification. Meanwhile, the merits of OMM including crosstalk suppression, low radar cross section (RCS), and flexibility are comprehensively demonstrated. Hence, the proposed OMM and its capability to integrate with the active semi-conductor components may provide a new avenue to future single-conductor conformal systems and smart skins.
  • 加载中
  • [1] Goubau G. Open wire lines. IRE Trans Microw Theory Tech 4, 197–200 (1956). doi: 10.1109/TMTT.1956.1125062

    CrossRef Google Scholar

    [2] Akalin T, Treizebré A, Bocquet B. Single-wire transmission lines at terahertz frequencies. IEEE Trans Microw Theory Tech 54, 2762–2767 (2006). doi: 10.1109/TMTT.2006.874890

    CrossRef Google Scholar

    [3] Pendry JB, Martín-Moreno L, Garcia-Vidal FJ. Mimicking surface plasmons with structured surfaces. Science 305, 847–848 (2004). doi: 10.1126/science.1098999

    CrossRef Google Scholar

    [4] Hibbins AP, Evans BR, Sambles JR. Experimental verification of designer surface plasmons. Science 308, 670–672 (2005). doi: 10.1126/science.1109043

    CrossRef Google Scholar

    [5] Yu NF, Wang QJ, Kats MA, Fan JA, Khanna SP et al. Designer spoof surface Plasmon structures collimate terahertz laser beams. Nat Mater 9, 730–735 (2010). doi: 10.1038/nmat2822

    CrossRef Google Scholar

    [6] Kats MA, Woolf D, Blanchard R, Yu NF, Capasso F. Spoof Plasmon analogue of metal-insulator-metal waveguides. Opt Express 19, 14860–14870 (2011). doi: 10.1364/OE.19.014860

    CrossRef Google Scholar

    [7] Woolf D, Kats MA, Capasso F. Spoof surface Plasmon waveguide forces. Opt Lett 39, 517–520 (2014). doi: 10.1364/OL.39.000517

    CrossRef Google Scholar

    [8] Erementchouk M, Joy SR, Mazumder P. Electrodynamics of spoof Plasmons in periodically corrugated waveguides. Proc Roy Soc A 472, 20160616 (2016). doi: 10.1098/rspa.2016.0616

    CrossRef Google Scholar

    [9] Zhang HC, He PH, Liu ZX, Tang WX, Aziz A et al. Dispersion analysis of deep-subwavelength-decorated metallic surface using field-network joint solution. IEEE Trans Antenn Propag 66, 2923–2933 (2018). doi: 10.1109/TAP.2018.2823820

    CrossRef Google Scholar

    [10] Zhang HC, He PH, Gao XX, Lu JY, Cui TJ et al. Loss analysis of plasmonic metasurfaces using field-network-joint method. IEEE Trans Antenn Propag 67, 3521–3526 (2019). doi: 10.1109/TAP.2019.2901123

    CrossRef Google Scholar

    [11] Garcia-Vidal FJ, Fernández-Domínguez AI, Martin-Moreno L, Zhang HC, Tang W et al. Spoof surface plasmon photonics. Rev. Mod. Phys 94, 025004 (2022). doi: 10.1103/RevModPhys.94.025004

    CrossRef Google Scholar

    [12] Wen XM, Bi YG, Yi FS, Zhang XL, Liu YF et al. Tunable surface plasmon-polariton resonance in organic light-emitting devices based on corrugated alloy electrodes. Opto-Electron Adv 4, 200024 (2021). doi: 10.29026/oea.2021.200024

    CrossRef Google Scholar

    [13] Barnes WL, Dereux A, Ebbesen TW. Surface Plasmon subwavelength optics. Nature 424, 824–830 (2003). doi: 10.1038/nature01937

    CrossRef Google Scholar

    [14] Jones AC, Olmon RL, Skrabalak SE, Wiley BJ, Xia YN et al. Mid-IR plasmonics: near-field imaging of coherent Plasmon modes of silver nanowires. Nano Lett 9, 2553–2558 (2009). doi: 10.1021/nl900638p

    CrossRef Google Scholar

    [15] Fang N, Lee H, Sun C, Zhang X. Sub-diffraction-limited optical imaging with a silver superlens. Science 308, 534–537 (2005). doi: 10.1126/science.1108759

    CrossRef Google Scholar

    [16] Chen Q, Liang L, Zheng Q L, Zhang YX, Wen L. On-chip readout plasmonic mid-IR gas sensor. Opto-Electron Adv 3, 190040 (2020). doi: 10.29026/oea.2020.190040

    CrossRef Google Scholar

    [17] Shen XP, Cui TJ, Martin-Cano D, Garcia-Vidal FJ. Conformal surface plasmons propagating on ultrathin and flexible films. Proc Natl Acad Sci USA 110, 40–45 (2013). doi: 10.1073/pnas.1210417110

    CrossRef Google Scholar

    [18] He PH, Zhang HC, Tang W X, Wang ZX, Yan RT et al. A multi-layer spoof surface Plasmon polariton waveguide with corrugated ground. IEEE Access 5, 25306–25311 (2017). doi: 10.1109/ACCESS.2017.2768481

    CrossRef Google Scholar

    [19] Kianinejad A, Chen ZN, Qiu CW. Full modeling, loss reduction, and mutual coupling control of spoof surface Plasmon-based meander slow wave transmission lines. IEEE Trans Microw Theory Tech 66, 3764–3772 (2018). doi: 10.1109/TMTT.2018.2841857

    CrossRef Google Scholar

    [20] He PH, Zhang HC, Gao XX, Yun L, Tang WX et al. A novel spoof surface Plasmon polariton structure to reach ultra-strong field confinements. Opto-Electron Adv 2, 190001 (2019).

    Google Scholar

    [21] Zhang HC, He PH, Tang WX, Luo Y, Cui TJ. Planar spoof SPP transmission lines: Applications in microwave circuits. IEEE Microw Mag 20, 73–91 (2019).

    Google Scholar

    [22] Zhang JJ, Zhang HC, Gao XX, Zhang LP, Niu LY et al. Integrated spoof plasmonic circuits. Sci Bull 64, 843–855 (2019). doi: 10.1016/j.scib.2019.01.022

    CrossRef Google Scholar

    [23] He PH, Fan Y, Zhang HC, Zhang LP, Tang M et al. Characteristic impedance extraction of spoof surface Plasmon polariton waveguides. J Phys D:Appl Phys 54, 385102 (2021). doi: 10.1088/1361-6463/ac0460

    CrossRef Google Scholar

    [24] Zhang HC, Cui TJ, Zhang Q, Fan YF, Fu XJ. Breaking the challenge of signal integrity using time-domain spoof surface Plasmon polaritons. ACS Photonics 2, 1333–1340 (2015). doi: 10.1021/acsphotonics.5b00316

    CrossRef Google Scholar

    [25] Liang Y, Yu H, Zhang HC, Yang C, Cui TJ. On-chip sub-terahertz surface Plasmon polariton transmission lines in CMOS. Sci Rep 5, 14853 (2015). doi: 10.1038/srep14853

    CrossRef Google Scholar

    [26] Liang Y, Yu H, Feng GY, Apriyana AAA, Fu XJ et al. An energy-efficient and low-crosstalk sub-THz I/O by surface Plasmonic Polariton interconnect in CMOS. IEEE Trans Microw Theory Tech 65, 2762–2774 (2017). doi: 10.1109/TMTT.2017.2666808

    CrossRef Google Scholar

    [27] Joy SR, Yu H, Mazumder P. Properties of spoof Plasmon in thin structures. Proc Roy Soc A 474, 20180205 (2018). doi: 10.1098/rspa.2018.0205

    CrossRef Google Scholar

    [28] Joy SR, Erementchouk M, Yu H, Mazumder P. Spoof Plasmon interconnects—communications beyond RC limit. IEEE Trans Commun 67, 599–610 (2019). doi: 10.1109/TCOMM.2018.2874242

    CrossRef Google Scholar

    [29] Gao XX, Zhang HC, He PH, Wang ZX, Lu JY et al. Crosstalk suppression based on mode mismatch between spoof SPP transmission line and microstrip. IEEE Trans Comp, Pack Manuf Technol 9, 2267–2275 (2019).

    Google Scholar

    [30] Zhang HC, Tang WX, Xu J, Liu S, Liu JF et al. Reduction of shielding-box volume using SPP-Like transmission lines. IEEE Trans Comp, Pack Manuf Technol 7, 1486–1492 (2017).

    Google Scholar

    [31] He PH, Zhang HC, Tang WX, Cui TJ. Shielding spoof surface Plasmon Polariton transmission lines using dielectric Box. IEEE Microw Wirel Compon Lett 28, 1077–1079 (2018). doi: 10.1109/LMWC.2018.2878968

    CrossRef Google Scholar

    [32] Han YJ, Wang JF, Gong SH, Li YF, Zhang Y et al. Low RCS antennas based on dispersion engineering of spoof surface Plasmon Polaritons. IEEE Trans Antenn Propag 66, 7111–7116 (2018). doi: 10.1109/TAP.2018.2869206

    CrossRef Google Scholar

    [33] He PH, Ren Y, Shao CZ, Zhang HC, Zhang LP et al. Suppressing high-power microwave pulses using spoof surface Plasmon Polariton mono-pulse antenna. IEEE Trans Antenn Propag 69, 8069–8079 (2021). doi: 10.1109/TAP.2021.3083836

    CrossRef Google Scholar

    [34] Guan DF, You P, Zhang QF, Xiao K, Yong SW. Hybrid spoof surface Plasmon Polariton and substrate integrated waveguide transmission line and its application in filter. IEEE Trans Microw Theory Tech 65, 4925–4932 (2017). doi: 10.1109/TMTT.2017.2727486

    CrossRef Google Scholar

    [35] Guan DF, You P, Zhang QF, Yang ZB, Liu HW et al. Slow-wave half-mode substrate integrated waveguide using spoof surface Plasmon Polariton structure. IEEE Trans Microw Theory Tech 66, 2946–2952 (2018). doi: 10.1109/TMTT.2018.2825385

    CrossRef Google Scholar

    [36] Zhang HC, He PH, Gao XX, Tang WX, Cui TJ. Pass-band reconfigurable spoof surface Plasmon polaritons. J Phys:Condens Matter 30, 134004 (2018). doi: 10.1088/1361-648X/aaab85

    CrossRef Google Scholar

    [37] Zhang HC, Cui TJ, Luo Y, Zhang JJ, Xu J et al. Active digital spoof plasmonics. Natl Sci Rev 7, 261–269 (2020). doi: 10.1093/nsr/nwz148

    CrossRef Google Scholar

    [38] Zhang LP, Zhang HC, Tang M, He PH, Niu LY et al. Integrated multi-scheme digital modulations of spoof surface Plasmon polaritons. Sci China Inform Sci 63, 202302 (2020). doi: 10.1007/s11432-020-2972-0

    CrossRef Google Scholar

    [39] Han YJ, Li YF, Ma H, Wang JF, Feng DY et al. Multibeam antennas based on spoof surface Plasmon Polaritons mode coupling. IEEE Trans Antenn Propag 65, 1187–1192 (2017). doi: 10.1109/TAP.2016.2647588

    CrossRef Google Scholar

    [40] Kianinejad A, Chen ZN, Qiu CW. A single-layered spoof-Plasmon-mode leaky wave antenna with consistent gain. IEEE Trans Antenn Propag 65, 681–687 (2017). doi: 10.1109/TAP.2016.2633161

    CrossRef Google Scholar

    [41] Kianinejad A, Chen ZN, Zhang L, Liu W, Qiu CW. Spoof Plasmon-based slow-wave excitation of dielectric resonator antennas. IEEE Trans Antenn Propag 64, 2094–2099 (2016). doi: 10.1109/TAP.2016.2545738

    CrossRef Google Scholar

    [42] Zhang HC, Liu L, He PH, Lu JY, Zhang LP et al. A wide-angle broadband converter: from odd-mode spoof surface Plasmon Polaritons to spatial waves. IEEE Trans Antenn Propag 67, 7425–7432 (2019). doi: 10.1109/TAP.2019.2935671

    CrossRef Google Scholar

    [43] Lu JY, Zhang HC, He PH, Zhang LP, Cui TJ. Design of miniaturized antenna using corrugated microstrip. IEEE T Antenn Propag 68, 1918–1924 (2020). doi: 10.1109/TAP.2019.2963209

    CrossRef Google Scholar

    [44] Tian X, Lee PM, Tan YJ, Wu TLY, Yao HC et al. Wireless body sensor networks based on metamaterial textiles. Nat Electron 2, 243–251 (2019). doi: 10.1038/s41928-019-0257-7

    CrossRef Google Scholar

    [45] Zhang HC, Zhang LP, He PH, Xu J, Qian C et al. A plasmonic route for the integrated wireless communication of subdiffraction-limited signals. Light:Sci Appl 9, 113 (2020). doi: 10.1038/s41377-020-00355-y

    CrossRef Google Scholar

    [46] Zhang HC, Liu S, Shen XP, Chen LH, Li LM et al. Broadband amplification of spoof surface Plasmon polaritons at microwave frequencies. Laser Photonics Rev 9, 83–90 (2015). doi: 10.1002/lpor.201400131

    CrossRef Google Scholar

    [47] Maier SA. Plasmonics: Fundamentals and Applications (Springer, New York, 2007).

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(9)

Tables(3)

Article Metrics

Article views(4800) PDF downloads(780) Cited by(0)

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint