Qi ZY, Guo QC, Wang S, Jia MY, Gao XW et al. All-fiber-transmission photometry for simultaneous optogenetic stimulation and multi-color neuronal activity recording. Opto-Electron Adv 5, 210081 (2022). doi: 10.29026/oea.2022.210081
Citation: Qi ZY, Guo QC, Wang S, Jia MY, Gao XW et al. All-fiber-transmission photometry for simultaneous optogenetic stimulation and multi-color neuronal activity recording. Opto-Electron Adv 5, 210081 (2022). doi: 10.29026/oea.2022.210081

Original Article Open Access

All-fiber-transmission photometry for simultaneous optogenetic stimulation and multi-color neuronal activity recording

More Information
  • Manipulating and real-time monitoring of neuronal activities with cell-type specificity and precise spatiotemporal resolution during animal behavior are fundamental technologies for exploring the functional connectivity, information transmission, and physiological functions of neural circuits in vivo. However, current techniques for optogenetic stimulation and neuronal activity recording mostly operate independently. Here, we report an all-fiber-transmission photometry system for simultaneous optogenetic manipulation and multi-color recording of neuronal activities and the neurotransmitter release in a freely moving animal. We have designed and manufactured a wavelength-independent multi-branch fiber bundle to enable simultaneous optogenetic manipulation and multi-color recording at different wavelengths. Further, we combine a laser of narrow linewidth with the lock-in amplification method to suppress the optogenetic stimulation-induced artifacts and channel crosstalk. We show that the collection efficiency of our system outperforms a traditional epi-fluorescence system. Further, we demonstrate successful recording of dynamic dopamine (DA) responses to unexpected rewards in the nucleus accumbens (NAc) in a freely moving mouse. We also show simultaneous dual-color recording of neuronal Ca2+ signals and DA dynamics in the NAc upon delivering an unexpected reward and the simultaneous optogenetic activating at dopaminergic terminals in the same location. Thus, our multi-function fiber photometry system provides a compatible, efficient, and flexible solution for neuroscientists to study neural circuits and neurological diseases.
  • 加载中
  • [1] Boyden ES, Zhang F, Bamberg E, Nagel G, Deisseroth K. Millisecond-timescale, genetically targeted optical control of neural activity. Nat Neurosci 8, 1263–1268 (2005). doi: 10.1038/nn1525

    CrossRef Google Scholar

    [2] Grienberger C, Konnerth A. Imaging calcium in neurons. Neuron 73, 862–885 (2012). doi: 10.1016/j.neuron.2012.02.011

    CrossRef Google Scholar

    [3] Li Y, Zhong WX, Wang DQ, Feng QR, Liu ZX et al. Serotonin neurons in the dorsal raphe nucleus encode reward signals. Nat Commun 7, 10503 (2016). doi: 10.1038/ncomms10503

    CrossRef Google Scholar

    [4] Grosenick L, Marshel JH, Deisseroth K. Closed-loop and activity-guided optogenetic control. Neuron 86, 106–139 (2015). doi: 10.1016/j.neuron.2015.03.034

    CrossRef Google Scholar

    [5] Harris JA, Mihalas S, Hirokawa KE, Whitesell JD, Choi H et al. Hierarchical organization of cortical and thalamic connectivity. Nature 575, 195–202 (2019). doi: 10.1038/s41586-019-1716-z

    CrossRef Google Scholar

    [6] Chaudhury D, Walsh JJ, Friedman AK, Juarez B, Ku SM et al. Rapid regulation of depression-related behaviours by control of midbrain dopamine neurons. Nature 493, 532–536 (2013). doi: 10.1038/nature11713

    CrossRef Google Scholar

    [7] Wang L, Chen IZ, Lin DY. Collateral pathways from the ventromedial hypothalamus mediate defensive behaviors. Neuron 85, 1344–1358 (2015). doi: 10.1016/j.neuron.2014.12.025

    CrossRef Google Scholar

    [8] Tsai HC, Zhang F, Adamantidis A, Stuber GD, Bonci A et al. Phasic firing in dopaminergic neurons is sufficient for behavioral conditioning. Science 324, 1080–1084 (2009). doi: 10.1126/science.1168878

    CrossRef Google Scholar

    [9] Floresco SB, West AR, Ash B, Moore H, Grace AA. Afferent modulation of dopamine neuron firing differentially regulates tonic and phasic dopamine transmission. Nat Neurosci 6, 968–973 (2003). doi: 10.1038/nn1103

    CrossRef Google Scholar

    [10] Krook-Magnuson E, Armstrong C, Bui A, Lew S, Oijala M et al. In vivo evaluation of the dentate gate theory in epilepsy. J Physiol 593, 2379–2388 (2015). doi: 10.1113/JP270056

    CrossRef Google Scholar

    [11] Adelsberger H, Grienberger C, Stroh A, Konnerth A. In vivo calcium recordings and channelrhodopsin-2 activation through an optical fiber. Cold Spring Harb Protoc 2014, pdb.prot084145 (2014). doi: 10.1101/pdb.prot084145

    CrossRef Google Scholar

    [12] Liu ZX, Zhou JF, Li Y, Hu F, Lu Y et al. Dorsal raphe neurons signal reward through 5-HT and glutamate. Neuron 81, 1360–1374 (2014). doi: 10.1016/j.neuron.2014.02.010

    CrossRef Google Scholar

    [13] Zhao HX, Li K, Yang F, Zhou WH, Chen NB et al. Customized anterior segment photoacoustic imaging for ophthalmic burn evaluation in vivo. Opto-Electron Adv 4, 200017 (2021). doi: 10.29026/oea.2021.200017

    CrossRef Google Scholar

    [14] Adelsberger H, Garaschuk O, Konnerth A. Cortical calcium waves in resting newborn mice. Nat Neurosci 8, 988–990 (2005). doi: 10.1038/nn1502

    CrossRef Google Scholar

    [15] Guo QC, Zhou JF, Feng QR, Lin R, Gong H et al. Multi-channel fiber photometry for population neuronal activity recording. Biomed Opt Express 6, 3919–3931 (2015). doi: 10.1364/BOE.6.003919

    CrossRef Google Scholar

    [16] Stosiek C, Garaschuk O, Holthoff K, Konnerth A. In vivo two-photon calcium imaging of neuronal networks. Proc Natl Acad Sci USA 100, 7319–7324 (2003). doi: 10.1073/pnas.1232232100

    CrossRef Google Scholar

    [17] Zong WJ, Wu RL, Li ML, Hu YH, Li YJ et al. Fast high-resolution miniature two-photon microscopy for brain imaging in freely behaving mice. Nat Methods 14, 713–719 (2017). doi: 10.1038/nmeth.4305

    CrossRef Google Scholar

    [18] Ghosh KK, Burns LD, Cocker ED, Nimmerjahn A, Ziv Y et al. Miniaturized integration of a fluorescence microscope. Nat Methods 8, 871–878 (2011). doi: 10.1038/nmeth.1694

    CrossRef Google Scholar

    [19] Cui GH, Jun SB, Jin X, Pham MD, Vogel SS et al. Concurrent activation of striatal direct and indirect pathways during action initiation. Nature 494, 238–242 (2013). doi: 10.1038/nature11846

    CrossRef Google Scholar

    [20] Cui GH, Jun SB, Jin X, Luo GX, Pham MD et al. Deep brain optical measurements of cell type-specific neural activity in behaving mice. Nat Protoc 9, 1213–1228 (2014). doi: 10.1038/nprot.2014.080

    CrossRef Google Scholar

    [21] Li L, Tang YJ, Sun LQ, Rahman K, Huang K et al. In vivo fiber photometry of neural activity in response to optogenetically manipulated inputs in freely moving mice. J Innovative Opt Health Sci 10, 1743001 (2017). doi: 10.1142/S1793545817430015

    CrossRef Google Scholar

    [22] Guo J, Ran MZ, Gao ZL, Zhang XX, Wang D et al. Cell-type-specific imaging of neurotransmission reveals a disrupted excitatory-inhibitory cortical network in isoflurane anaesthesia. eBioMedicine 65, 103272 (2021). doi: 10.1016/j.ebiom.2021.103272

    CrossRef Google Scholar

    [23] Guan BO, Jin L, Ma J, Liang YZ, Bai X. Flexible fiber-laser ultrasound sensor for multiscale photoacoustic imaging. Opto-Electron Adv 4, 200081 (2021). doi: 10.29026/oea.2021.200081

    CrossRef Google Scholar

    [24] Anikeeva P, Andalman AS, Witten I, Warden M, Goshen I et al. Optetrode: a multichannel readout for optogenetic control in freely moving mice. Nat Neurosci 15, 163–170 (2012). doi: 10.1038/nn.2992

    CrossRef Google Scholar

    [25] Stroh A, Adelsberger H, Groh A, Rühlmann C, Fischer S et al. Making waves: initiation and propagation of corticothalamic Ca2+ waves in vivo. Neuron 77, 1136–1150 (2013). doi: 10.1016/j.neuron.2013.01.031

    CrossRef Google Scholar

    [26] Kim CK, Yang SJ, Pichamoorthy N, Young NP, Kauvar I et al. Simultaneous fast measurement of circuit dynamics at multiple sites across the mammalian brain. Nat Methods 13, 325–328 (2016). doi: 10.1038/nmeth.3770

    CrossRef Google Scholar

    [27] Stamatakis AM, Schachter MJ, Gulati S, Zitelli KT, Malanowski S et al. Simultaneous optogenetics and cellular resolution calcium imaging during active behavior using a miniaturized microscope. Front Neurosci 12, 496 (2018). doi: 10.3389/fnins.2018.00496

    CrossRef Google Scholar

    [28] Yang WJ, Carrillo-Reid L, Bando Y, Peterka DS, Yuste R. Simultaneous two-photon imaging and two-photon optogenetics of cortical circuits in three dimensions. eLife 7, e32671 (2018). doi: 10.7554/eLife.32671

    CrossRef Google Scholar

    [29] Falkner AL, Grosenick L, Davidson TJ, Deisseroth K, Lin DY. Hypothalamic control of male aggression-seeking behavior. Nat Neurosci 19, 596–604 (2016). doi: 10.1038/nn.4264

    CrossRef Google Scholar

    [30] Wan YQ, Wang MQ, Zhang SR, Xie BB. Availability and safety assessment of infrared neural stimulation at high repetition rate through an implantable optrode. J Innovative Opt Health Sci 14, 2150014 (2021). doi: 10.1142/S1793545821500140

    CrossRef Google Scholar

    [31] Chen TW, Wardill TJ, Sun Y, Pulver SR, Renninger SL et al. Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature 499, 295–300 (2013). doi: 10.1038/nature12354

    CrossRef Google Scholar

    [32] Dana H, Mohar B, Sun Y, Narayan S, Gordus A et al. Sensitive red protein calcium indicators for imaging neural activity. eLife 5, e12727 (2016). doi: 10.7554/eLife.12727

    CrossRef Google Scholar

    [33] Sun FM, Zeng JZ, Jing M, Zhou JH, Feng JS et al. A genetically encoded fluorescent sensor enables rapid and specific detection of dopamine in flies, fish, and mice. Cell 174, 481–496.e19 (2018). doi: 10.1016/j.cell.2018.06.042

    CrossRef Google Scholar

    [34] Patriarchi T, Mohebi A, Sun JQ, Marley A, Liang RQ et al. An expanded palette of dopamine sensors for multiplex imaging in vivo. Nat Methods 17, 1147–1155 (2020). doi: 10.1038/s41592-020-0936-3

    CrossRef Google Scholar

    [35] Luo F, Wei Y, Wang ZY, Luo MM, Hu J. Genetically encoded neural activity indicators. Brain Sci Adv 4, 1–15 (2018). doi: 10.26599/BSA.2018.9050007

    CrossRef Google Scholar

    [36] Helmchen F, Denk W. Deep tissue two-photon microscopy. Nat Methods 2, 932–940 (2005). doi: 10.1038/nmeth818

    CrossRef Google Scholar

    [37] Barretto RPJ, Messerschmidt B, Schnitzer MJ. In vivo fluorescence imaging with high-resolution microlenses. Nat Methods 6, 511–512 (2009). doi: 10.1038/nmeth.1339

    CrossRef Google Scholar

    [38] Bocarsly ME, Jiang WC, Wang C, Dudman JT, Ji N et al. Minimally invasive microendoscopy system for in vivo functional imaging of deep nuclei in the mouse brain. Biomed Opt Express 6, 4546–4556 (2015). doi: 10.1364/BOE.6.004546

    CrossRef Google Scholar

    [39] Resendez SL, Jennings JH, Ung RL, Namboodiri VMK, Zhou ZC et al. Visualization of cortical, subcortical and deep brain neural circuit dynamics during naturalistic mammalian behavior with head-mounted microscopes and chronically implanted lenses. Nat Protoc 11, 566–597 (2016). doi: 10.1038/nprot.2016.021

    CrossRef Google Scholar

    [40] Qin H, Lu J, Jin WJ, Chen XW, Fu L. Multichannel fiber photometry for mapping axonal terminal activity in a restricted brain region in freely moving mice. Neurophotonics 6, 035011 (2019). doi: 10.1117/1.NPh.6.3.035011

    CrossRef Google Scholar

    [41] Sych Y, Chernysheva M, Sumanovski LT, Helmchen F. High-density multi-fiber photometry for studying large-scale brain circuit dynamics. Nat Methods 16, 553–560 (2019). doi: 10.1038/s41592-019-0400-4

    CrossRef Google Scholar

    [42] Pisano F, Pisanello M, Lee SJ, Lee J, Maglie E et al. Depth-resolved fiber photometry with a single tapered optical fiber implant. Nat Methods 16, 1185–1192 (2019). doi: 10.1038/s41592-019-0581-x

    CrossRef Google Scholar

    [43] Klapoetke NC, Murata Y, Kim SS, Pulver SR, Birdsey-Benson A et al. Independent optical excitation of distinct neural populations. Nat Methods 11, 338–346 (2014). doi: 10.1038/nmeth.2836

    CrossRef Google Scholar

    [44] Coda S, Thompson AJ, Kennedy GT, Roche KL, Ayaru L et al. Fluorescence lifetime spectroscopy of tissue autofluorescence in normal and diseased colon measured ex vivo using a fiber-optic probe. Biomed Opt Express 5, 515–538 (2014). doi: 10.1364/BOE.5.000515

    CrossRef Google Scholar

    [45] Zhang L, Pan J, Zhang Z, Wu H, Yao N et al. Ultrasensitive skin-like wearable optical sensors based on glass micro/nanofibers. Opto-Electron Adv 3, 190022 (2020). doi: 10.29026/oea.2020.190022

    CrossRef Google Scholar

    [46] Tan FZ, Lyu W, Chen SY, Liu ZY, Yu CY. Contactless vital signs monitoring based on few-mode and multi-core fibers. Opto-Electron Adv 3, 190034 (2020). doi: 10.29026/oea.2020.190034

    CrossRef Google Scholar

    [47] Simone K, Füzesi T, Rosenegger D, Bains J, Murari K. Open-source, cost-effective system for low-light in vivo fiber photometry. Neurophotonics 5, 025006 (2018). doi: 10.1117/1.NPh.5.2.025006

    CrossRef Google Scholar

    [48] Gunaydin LA, Grosenick L, Finkelstein JC, Kauvar IV, Fenno LE et al. Natural neural projection dynamics underlying social behavior. Cell 157, 1535–1551 (2014). doi: 10.1016/j.cell.2014.05.017

    CrossRef Google Scholar

    [49] Lerner TN, Shilyansky C, Davidson TJ, Evans KE, Beier KT et al. Intact-brain analyses reveal distinct information carried by SNc dopamine subcircuits. Cell 162, 635–647 (2015). doi: 10.1016/j.cell.2015.07.014

    CrossRef Google Scholar

    [50] Owen SF, Kreitzer AC. An open-source control system for in vivo fluorescence measurements from deep-brain structures. J Neurosci Methods 311, 170–177 (2019). doi: 10.1016/j.jneumeth.2018.10.022

    CrossRef Google Scholar

    [51] Bromberg-Martin ES, Matsumoto M, Hikosaka O. Dopamine in motivational control: rewarding, aversive, and alerting. Neuron 68, 815–834 (2010). doi: 10.1016/j.neuron.2010.11.022

    CrossRef Google Scholar

    [52] Björklund A, Dunnett SB. Dopamine neuron systems in the brain: an update. Trends Neurosci 30, 194–202 (2007). doi: 10.1016/j.tins.2007.03.006

    CrossRef Google Scholar

    [53] Yuan L, Dou YN, Sun YG. Topography of reward and aversion encoding in the mesolimbic dopaminergic system. J Neurosci 39, 6472–6481 (2019). doi: 10.1523/JNEUROSCI.0271-19.2019

    CrossRef Google Scholar

    [54] Peng WL, Wu ZF, Song K, Zhang SY, Li YL et al. Regulation of sleep homeostasis mediator adenosine by basal forebrain glutamatergic neurons. Science 369, eabb0556 (2020). doi: 10.1126/science.abb0556

    CrossRef Google Scholar

    [55] Nieh EH, Vander Weele CM, Matthews GA, Presbrey KN, Wichmann R et al. Inhibitory input from the lateral hypothalamus to the ventral tegmental area disinhibits dopamine neurons and promotes behavioral activation. Neuron 90, 1286–1298 (2016). doi: 10.1016/j.neuron.2016.04.035

    CrossRef Google Scholar

    [56] Schultz W. Dopamine reward prediction-error signalling: a two-component response. Nat Rev Neurosci 17, 183–195 (2016). doi: 10.1038/nrn.2015.26

    CrossRef Google Scholar

    [57] Covey DP, Cheer JF. Accumbal dopamine release tracks the expectation of dopamine neuron-mediated reinforcement. Cell Rep 27, 481–490.e3 (2019). doi: 10.1016/j.celrep.2019.03.055

    CrossRef Google Scholar

    [58] Dreyer JK, Herrik KF, Berg RW, Hounsgaard JD. Influence of phasic and tonic dopamine release on receptor activation. J Neurosci 30, 14273–14283 (2010). doi: 10.1523/JNEUROSCI.1894-10.2010

    CrossRef Google Scholar

    [59] Kim CK, Sanchez MI, Hoerbelt P, Fenno LE, Malenka RC et al. A molecular calcium integrator reveals a striatal cell type driving aversion. Cell 183, 2003–2019.e16 (2020). doi: 10.1016/j.cell.2020.11.015

    CrossRef Google Scholar

    [60] Yao SQ, Yuan P, Ouellette B, Zhou T, Mortrud M et al. RecV recombinase system for in vivo targeted optogenomic modifications of single cells or cell populations. Nat Methods 17, 422–429 (2020). doi: 10.1038/s41592-020-0774-3

    CrossRef Google Scholar

    [61] Lin JY, Knutsen PM, Muller A, Kleinfeld D, Tsien RY. ReaChR: a red-shifted variant of channelrhodopsin enables deep transcranial optogenetic excitation. Nat Neurosci 16, 1499–1508 (2013). doi: 10.1038/nn.3502

    CrossRef Google Scholar

  • Supplementary Information for All-fiber-transmission photometry for simultaneous optogenetic stimulation and multi-color neuronal activity recording
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Article Metrics

Article views(2956) PDF downloads(483) Cited by(0)

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint