Xu BX, Fan XY, Wang S, He ZY. Sub-femtometer-resolution absolute spectroscopy with sweeping electro-optic combs. Opto-Electron Adv 5, 210023 (2022). doi: 10.29026/oea.2022.210023
Citation: Xu BX, Fan XY, Wang S, He ZY. Sub-femtometer-resolution absolute spectroscopy with sweeping electro-optic combs. Opto-Electron Adv 5, 210023 (2022). doi: 10.29026/oea.2022.210023

Original Article Open Access

Sub-femtometer-resolution absolute spectroscopy with sweeping electro-optic combs

More Information
  • Optical frequency comb with evenly spaced lines over a broad bandwidth has revolutionized the fields of optical metrology and spectroscopy. Here, we propose a fast interleaved dual-comb spectroscopy with sub-femtometer-resolution and absolute frequency, in which two electro-optic frequency combs are swept. Electrically-modulated stabilized laser enables ultrahigh resolution of 0.16 fm (or 20 kHz in optical frequency) and single-shot measurement in 90 ms. Total 20 million points are recorded spanning 3.2 nm (or 400 GHz) bandwidth, corresponding to a spectral sampling rate of 2.5 × 108 points/s under Nyquist-limitation. Besides, considering the trade-off between the measurement time and spectral resolution, a fast single-shot measurement is also realized in 1.6 ms with 8 fm (or 1 MHz) resolution. We demonstrate the 25-averaged result with 30.6 dB spectral measurement signal-to-noise ratio (SNR) by reducing the filter bandwidth in demodulation. The results show great prospect for precise measurement with flexibly fast refresh time, high spectral resolution, and high SNR.
  • 加载中
  • [1] Hänsch T W. Nobel lecture: Passion for precision. Rev Mod Phys 78, 1297–1309 (2006). doi: 10.1103/RevModPhys.78.1297

    CrossRef Google Scholar

    [2] Diddams S A. The evolving optical frequency comb. J Opt Soc Am B 27, B51–B62 (2010). doi: 10.1364/JOSAB.27.000B51

    CrossRef Google Scholar

    [3] Jones DJ, Diddams SA, Ranka JK, Stentz A, Windeler RS et al. Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis. Science 288, 635–639 (2000). doi: 10.1126/science.288.5466.635

    CrossRef Google Scholar

    [4] Newbury NR. Searching for applications with a fine-tooth comb. Nat Photonics 5, 186–188 (2011). doi: 10.1038/nphoton.2011.38

    CrossRef Google Scholar

    [5] Picqué N, Hänsch TW. Frequency comb spectroscopy. Nat Photonics 13, 146–157 (2019). doi: 10.1038/s41566-018-0347-5

    CrossRef Google Scholar

    [6] Diddams SA, Hollberg L, Mbele V. Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb. Nature 445, 627–630 (2007). doi: 10.1038/nature05524

    CrossRef Google Scholar

    [7] Mandon J, Guelachvili G, Picqué N. Fourier transform spectroscopy with a laser frequency comb. Nat Photonics 3, 99–102 (2009). doi: 10.1038/nphoton.2008.293

    CrossRef Google Scholar

    [8] Ycas G, Giorgetta FR, Baumann E, Coddington I, Herman D et al. High-coherence mid-infrared dual-comb spectroscopy spanning 2.6 to 5.2 µm. Nat Photonics 12, 202–208 (2018). doi: 10.1038/s41566-018-0114-7

    CrossRef Google Scholar

    [9] Rösch M, Scalari G, Villares G, Bosco L, Beck M et al. On-chip, self-detected terahertz dual-comb source. Appl Phys Lett 108, 171104 (2016). doi: 10.1063/1.4948358

    CrossRef Google Scholar

    [10] Coddington I, Swann WC, Newbury NR. Coherent multiheterodyne spectroscopy using stabilized optical frequency combs. Phys Rev Lett 100, 013902 (2008). doi: 10.1103/PhysRevLett.100.013902

    CrossRef Google Scholar

    [11] Link SM, Maas DJHC, Waldburger D, Keller U. Dual-comb spectroscopy of water vapor with a free-running semiconductor disk laser. Science 356, 1164–1168 (2017). doi: 10.1126/science.aam7424

    CrossRef Google Scholar

    [12] Hugi A, Villares G, Blaser S, Liu HC, Faist J. Mid-infrared frequency comb based on a quantum cascade laser. Nature 492, 229–233 (2012). doi: 10.1038/nature11620

    CrossRef Google Scholar

    [13] Meek SA, Hipke A, Guelachvili G, Hänsch TW, Picqué N. Doppler-free Fourier transform spectroscopy. Opt Lett 43, 162–165 (2018). doi: 10.1364/OL.43.000162

    CrossRef Google Scholar

    [14] Ideguchi T, Bernhardt B, Guelachvili G, Hänsch TW, Picqué N. Raman-induced Kerr-effect dual-comb spectroscopy. Opt Lett 37, 4498–4500 (2012). doi: 10.1364/OL.37.004498

    CrossRef Google Scholar

    [15] Ideguchi T, Holzner S, Bernhardt B, Guelachvili G, Picqué N et al. Coherent Raman spectro-imaging with laser frequency combs. Nature 502, 355–358 (2013). doi: 10.1038/nature12607

    CrossRef Google Scholar

    [16] Hase E, Minamikawa T, Mizuno T, Miyamoto S, Ichikawa R et al. Scan-less confocal phase imaging based on dual-comb microscopy. Optica 5, 634–643 (2018). doi: 10.1364/OPTICA.5.000634

    CrossRef Google Scholar

    [17] Feng PP, Kang JQ, Tan SS, Ren YX, Zhang C et al. Dual-comb spectrally encoded confocal microscopy by electro-optic modulators. Opt Lett 44, 2919–2922 (2019). doi: 10.1364/OL.44.002919

    CrossRef Google Scholar

    [18] Zolot AM, Giorgetta FR, Baumann E, Nicholson JW, Swann WC et al. Direct-comb molecular spectroscopy with accurate, resolved comb teeth over 43 THz. Opt Lett 37, 638–640 (2012). doi: 10.1364/OL.37.000638

    CrossRef Google Scholar

    [19] Ideguchi T, Poisson A, Guelachvili G, Picqué N, Hänsch TW. Adaptive real-time dual-comb spectroscopy. Nat Commun 5, 3375 (2014). doi: 10.1038/ncomms4375

    CrossRef Google Scholar

    [20] Roy J, Deschênes JD, Potvin S, Genest J. Continuous real-time correction and averaging for frequency comb interferometry. Opt Express 20, 21932–21939 (2012). doi: 10.1364/OE.20.021932

    CrossRef Google Scholar

    [21] Chen ZJ, Yan M, Hänsch TW, Picqué N. A phase-stable dual-comb interferometer. Nat Commun 9, 3035 (2018). doi: 10.1038/s41467-018-05509-6

    CrossRef Google Scholar

    [22] Long DA, Fleisher AJ, Douglass KO, Maxwell SE, Bielska K et al. Multiheterodyne spectroscopy with optical frequency combs generated from a continuous-wave laser. Opt Lett 39, 2688–2690 (2014). doi: 10.1364/OL.39.002688

    CrossRef Google Scholar

    [23] Martín-Mateos P, Jerez B, Acedo P. Dual electro-optic optical frequency combs for multiheterodyne molecular dispersion spectroscopy. Opt Express 23, 21149–21158 (2015). doi: 10.1364/OE.23.021149

    CrossRef Google Scholar

    [24] Millot G, Pitois S, Yan M, Hovhannisyan T, Bendahmane A et al. Frequency-agile dual-comb spectroscopy. Nat Photonics 10, 27–30 (2016). doi: 10.1038/nphoton.2015.250

    CrossRef Google Scholar

    [25] Durán V, Andrekson PA, Torres-Company V. Electro-optic dual-comb interferometry over 40 nm bandwidth. Opt Lett 41, 4190–4193 (2016). doi: 10.1364/OL.41.004190

    CrossRef Google Scholar

    [26] Yan M, Luo PL, Iwakuni K, Millot G, Hänsch TW et al. Mid-infrared dual-comb spectroscopy with electro-optic modulators. Light:Sci Appl 6, e17076 (2017). doi: 10.1038/lsa.2017.76

    CrossRef Google Scholar

    [27] Fdil K, Michaud-Belleau V, Hébert NB, Guay P, Fleisher AJ et al. Dual electro-optic frequency comb spectroscopy using pseudo-random modulation. Opt Lett 44, 4415–4418 (2019). doi: 10.1364/OL.44.004415

    CrossRef Google Scholar

    [28] Wang S, Fan XY, Xu BX, He ZY. Fast MHz spectral-resolution dual-comb spectroscopy with electro-optic modulators. Opt Lett 44, 65–68 (2019). doi: 10.1364/OL.44.000065

    CrossRef Google Scholar

    [29] Xu BX, Fan XY, Wang S, He ZY. Broadband and high-resolution electro-optic dual-comb interferometer with frequency agility. Opt Express 27, 9266–9275 (2019). doi: 10.1364/OE.27.009266

    CrossRef Google Scholar

    [30] Sakamoto T, Kawanishi T, Izutsu M. Asymptotic formalism for ultraflat optical frequency comb generation using a Mach-Zehnder modulator. Opt Lett 32, 1515–1517 (2007). doi: 10.1364/OL.32.001515

    CrossRef Google Scholar

    [31] Wu R, Supradeepa VR, Long CM, Leaird DE, Weiner AM. Generation of very flat optical frequency combs from continuous-wave lasers using cascaded intensity and phase modulators driven by tailored radio frequency waveforms. Opt Lett 35, 3234–3236 (2010). doi: 10.1364/OL.35.003234

    CrossRef Google Scholar

    [32] Beha K, Cole DC, Del’haye P, Coillet A, Diddams SA et al. Electronic synthesis of light. Optica 4, 406–411 (2017). doi: 10.1364/OPTICA.4.000406

    CrossRef Google Scholar

    [33] Bao Y, Yi XW, Li ZH, Chen QM, Li JP et al. A digitally generated ultrafine optical frequency comb for spectral measurements with 0.01-pm resolution and 0.7-µs response time. Light Sci Appl 4, e300 (2015). doi: 10.1038/lsa.2015.73

    CrossRef Google Scholar

    [34] Long DA, Reschovsky BJ. Electro-optic frequency combs generated via direct digital synthesis applied to sub-Doppler spectroscopy. OSA Continuum 2, 3576–3583 (2019). doi: 10.1364/OSAC.2.003576

    CrossRef Google Scholar

    [35] Jacquet P, Mandon J, Bernhardt B, Holzwarth R, Guelachvili G et al. Frequency comb Fourier transform spectroscopy with KHz optical resolution. In Fourier Transform Spectroscopy 2009 (Optical Society of America, 2009); https://doi.org/10.1364/FTS.2009.FMB2.

    Google Scholar

    [36] Baumann E, Giorgetta FR, Swann WC, Zolot AM, Coddington I et al. Spectroscopy of the methane ν3 band with an accurate midinfrared coherent dual-comb spectrometer. Phys Rev A 84, 062513 (2011). doi: 10.1103/PhysRevA.84.062513

    CrossRef Google Scholar

    [37] Villares G, Hugi A, Blaser S, Faist J. Dual-comb spectroscopy based on quantum-cascade-laser frequency combs. Nat Commun 5, 5192 (2014). doi: 10.1038/ncomms6192

    CrossRef Google Scholar

    [38] Yu MJ, Okawachi Y, Griffith AG, Lipson M, Gaeta AL. Microresonator-based high-resolution gas spectroscopy. Opt Lett 42, 4442–4445 (2017). doi: 10.1364/OL.42.004442

    CrossRef Google Scholar

    [39] Nishikawa T, Oohara A, Uda S, Ishizawa A, Hitachi K et al. Automatic interpolation of 25 GHz mode spacing in dual EOM comb spectroscopy. In 2019 Conference on Lasers and Electro-Optics 1–2 (IEEE, 2019);http://doi.org/10.1364/CLEO_SI.2019.SF1I.3.

    Google Scholar

    [40] Hashimoto K, Ideguchi T. Phase-controlled fourier-transform spectroscopy. Nat Commun 9, 4448 (2018). doi: 10.1038/s41467-018-06956-x

    CrossRef Google Scholar

    [41] Ahn TJ, Kim DY. Analysis of nonlinear frequency sweep in high-speed tunable laser sources using a self-homodyne measurement and Hilbert transformation. Appl Opt 46, 2394–2400 (2007). doi: 10.1364/AO.46.002394

    CrossRef Google Scholar

    [42] Long DA, Fleisher AJ, Plusquellic DF, Hodges JT. Multiplexed sub-Doppler spectroscopy with an optical frequency comb. Phys Rev A 94, 061801 (2016). doi: 10.1103/PhysRevA.94.061801

    CrossRef Google Scholar

    [43] Wei F, Lu B, Wang J, Xu D, Pan ZQ et al. Precision and broadband frequency swept laser source based on high-order modulation-sideband injection-locking. Opt Express 23, 4970–4980 (2015). doi: 10.1364/OE.23.004970

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Article Metrics

Article views(10074) PDF downloads(877) Cited by(0)

Access History

Other Articles By Authors

Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint