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All-fiber-transmission photometry for
simultaneous optogenetic stimulation and
multi-color neuronal activity recording
Zhongyang Qi1,2,3†, Qingchun Guo4,5,6†, Shu Wang6, Mingyue Jia6,
Xinwei Gao6, Minmin Luo3,6,7* and Ling Fu1,2*

Manipulating and real-time monitoring of neuronal activities with cell-type specificity and precise spatiotemporal resolu-
tion during animal behavior are fundamental technologies for exploring the functional connectivity, information transmis-
sion, and physiological functions of neural circuits in vivo.  However, current techniques for optogenetic stimulation and
neuronal activity recording mostly operate independently. Here, we report an all-fiber-transmission photometry system for
simultaneous optogenetic manipulation and multi-color recording of neuronal activities and the neurotransmitter release
in a freely moving animal. We have designed and manufactured a wavelength-independent multi-branch fiber bundle to
enable simultaneous optogenetic manipulation and multi-color recording at different wavelengths. Further, we combine a
laser of narrow linewidth with the lock-in amplification method to suppress the optogenetic stimulation-induced artifacts
and channel  crosstalk.  We show that  the  collection  efficiency  of  our  system outperforms a  traditional  epi-fluorescence
system. Further, we demonstrate successful recording of dynamic dopamine (DA) responses to unexpected rewards in
the nucleus accumbens (NAc) in a freely moving mouse. We also show simultaneous dual-color recording of neuronal
Ca2+ signals and DA dynamics in the NAc upon delivering an unexpected reward and the simultaneous optogenetic activ-
ating at dopaminergic terminals in the same location. Thus, our multi-function fiber photometry system provides a com-
patible, efficient, and flexible solution for neuroscientists to study neural circuits and neurological diseases.
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 Introduction
The abilities  to  optogenetically  manipulate  and monitor
neuronal activity with cell-type specificity are indispens-
able methods for neuroscientists to study neural circuits

in behaving animals1−4. In particular, heterogeneous pop-
ulations of neurons and various neurotransmitters5 com-
prise neural circuits of different functions, exhibiting dis-
tinctive  neuronal  activities6 corresponding  to  specific 
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behaviors4,7.  For  example,  dopamine  (DA)  neurons  are
known  to  have  two  different  firing  patterns:  the  phasic
pattern and the tonic pattern. These patterns induce dis-
tinct  activities  in  their  downstream  neurons,  which  are
involved in diverse physiological functions6,8,9. Moreover,
the dentate ‘gate’ hypothesis of seizures has been experi-
mentally evaluated in vivo using a closed-loop system to
record  and  optogenetically  manipulate  the  activity  of
granule  cells  during  seizures  in  mice10. Thus,  simultan-
eous optogenetic  manipulation  and  multi-color  record-
ing to  monitor  feedback effects  resulting from optogen-
etic  circuit  interventions  are  now  recognized  as  the
method of dreams for the causal investigations of neural
circuits and neurological diseases.

However, previous techniques or systems to optogen-
etically manipulate  or  monitor  neuronal  activity  in  be-
having animals are mostly separated and work independ-
ently11−23. Few studies  have  attempted  to  combine  opto-
genetic manipulation and neuronal activity recording in-
to  a  single  system24−28.  The  optrode,  which  integrates
electrophysiological  recording29 with  the  optogenetic
stimulations24,30, is  the  most  widely  used  method  to  re-
cord  and  manipulate  neurons,  but  it  cannot  directly
monitor neurotransmitter  activities.  Enabled  by  the  de-
velopment  of  genetically  encoded  fluorescent  indicators
(GEFI)31−35,  optical  imaging  technologies  including  the
miniature fluorescence microscope18,27 and the miniatur-
ized  two-photon  microscope17,36 are  capable  of  imaging
and manipulating neurons at the same time. By implant-
ing a gradient refractive index (GRIN) lens in the brain,
these imaging techniques support direct imaging and op-
togenetic  manipulation  of  specific  types  of  neurons  at
single-cell resolution in deep brain regions of freely mov-
ing animals37. However, an implanted GRIN lens is usu-
ally in a diameter of 500 μm to 1 mm, thus inducing sub-
stantial  damages  to  the  brain38,39. Furthermore,  the  cur-
rent  systems  implemented  with  endoscopic  imaging
techniques are only capable of optogenetic manipulation
and single-channel recording at a single wavelength.

As an alternative technique that induces less invasion,
fiber  photometry14,15,25,26,40−42 provides  a  unique  feature
for  an easy  and stable  recording of  population activities
with cell-type specificity in freely moving animals. Vari-
ous approaches have been proposed to incorporate opto-
genetics with  fiber  photometry,  enabling  wide  applica-
tions and the discovery of many functional insights25,26,41.
However, since  the  excitation  spectrum  of  Chan-
nelrhodopsin-2  (ChR2,  473  nm)1,43 is close  to  the  emis-
sion  spectrum  of  the  Ca2+ indicator  Oregon  green  488

BAPTA-1 (OGB-1) or GCaMP (both peak at ~510 nm),
and considering that it is quite challenging to completely
filter  out  optogenetic  stimulation  light  with  milliwatt,
obvious artifacts from optogenetic stimulation are inevit-
able in  a  weak  (pico  watt)  fluorescent  signal  during  re-
cording (Supplementary information Fig. S1(a))25. Repla-
cing  ChR2  with  a  fast  red-shifted  channelrhodopsin,
(e.g., bReaChES, 594 nm) can significantly reduce the ar-
tifacts observed with ChR2 (Supplementary information
Fig. S1(b))26. However, only one type of neuron or neur-
otransmitter can be monitored in this case, and stimula-
tion artifact is still  a problem when involving dual-color
recording, as the excitation spectrum of bReaChES over-
laps with the emission spectrum of the RFP-based GEFIs
(Supplementary information Fig. S1(c)).

To  achieve  simultaneous  optogenetic  manipulation
and dual-color recording, more wavelength-range fluor-
escent proteins with spectral spacing (the peak emission
wavelength  of  GEFIs  to  the  effective  excitation
wavelength of opsin-sensors should exceed ~60 nm, Sup-
plementary  information Fig.  S1(d))  need  to  be  involved
and the optical system is thus required to fully cover the
visible  spectrum.  However,  the  currently  available  fiber
photometry systems only cover the spectrum of 405~600
nm by using the classical epifluorescence imaging archi-
tecture (Supplementary information Fig. S2)26 consists of
an  objective  lens  and  two  or  three  dichroic  mirrors.  In
this case, more dichroic mirrors are needed to couple the
multiple  wavelength  light  beams  into  one  optical  fiber,
which  makes  the  system  more  complex  to  extend  the
spectrum.  Therefore,  to  make  a  compatible  and  flexible
system, an  all-fiber-transmission  optical  system  can  de-
liver multiple-wavelength  light  for  simultaneous  opto-
genetics  and  neuronal  activity  recording,  and  collect
multi-color fluorescence signals.

Here, we  developed  an  all-fiber-transmission  photo-
metry  system  based  on  a  multi-branch  fiber  bundle44−46

for  simultaneous  optogenetic  manipulation  and  multi-
color  recording  of  neuronal  Ca2+ or  neurotransmitter
signals  in  a  freely  moving  animal.  Briefly,  a  non-
wavelength selective  multi-branch  fiber  bundle  is  com-
bined  with  a  PMT  to  replace  the  traditional  imaging
structure.  The  multi-function  fiber  photometry  system
can  deliver  all  of  the  required  light  using  optical  fibers,
making the  system more robust  for  use  in  freely  behav-
ing experimental  contexts.  Notably,  we  adopted  a  nar-
row  linewidth  laser  and  used  a  lock-in  amplification
method47,48 to successfully manage issues with optogenetic
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stimulation artifacts and channel crosstalk. We show that
our system has excellent light transmission performance.
Moreover, it  can  be  readily  reconfigured  for  simultan-
eous multi-color recording of  neuronal  Ca2+ signals  and
neurotransmitter dynamics and precise optogenetic ma-
nipulations in freely moving animals.

 Materials and methods

 Optical setup
Using  a  custom-designed  bifurcated  fiber  bundle  (Al-
phaTech), we  developed  an  all-fiber-transmission  sys-
tem  for  single-channel  fiber  photometry  (Fig. 1).  The
overall  appearance  and section image  of  each  branch of
the  bundle  is  shown  in Fig. 1(a).  The  bifurcated  fiber
bundle  consists  of  3  branches  in  total:  the  single-fiber
branch  i,  the  collection  branch  ii,  and  the  common
branch iii. All these 83 fibers (branch iii) are hexagonally
distributed in the common branch and divided into two

branches  with  1  (branch  i)  and  82  (branch  ii)  fibers  in
each  of  them  (as Fig. 1(a) sub-image shows).  To  de-
crease  optical  transmission  loss,  the  bundle  length  was
limited  to  about  350  mm.  The  structure  of  common
branch iii  is  shown in Fig. 1(b).  The fiber we use in our
design is glass optical fiber with 50 μm diameter and 0.54
numerical aperture  (NA).  To match  the  currently  avail-
able 200 μm or 400 μm multi-mode fiber and efficiently
collect  the  returned  fluorescence,  the  diameter  of  the
bundle is  designed at  approximately 500 μm. The single
fiber from  branch  i  for  excitation  light  (blue)  transmis-
sion  is  placed  in  the  center  of  branch  iii  surrounded  by
the other 82 fibers (branch ii) for collecting fluorescence
signals. Fig. 1(c) is  a  schematic  diagram  of  the  single-
channel fiber photometry system we constructed using a
bifurcated  fiber  bundle.  Excitation  light  from  a  450-nm
LED through the single-fiber branch i is coupled into the
multi-mode fiber  (200  μm in  diameter  and 0.37  in  NA)
connecting  to  the  fiber  bundle  and  the  animal.  The
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Fig. 1 | A custom-designed bifurcated fiber bundle and all-fiber-transmission single-channel fiber photometry system. (a)  An image of

the bifurcated fiber bundle. The bifurcated fiber bundle consists of 3 branches in total: the single-fiber branch i, the collection branch ii, and the

common  branch  iii.  The  total  length  of  this  bundle  is  about  350  mm.  The  sub-image  of  iii  was  acquired  using  a  high-intensity  excitation  light

coupled into the single-fiber branch i. Scale bar, 200 μm. (b) Diagram of the bifurcated fiber bundle common branch iii. The common branch iii

(500 μm) consists of 83 hexagon distributed optical fibers (Φ50 μm/0.54 NA) in total. The single fiber from branch i for excitation light (blue) trans-

mission is placed in the center of branch iii and is surrounded by the other 82 fibers (branch ii) for collecting fluorescence signals. (c) Schematic

diagram of the all-fiber-transmission single-channel fiber photometry system constructed with a custom-designed bifurcated fiber bundle. The ex-

citation light from an LED is coupled into the multi-mode fiber connected to the animal through the single-fiber branch i.  The emission fluores-

cence is then collected by the common branch iii and delivered to the PMT (behind a collimator and a fluorescence filter). Abbreviations: PMT,

photo multiplier tube; MMF, multi-mode fiber. LED, light emitting diode.
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emission  fluorescence  is  collected  by  the  common
branch and delivered to the PMT (Hamamatsu, H10720-
210) behind the collimator (DHC, GCL-010131) and the
fluorescence filter (Semrock, FF01-525/39-25).

Using  a  custom-designed  four-branch  fiber  bundle
(AlphaTech), we developed a multi-function fiber photo-
metry system (Fig. 2) that can realize multi-color record-
ing while  also  supporting  precise  optogenetic  stimula-
tion. Figure 2(a) shows a photo of the bundle consisting
of 1 common branch v and 4 splitting branches i–iv. As
illustrated  in Fig. 2(b),  85  glass  optical  fibers  (50  μm  in
diameter and 0.54 in NA) are hexagonally distributed in
the  common  branch  v.  The  three  brighter  fibers  in  the
center of the bundle correspond to the three single-fiber
branches  i–iii  for  coupling  to  three  different  excitation
lights.  Considering  that  the  small  diameter  (50  μm)  of
the single optical fiber will dramatically reduce the coup-
ling  efficiency,  a  higher  power  excitation  light  source  is
needed to achieve the excitation light intensity of GEFIs
(15~40 μW) or opsin (2~20 mW). A schematic diagram
of the  multi-function  fiber  photometry  system  we  con-
structed using this  fiber bundle is  shown in Fig. 2(c).  In
this  system,  we  used  three  light  sources  with  different
wavelengths  (Source  1∶450-nm  LED;  Source  2∶561-
nm  laser,  Changchun  New  Industries  Optoelectronics
Technology,  MGL-FN-561-100mW;  Source  3∶660-nm
laser, Changchun New Industries Optoelectronics Tech-
nology,  MRL-III-633-200mW)  and  coupled  them  into
the multi-mode fiber connecting to the animal using the
three single-fiber branches i–iii. 450-nm and 561-nm ex-
citation lights are used to excite the two different GEFIs
(450-nm  for  dopamine  sensors  and  561-nm  for  the
jGRECO1a  Ca2+ sensor  in  this  paper)  for  monitoring
neuronal  activities,  and the 660-nm laser is  used for the
optogenetic  stimulation.  The  emission  fluorescence  is
then collected by the common branch v and delivered to
the PMT (Hamamatsu, H11461-03) behind the collimat-
or  (DHC,  GCL-010131)  and  the  fluorescence  filters
(Dual  bandpass  filter:  Chroma,  59012M;  633-nm  short-
pass filter:  Semrock,  BSP01-633R-25).  The  output  sig-
nals of the PMT are preprocessed by a custom-designed
lock-in  amplifier  (LIA)47,  digitized  using  a  DAQ  card
(NI,  USB-6003),  and  recorded  by  a  custom  LabVIEW
script (50 Hz per channel).

As the power of  optogenetic  stimulation light  (2 mW
in our experiment) is much higher than the power of ex-
citation light (20~40 μW) for recording, artificial signals
may arise during optogenetic stimulation. In our system,
we placed a narrow line-width bandpass filter (Thorlabs,

FBH660-10)  and  a  short-pass  filter  (Semrock,  BSP01-
633R-25) in front of the 660-nm laser and PMT respect-
ively  to  decrease  the  stimulation  artifacts.  Moreover,  to
separate  the  fluorescence  signals  and  further  inhibit  the
stimulation artifacts during the dual-color recording and
simultaneous optogenetic manipulation,  we adopted the
lock-in amplification method in our system. As shown in
Fig. 2(d),  these  two  excitation  lights  for  recording  are
modulated by  sinusoidal  signals  with  different  frequen-
cies  (450  nm,  211  Hz;  561  nm,  531  Hz;  the  modulation
frequencies  must  avoid  harmonic  interference,  eg:
powerline harmonics  at  multiples  of  50 Hz)49,50,  and the
optogenetic light is often modulated using relatively low
frequency (0–50 Hz) square signals. The emission fluor-
escence signals from the brain are detected by the PMT,
and  the  output  signals  of  the  PMT  are  then  de-modu-
lated by the LIA, using the corresponding demodulation
signals (211 Hz and 531 Hz sinusoidal signals); the fluor-
escence  signals  of  different  GEFIs  can  thus  be  recorded
without channel crosstalk and stimulation artifacts.

 Lock-in amplifier and data preprocessing
The fluorescence signals are de-modulated from the out-
put signals (fPMT) of the PMT by the LIA, using the cor-
responding  demodulation  signals  (fref-green and fref-red).
As  the  frequency  of  the  optogenetic  stimulation  artifact
(0~50 Hz) is quite lower than the modulation frequency
of these two excitation lights (f0: 211 Hz; f1: 531 Hz), the
artifact  component  can  be  treated  as  a  constant  noise
(nnoise) during the period of stimulation. Thus, the input
signal fi (the output signals fPMT of the PMT) can then be
represented as:
 

fi = fPMT = Asin(ω0t) + Bsin(ω1t) + nnoise , (1)

where A and B are  the signal  amplitude,  and w0 and w1

are the angular frequency (2πf0 and 2πf1 respectively).
The  corresponding  modulation  signal fref-green and

fref-red can be set to be:
 

fref-green = Csin(ω0t) , (2)
 

fref-red = Dsin(ω1t) , (3)

where C and D are  the  amplitude  of  the  corresponding
modulation signals.

After the multiplier, the outputs (fc-green and fc-red) are:
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Fig. 2 | A custom-designed  four-branch  fiber  bundle  and  multi-function  fiber  photometry  system. (a)  An  image  of  the  four-branch  fiber

bundle. The fiber bundle consists of 5 branches in total: the single-fiber branch i–iii, the collection branch iv, and the common branch v. The total

length of this bundle is about 350 mm. The sub-image represents the end face of the single-fiber branch i–iii, the collection branch iv, and com-

mon branch v  with  high-intensity  excitation  light  coupled into  the three single-fiber  branches i–iii.  Scale  bar,  200 μm.  (b)  Diagram of  the four-

branch fiber bundle common branch v. The common branch v (500 μm) consists of 85 hexagon distributed optical fibers (Φ50 μm/0.54 NA) in

total. The three brighter fibers in the center of the bundle correspond to the three single-fiber branches i–iii for coupling to three different excita-

tion lights. (c) Schematic diagram of the multi-function fiber photometry system constructed with the four-branch fiber bundle. Three light sources

with different wavelengths are coupled into the multi-mode fiber and are connected to the mouse through the three single-fiber branches i–iii. The

emission fluorescence is then collected by the common branch v and delivered to the PMT (behind the collimator and the fluorescence filters).

The output signals of the PMT are preprocessed by a custom-designed lock-in amplifier, digitized using a DAQ card, and recorded using a cus-

tom LabVIEW script (50 Hz per channel). (d) Schematic diagram of the lock-in amplifier for the multi-function fiber photometry system. These two

excitation lights are modulated by sinusoidal signals with different frequencies (450 nm, 211 Hz; 561 nm, 531 Hz). The fluorescent signals can

thus be de-modulated from the output signals of the PMT by the LIA, using the corresponding demodulation signals; note that crosstalk does not

occur between the green and red channels. The stimulation artifacts caused by the optogenetic light (0~50 Hz) can be further inhibited. Abbrevi-

ations: PMT, Photo Multiplier Tube; MMF, Multi-Mode Fiber. LIA, Lock-in amplifier.
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fc-green =fi × fref-green
=(Asin(ω0t) + Bsin(ω1t) + nnoise)× Csin(ω0t)

=
A× C

2
− A× C

2
sin(2ω0t)

+
B× C
2

(cos((ω1 − ω0)t)− cos((ω1 + ω0)t))

+ nnoise × Csin(ω0t) , (4)
 

fc-red =fi × fref-red
=(Asin(ω0t) + Bsin(ω1t) + nnoise)× Dsin(ω1t)

=
B× D

2
− B× D

2
sin(2ω1t)

+
A× D

2
(cos((ω0 − ω1)t)− cos((ω0 + ω1)t))

+ nnoise × Dsin(ω1t) . (5)
According  to  the Eqs.  (4) and (5),  when  the  signals

pass  through  the  low-pass  filter,  the  high-frequency
components are filtered out, and the fluorescence signals
fout-green and fout-red can  be  separated  from  the  mixed
fluorescence signals fi: 

fout-green =
A× C

2
, (6)

 

fout-red =
B× D

2
. (7)

 Animals
All  experiments  were  approved  and  were  conducted  in
accordance with the guidelines of  the committee on an-
imal health and care of the National Institute of Biologic-
al Sciences (NIBS), Beijing.

DAT-Cre  mice  (JAX  Strain  006660)  were  obtained
from the Jackson Laboratory. Male wild-type C57BL6/N
mice were  purchased  from  Beijing  Vital  River  Laborat-
ory Animal Technology Co.,  Ltd (China). All mice were
kept under standard conditions of 12/12 hours light-dark
cycle  (light  on  8  PM),  with ad  libitum food  and  water,
except for  the  sucrose  delivery  during  the  fiber  photo-
metry experiments,  in which mice were deprived of wa-
ter for 36 hours before the test.

 Viral vector preparation
The pAAV-hSyn-GRABDA2m plasmid (9.4 × 1012 vg/mL)
we  used  to  detect  the  DA  release  in  NAc  was  kindly
provided  by  Dr.  Yulong  Li  (Peking  University).  The
AAV-hSyn-Flex-ChrimsonR-mCherry  (1013 vg/mL)  for
VTA-NAc  terminal  stimulation  was  purchased  from
Shanghai  Taitool  Bioscience  Co.,  China.  pAAV9-hsyn-
NES-jRGECO1a-WPRE  (5.06  ×  1013 vg/mL) was  pur-
chased  from  Shandong  Vigene  Biosciences.  Inc.,  China.

The  AAV-hSyn-EGFP-RPL10  (4.3  ×  1012 vg/mL) plas-
mid  in  our  control  experiment  was  kindly  provided  by
Dr.  Fei  Zhao  (Chinese  Institute  for  Brain  Research,
Beijing).

 Animal surgery and virus injection
Mice were anesthetized by Avertin (i.p., 250 mg/kg) and
fixed in a standard stereotaxic frame (RWD Instruments,
China). After  disinfection  with  medical  alcohol  and  ex-
posure  of  the  skull,  a  small  craniotomy  was  made  and
~300 nL viruses were delivered using a calibrated pulled-
glass pipette  (Sutter  Instrument);  injection into the uni-
lateral  targeted brain areas (46 nL/min).  All  coordinates
for the injection sites, as measured from the bregma, in-
clude: Nucleus  Accumbens  core  (NAcC):  0.98  mm  an-
terior,  1.3  mm lateral,  4.3  mm ventral;  NAc lateral  shell
(NAcLat): 1.1 mm anterior, 1.3 mm lateral, 4.6 mm vent-
ral; Ventral tegmental area (VTA): 3.4 mm posterior, 0.3
mm lateral,  4.1  mm  ventral.  After  pausing  for  an  addi-
tional  5  minutes,  the  pipette  was  removed  slowly  from
the brain.

For the  fiber  photometry  and  optogenetic  experi-
ments, optical  fiber  (NA: 0.39,  diameter:  200 μm; Thor-
labs) was implanted 100 μm above the injection site. The
ceramic  ferrule  outside  the  fiber  was  then  fixed  to  the
skull  with  super  bond  C&B  dental  silicate  cement  (Par-
kell  Prod).  The  animals  were  maintained  in  their  home
cage for 2 weeks for recovery and virus expression prior
to any testing.

 Histology and imaging
After completion of the recording and testing, mice were
anesthetized by  an  overdose  of  pentobarbital  and  per-
fused  intracardially  with  0.9%  phosphate  buffer  saline
and then  4% paraformaldehyde  (PFA).  The  brains  were
removed  carefully  and  postfixed  in  4%  PFA  for  4  h  at
room temperature. After cryoprotection in 30% sucrose,
coronal sections (50 μm thickness) were cut using a cryo-
stat  (Leica,  CM1950).  The  slices  were  imaged  using  a
slide  scanner  (Olympus,  VS120)  with  10x  objectives  to
confirm  virus  expression  and  fiber  placements.  Images
were analyzed using ImageJ (NIH).

 Data analysis and statistical tests
For  fiber  photometry  recording,  the  data  were  acquired
by  a  data  acquisition  card  (National  Instrument,  USB-
6001) and was processed by a custom MATLAB (Math-
Work, Inc.) program for further analysis. We defined the
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value  of  fluorescence  change  (∆F/F)  by  calculating  the
following equation: 

ΔF/F = (F− F0 )/F0 , (8)
where F0 is the mean value of the 2 s control time imme-
diately  before  the  behavioral  event.  The  ∆F/F value  was
displayed  as  a  heat  map  or  as  an  average  plot  (with  a
shaded area representing the SEM).

For  the  statistical  significance  of  the  event-related
fluorescence  (ERF)  change  analysis3 (Statistically evalu-
ate  the  degree  of  correlation  between  neuronal  activity
and event stimulation), we performed Wilcoxon signed-
rank  tests  to  test  the  significance  of  neuronal  responses
by comparing the ∆F/F value at each time point with the
baseline  values  (the  mean  ∆F/F value  of  the  2  s  control
time  immediately  before  the  behavioral  event).  The  P-
value of each time was superimposed on the average ERF
curve with orange lines, indicating a statistically signific-
ant (P<0.05) increase.

 Results and discussion

 Evaluation of the light transmission performance of
the all-fiber-transmission photometry system.
In the all-fiber-transmission photometry system, a multi-
channel fiber bundle was designed and manufactured to
realize  the  all-fiber  transmission  of  both  the  excitation
light  and  the  emission  light.  The  spectral  transmittance
of the multi-channel bundle was about 60% per meter in
the range  of  400  to  900  nm.  To  decrease  optical  trans-
mission loss, the bundle length was limited to about 350
mm,  thus  about  84%  of  the  light  was  effectively
transmitted.

When using the  common branch to  collect  the  fluor-
escence from  the  multi-mode  fiber,  part  of  the  fluores-
cence  is  guided  back  to  the  light  source  through  the
single  fiber  branch,  therefore  cannot  be  detected  by  the
PMT. To characterize the loss in fluorescence signal,  we
tested the  collection  efficiency  of  these  two  systems  us-
ing a  series  of  sodium  fluorescein  solutions  with  differ-
ent concentrations and compared the results to those ac-
quired using the traditional epi-fluorescence system used
in  our  previous  study3.  We  used  the  same  laser,  PMT,
multi-mode fiber,  emission  filter,  and  sodium  fluores-
cein solution in the testing with various systems.

Under  the  same  excitation  intensity  (40  μW),  we
tested five concentrations (10~50 ng/mL) and calculated
the intensity variation (ΔF) by subtracting the value ob-
tained  with  pure  water.  As  shown  in Fig. 3,  our  system

was linearly correlated with the traditional setup: the red
lines  represent  the  fitting  curves  for  the  single-channel
fiber  photometry  system  (Fig. 3(a), f(x)  =  1.297x,  R-
square: 0.9938) and the multi-function fiber photometry
system  (Fig. 3(b), f(x)  =  1.233x,  R-square:  0.9982).  The
slopes of the fitting curve are 1.297 and 1.233, indicating
that the fluorescence collection efficiency of our method
was 20–30% better than the traditional setup. These res-
ults  demonstrated  that  our  all-fiber  transmission  fiber
photometry system based on a multi-branch fiber bundle
was capable of effectively exciting and collecting fluores-
cence signals.

We then evaluated the potential crosstalk between two
channels.  As shown in Fig. 3(c), we measured the fluor-
escence  intensity  of  each  channel  while  opening  ( “on ”)
and  closing  ( “off ”)  the  450-nm  and  561-nm  excitation
lights. We observed no significant change in both chan-
nels  when  the  other  excitation  light  was  “on ”  or  “off ”,
which  demonstrated  that  no  substantial  channel
crosstalk existed  in  our  all-fiber-transmission  photo-
metry system.

We further  evaluated  the  potential  stimulation  arti-
facts  by  measuring the  fluorescence intensity  of  the  two
channels  without  the  450-nm  and  561-nm  excitation
light. We observed that the fluorescence intensity of both
channels exhibited no response to the optogenetic stimu-
lation  (Fig. 3(d)). This  demonstrated  that  the  stimula-
tion artifacts can be inhibited to a basal noise level in our
all-fiber-transmission photometry system.

 Real-time recording of neurotransmitter dynamics
in the deep brain region of a freely moving mouse
We  then  tested  the  performance  of  our  single-channel
fiber  photometry  system  based  on  a  bifurcated  fiber
bundle by recording DA dynamics at a 100 Hz sampling
rate  in  the  nucleus  accumbens  core  (NAcC)  of  a  freely
moving mouse. DA is an important neurotransmitter in
the brain that exerts functions related to reward, motiva-
tion,  and  motor  control8,51.  The  dysfunctions  of  the  DA
system are associated with neurological disorders such as
Parkinson's  disease  and  schizophrenia52.  The  NAc  is
known to be a major brain area that accepts DA released
from the ventral tegmental area (VTA) DA neurons53.

We  used  the  single-channel  fiber  photometry  system
shown in Fig. 1(c) to monitor DA dynamics when deliv-
ering  a  sucrose  solution (12.5  μL,  5% w/v)  to  a  36-hour
water-deprived mouse through a cheek fistula (Fig. 4(a)).
The  genetically  encoded  GPCR-activation-based-DA
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sensor (GRABDA2m)33 was expressed in NAcC neurons to
monitor the DA release from DA neurons in the VTA in
a  wild-type  mouse.  An  optical  fiber  was  implanted  100
μm above the injection site for both the delivery of excit-
ation lights and the collection of emitted light. Histology
confirmed  the  locations  of  the  fiber  and  GRABDA2m

expression in the NAcC two weeks later (Fig. 4(b)).
We  measured  DA  signals  in  a  freely  moving  mouse

upon a  1  s  unexpected  sucrose  solution  that  was  de-
livered  at  random  inter-trial  intervals  of  15–25  s  (Fig.
4(c)).  As shown in Fig. 4(d, e) (Supplementary informa-
tion Fig.  S3),  the  DA fluorescence signals,  excited by 40
μW of 450-nm LED light,  significantly increased imme-
diately  following  the  delivery  of  the  unexpected  reward
(∆F/F =  11.5  ±  0.9%,  mean  ±  SEM; P<0.05,  Wilcoxon’s

signed-rank test; n = 20 trials with one mouse). It indic-
ated that the dynamics of DA release from the VTA-NAc
DA neurons  were  positively  correlated  with  the  reward,
consistent with previous studies33,53. These results togeth-
er  demonstrated  that  our  all-fiber  transmission  fiber
photometry system can effectively detect temporal fluor-
escence dynamics and can be used for real-time monitor-
ing  of  neurotransmitter  dynamics  in  freely  moving
animals.

 Simultaneous recording of neurotransmitter
dynamics and neuronal Ca2+ signals in the deep
brain region of a freely moving mouse
We then tested the performance of a multi-channel fiber
photometry system based on a four-branch fiber bundle
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by simultaneously recording DA dynamics and neuronal
Ca2+ signals  in  the  NAc  lateral  shell  (NAcLat).  Multiple
neuron types that release different neurotransmitters can
show various activities in response to a specific function
in the  NAc  or  other  nucleus;  thus,  the  ability  to  simul-
taneously  record  neuronal  activities  labeled  by
multiple-color  was  essential  to  study  the  interactions
amongst  distinct  neuron  types  in  behaving  animals54.

The DA sensor GRABDA2m (450-nm excitation) and the
red Ca2+ indicator jGRECO1a (561-nm excitation)32 were
co-expressed  in  the  NAcLat  of  a  wild-type  mouse  (Fig.
5(a)), and the excitation lights (20 μW) were delivered to
the brain through the same optical fiber. Histology con-
firmed  the  locations  of  the  fiber  and  the  expression  of
both  GRABDA2m and  jGRECO1a  in  the  NAcLat  two
weeks later (Fig. 5(b)).
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We recorded the DA signals and neuronal activities in
response  to  unexpected  rewards  in  a  freely  moving
mouse  following  the  same  protocol  as  described  above
(Fig. 5(c)). As shown in Fig. 5(d, e), we observed that DA
fluorescence  signals  and  neuronal  Ca2+ signals both  sig-
nificantly  increased  upon  the  delivery  of  unexpected
sucrose solutions (DA: ∆F/F = 11.2 ± 0.4%, jGRECO1a:

∆F/F =  8.5  ±  0.8%,  mean  ±  SEM; P<0.05,  Wilcoxon’s
signed-rank test; n = 20 trials with one mouse). It indic-
ated that  NAcLat  neurons and the VTA-NAc DA neur-
ons were positively correlated with the rewards, consist-
ent  with  previous  studies33,34,53.  However,  we  noted  that
these activities had a clear difference in the time course3

for  unexpected  rewards  (Supplementary  information

 

Optical fiber

15

10

5

0

−5

−2

−2 0 2 4 6 8 10

−2 0 2 4 6 8 100 2 4 6 8 10

0 20 40 60 80 100

10

5

0

−5

10

5

0

−5

120

DAPI
Fiber

NAcC

NAcMedNAcLat

AP: 1.10 mm

GRABDA2m

jRGECO1a

NAc

DAT-Cre

1s 5% sucrose
DA

jRGECO1a

DA D
A

jRGECO1a

jR
G

E
C

O
1

a

AAV-hsyn-GRABDA2m

& pAAV9-hsyn-NES-

jRGECO1a-WPRE

Δ
F

/F
 (

%
)

15

10

5

0

−5

Δ
F

/F
 (

%
)

Time (s)

Time from sucrose onset (s)
Time from sucrose onset (s)

20

T
ri
a
l 
#

1

20

T
ri
a

l 
#

1

a

c

d e

b

Fig. 5 | Simultaneous recording of dopamine dynamics and neuronal Ca2+ signals in the NAcLat of a freely moving mouse. (a) Schemat-

ic diagram of dual-color recording surgery: we simultaneously record the DA signals (GRABDA2m, green) and the neuronal activity (jGRECO1a,

red) in response to a 1 s unexpected sucrose solution in the NAcLat of a freely moving mouse. (b) Histology confirming GRABDA2m (green) and

jRGECO1a (red) co-expression in the NAcLat (GRABDA2m: Ex 450 nm, Em 525 nm; jGRECO1a: Ex 561 nm, Em 590 nm). The brain slice is 1.1

mm anterior to the bregma. Scale bar, 500 μm. (c) Representative trace of DA signals and neuronal Ca2+ signals simultaneously acquired (en-

compassing five sequential trials) during the sucrose delivery experiment. The onset times of 5% sucrose solution delivery are indicated above

the trace with blue bars. (d) Averaged DA signal and neuronal Ca2+ signal transients in response to unexpected sucrose solution. The shaded

area represents the SEM (±). The blue bar represents the 1 s sucrose solution. Orange segments indicate a statistically significant increase from

the baseline  (*P<0.05,  Wilcoxon’s  signed-rank test; n =  20 pairs,  one mouse).  (e)  Heatmap of  DA signal  and neuronal  Ca2+ signal  transients,

aligned to the onset time of sucrose solution delivery. Each row in the heatmap indicates the data for one behavioral trial; 20 trials are plotted.

The blue bar represents the delivery of a 1 s sucrose solution. Abbreviations: DA, dopamine; NAc, nucleus accumbens; NAcC, nucleus accum-

bens core; NAcLat, nucleus accumbens lateral shell; NAcMed, nucleus accumbens medial shell.

Qi ZY et al. Opto-Electron Adv  5, 210081 (2022) https://doi.org/10.29026/oea.2022.210081

210081-10

 



Fig.  4). Throughout  the  recording  session,  the  DA  sig-
nals were correlated with, yet lagged behind, the neuron-
al  Ca2+ signals  (DA:  peak  time  =  1.91  ±  0.14  s,  median
latency to peak = 0.99 ± 0.14 s; jGRECO1a: peak time =
0.96 ± 0.02 s, median latency to peak = 0.34 ± 0.04 s, mean
±  SEM).  Further,  the  DA  signals  displayed  an  overall
prolongment of activation (DA: decay duration = 3.81 ±
0.16 s; jGRECO1a: decay duration = 1.08 ± 0.04 s, mean
±  SEM).  Given  that  GRABDA2m and jGRECO1a  exhib-
ited  similarly  rapid  rising  times32,33, the  result  thus  sug-
gested  that  NAc  neurons  received  reward  signals  from
two  separate  sources:  a  yet-to-identified  input  triggered
the  earlier  Ca2+ increase,  and  another  input  likely  from
the VTA triggered the slightly later DA release. Together,
the  results  showed  strong  evidence  of  heterogeneous
neuronal activities  in  local  neuronal  circuits.  These  res-
ults  also  demonstrated  that  our  all-fiber  transmission
fiber  photometry system based on the four-branch fiber
bundle  can  simultaneously  detect  dynamic  fluorescence
signals  from  different  GEFIs  and  was  suitable  for  real-
time monitoring of  multiple,  distinct  neuronal  activities
in freely moving animals.

 Simultaneous dual-color recording and optogenetic
manipulation of neuronal activities in the deep brain
region of a freely moving mouse
We  then  tested  the  performance  of  our  multi-function
fiber photometry system for simultaneous dual-color re-
cording and  precise  optogenetic  manipulation  of  neur-
onal activity in the NAc of a freely moving mouse. Many
studies have demonstrated the power of combining sim-
ultaneous  recording  of  cell-type-specific  neurons  and
precise  optogenetic  manipulation  of  specific  neuron
types  during  animal  behavior  for  studies  of  functional
connectivity, activity dynamics, causation between neur-
onal activities and behaviors, and the physiological func-
tions of neural circuits4,25,54,55.

VTA  dopaminergic  neurons  are  known  to  project  to
the NAc  and  to  regulate  a  variety  of  physiological  pro-
cesses,  including  reward,  motivation,  and  motor
control48,56. We first verified that our system does not eli-
cit stimulation  artifacts  when  simultaneously  perform-
ing  optogenetic  manipulation  and  real-time  dual-color
recording in  vivo. A  schematic  diagram  of  the  experi-
ment  is  shown  in Fig. 6(a):  we  specifically  labeled  the
VTA  DA  neurons  in  a  DAT-Cre  mouse  using  a  DIO-
ChrimsonR-mCherry AAV vector and expressed GFP in
all  NAcLat  neurons.  Histology  conducted  two  weeks

later  confirmed  the  location  of  the  fiber,  the  expression
of GFP  in  the  somata  of  NAcLat  neurons,  and  the  ex-
pression of mCherry in the VTA-NAc dopaminergic ter-
minals  (Fig. 6(b)).  No  significant  fluorescence  changes
were  observed  in  the  GFP  or  mCherry  channels  during
optogenetic stimulation (2 mW, 20 ms per pulse, and 20
Hz  for  1  s)  (Fig. 6(c), P>0.05,  Wilcoxon’s  signed-rank
test; n =  10  trials  with  one  mouse),  supporting  that  no
obvious stimulation artifacts occurred with our system in
this experiment.

Finally, we recorded neuronal Ca2+ signals and DA dy-
namics  simultaneously  while  activating  the  VTA-NAC
dopaminergic  terminals  in  a  freely  moving  mouse.  We
specifically  labeled the  VTA DA neurons  in  a  DAT-Cre
mouse using a DIO-ChrimsonR-mCherry virus, and co-
expressed the DA sensor GRABDA2m and the red Ca2+ in-
dicator jGRECO1a in NAcLat neurons. We recorded the
DA  signals  and  jRGECO1a  fluorescence  signals  in  a
freely moving mouse (50 Hz per channel).  As we know,
DA neurons  exhibit  two  different  firing  patterns  to  in-
duce distinct activities in their downstream neurons and
involve diverse physiological  functions6,8. Then, two dif-
ferent patterns of light pulse stimulations were delivered
to the VTA-NAC dopaminergic terminals to induce ton-
ic or phasic firing patterns48. We observed that optogen-
etic phasic stimulation (20-ms per pulse and 20 Hz for 1
s)  evoked  a  significant,  time-locked  rising  trend  in  the
DA  signals  (DA:  ∆F/F =  6.3  ±  0.7%,  mean  ±  SEM;
P<0.05,  Wilcoxon’s  signed-rank  test; n =  10  trials  with
one mouse), consistent with a previous study33. However,
we  noted  that  neuronal  Ca2+ signals  displayed  only  a
slight  rising  trend  (Fig. 6(e),  Supplementary. Fig.  5).
Upon  applying  the  tonic  stimulation  (10-ms  per  pulse
and  4  Hz  for  5  s),  there  were  no  significant  changes  in
either  the  DA  signals  or  the  neuronal  Ca2+ signals  (Fig.
6(f), P>0.05,  Wilcoxon’s  signed-rank  test; n =  10  trials
with one mouse).

These results  support  previous  findings  that  dopam-
ine  is  acutely  released  in  the  NAcLat  when evoked  by  a
burst stimulation  of  the  VTA-NAC  dopaminergic  ter-
minals48,57, and suggest that Ca2+ signals from population
activity  are  not  sensitive  to  DA  release  from  the  VTA
neurons  in  the  NAcLat.  Notably,  to  our  understanding,
such  results  could  not  be  obtained  using  conventional
electrophysiological recordings: it cannot directly monit-
or  the  level  of  neurotransmitter  release58.  These  results
support  that  our  system  can  perform  simultaneous
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pairs, one mouse). Abbreviations: DA, dopamine; NAc, nucleus accumbens; NAcC, nucleus accumbens core; NAcLat, nucleus accumbens later-

al shell; NAcMed, nucleus accumbens medial shell.
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dual-color  recording  of  various  neuronal  populations
while  also  enabling  precise  optogenetic  manipulation;
these combined  capacities  seem  likely  to  make  our  sys-
tem useful for diverse neuroscience functional investiga-
tions of various neuron populations and circuits.

 Conclusions
We developed a flexible all-fiber transmission fiber pho-
tometry  system  that  supports  simultaneous  dual-color
recording  of  neuronal  or  neurotransmitter  activities
combined  with  precise  optogenetic  manipulation  in
freely  moving  animals.  In  this  system,  we  designed  and
manufactured  a  non-wavelength  selective  multi-branch
fiber  bundle  to  realize  the  all-fiber  transmission of  both
the excitation light and the emission light, which simpli-
fied  the  system  and  increased  its  robustness  in  freely
moving animal experiments. Adopting a laser of narrow
line-width for  the  stimulation  and  a  lock-in  amplifica-
tion method, our system can extract fluorescence signals
of two  different  colors  (GFP-based  and  RFP-based  GE-
FIs) while inhibiting the potential artifacts caused by the
optogenetic  manipulation  (channelrhodopsin  with  far
red-shifted  excitation  spectrum,  660  nm).  Importantly,
we  showed  that  our  system’s  collection  efficiency  was
better  than  a  conventional  epi-fluorescence  system,  and
we  successfully  recorded  DA  dynamics  in  the  NAc  of  a
freely  moving  mouse.  Finally,  we  successfully  recorded
both  neuronal  Ca2+ and neurotransmitter  dynamic  sig-
nals  in  the  NAc while  also  applying  precise  optogenetic
manipulation of the dopaminergic terminals in the same
site in a freely moving mouse.

Optogenetic manipulation and monitoring of neuron-
al activity  in  a  freely  moving animal  are  essential  meth-
ods  for  rodent-based  neuroscience  investigations  of
brain connectivity and function1,2. Several previous stud-
ies24−27 have attempted to combine these two methods to
achieve  real-time  feedback  after  applying  optogenetic
stimulation  to  directly  test  whether  inferred  models  of
dynamics,  connectivity,  and  causation  are  accurate in
vivo4. However, these methods—including the optrode24,
the  miniature  fluorescent  miniscope27,  the  miniaturized
two-photon  microscope17,  and  fiber  photometry25,26,41

—only  support  the  monitoring  of  one  type  of  neuronal
activity  when  applying  optogenetic  manipulation  at
present. A major  reason for  this  is  that  the  action spec-
trums  of  the  commonly  used  opsin-sensors43 like  ChR2
(470 nm), eArch3.0 (566 nm), and ChrimsonR (590 nm)
are relatively  limited,  which either  have spectral  overlap

to the  excitation  spectrum  or  are  too  close  to  the  emis-
sion  spectrum of  GEFIs31,32 like  GCaMP6 (510  nm)  and
jRGECO1a  (588  nm).  Therefore,  when  using  both  the
GFP-based  and  RFP-based  GEFIs  to  label  the  neurons
simultaneously, it is very challenging to completely filter
out  high-power  stimulation  light  (2~20  mW).  And  the
residual optogenetic stimulation light detected by the de-
tector will  lead  to  obvious  artifacts  in  the  acquired  sig-
nals4,25,26,41. Fluorescent  proteins  with  more  spectral  spa-
cing need  to  be  involved  and  the  optical  system  is  re-
quired to fully cover the visible spectrum.

Our design adopted the strategy of all-fiber-transmis-
sion by  using  a  small  multi-branch  fiber  bundle  to  re-
place  the  dichroic  mirrors  and  an  objective  lens,  which
realized —in  a  single  fiber  bundle —three  excitation  or
stimulation  lights  and  two  emission  lights.  In  this  way,
we dramatically  simplified  the  multichannel  system and
made it more robust and flexible for use in freely behav-
ing experimental contexts. We adopted a laser of narrow
line-width  of  660-nm  to  activate  the  red  light–drivable
channelrhodopsin  (ChrimsonR),  therefore  inhibited  the
stimulation-induced artifacts  using  a  lock-in  amplifica-
tion method, which also allowed us to separate the fluor-
escence  signals  of  the  dual-color  channels.  Our  system
can  be  easily  modified  into  different  variants  for  other
fluorescent probes and opsin-based sensors by changing
the  light  sources  and  filter  positions  before  the  PMT
without adjusting the optical path.

With rapid developments of fluorescent indicators31,32,
such  as  neurotransmitter  probes33,34,54,  light-activated
conversion  technologies59,60,  a  multi-function  system  is
required  for  neuroscience  research4,10.  Our  all-fiber-
transmission  photometry  system  supports  simultaneous
dual-color  recording  of  neuronal  or  neurotransmitter
activities simultaneously  with  precise  optogenetic  ma-
nipulation in  freely  moving  animals.  Thus,  it  is  espe-
cially  well-suited  for  the  study  of  interactions  amongst
different neuron types or neurotransmitters in behaving
animals for multiple processes, such as reward34 or sleep
homeostasis54. More importantly, our system has the po-
tential to be modified into a closed-loop system that can
guide  optogenetic  manipulation  informed  by  real-time
monitoring  feedback  effects4,10,25.  The  all-fiber-transmis-
sion  photometry  system  should  be  a  valuable  tool  for
neuroscientists seeking to comprehensively profile neur-
al  circuit  functions3,53,54 and  to  study  neurological
diseases10.
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