Lu YD, Xu Y, Ouyang X, Xian MC, Cao YY et al. Cylindrical vector beams reveal radiationless anapole condition in a resonant state. Opto-Electron Adv 5, 210014 (2022). doi: 10.29026/oea.2022.210014
Citation: Lu YD, Xu Y, Ouyang X, Xian MC, Cao YY et al. Cylindrical vector beams reveal radiationless anapole condition in a resonant state. Opto-Electron Adv 5, 210014 (2022). doi: 10.29026/oea.2022.210014

Original Article Open Access

Cylindrical vector beams reveal radiationless anapole condition in a resonant state

More Information
  • Nonscattering optical anapole condition is corresponding to the excitation of radiationless field distributions in open resonators, which offers new degrees of freedom for tailoring light-matter interaction. Conventional mechanisms for achieving such a condition relies on sophisticated manipulation of electromagnetic multipolar moments of all orders to guarantee superpositions of suppressed moment strengths at the same wavelength. In contrast, here we report on the excitation of optical radiationless anapole hidden in a resonant state of a Si nanoparticle utilizing a tightly focused radially polarized (RP) beam. The coexistence of magnetic resonant state and anapole condition at the same wavelength further enables the triggering of resonant state by a tightly focused azimuthally polarized (AP) beam whose corresponding electric multipole coefficient could be zero. As a result, high contrast inter-transition between radiationless anapole condition and ideal magnetic resonant scattering can be achieved experimentally in visible spectrum. The proposed mechanism is general which can be realized in different types of nanostructures. Our results showcase that the unique combination of structured light and structured Mie resonances could provide new degrees of freedom for tailoring light-matter interaction, which might shed new light on functional meta-optics.
  • 加载中
  • [1] Bohren CF, Huffman DR. Absorption and Scattering of Light by Small Particles (John Wiley & Sons, New York, 1983).

    Google Scholar

    [2] Kuznetsov AI, Miroshnichenko AE, Fu YH, Zhang JB, Luk’Yanchuk B. Magnetic light. Sci Rep 2, 492 (2012). doi: 10.1038/srep00492

    CrossRef Google Scholar

    [3] Krasnok A, Baranov D, Li HN, Miri MA, Monticone F et al. Anomalies in light scattering. Adv Opt Photonics 11, 892–951 (2019). doi: 10.1364/AOP.11.000892

    CrossRef Google Scholar

    [4] Afanasiev GN, Stepanovsky YP. The electromagnetic field of elementary time-dependent toroidal sources. J Phys A:Math Gen 28, 4565–4580 (1995). doi: 10.1088/0305-4470/28/16/014

    CrossRef Google Scholar

    [5] Fedotov VA, Rogacheva AV, Savinov V, Tsai DP, Zheludev NI. Resonant transparency and non-trivial non-radiating excitations in toroidal metamaterials. Sci Rep 3, 2967 (2013). doi: 10.1038/srep02967

    CrossRef Google Scholar

    [6] Miroshnichenko AE, Evlyukhin AB, Yu YF, Bakker RM, Chipouline A et al. Nonradiating anapole modes in dielectric nanoparticles. Nat Commun 6, 8069 (2015). doi: 10.1038/ncomms9069

    CrossRef Google Scholar

    [7] Gurvitz EA, Ladutenko KS, Dergachev PA, Evlyukhin AB, Miroshnichenko AE et al. The high-order toroidal moments and anapole states in all-dielectric photonics. Laser Photonics Rev 13, 1800266 (2019). doi: 10.1002/lpor.201800266

    CrossRef Google Scholar

    [8] Grinblat G, Li Y, Nielsen MP, Oulton RF, Maier SA. Enhanced third harmonic generation in single germanium nanodisks excited at the anapole mode. Nano Lett 16, 4635–4640 (2016). doi: 10.1021/acs.nanolett.6b01958

    CrossRef Google Scholar

    [9] Wei L, Xi Z, Bhattacharya N, Urbach HP. Excitation of the radiationless anapole mode. Optica 3, 799–802 (2016). doi: 10.1364/OPTICA.3.000799

    CrossRef Google Scholar

    [10] Nemkov NA, Basharin AA, Fedotov VA. Nonradiating sources, dynamic anapole, and Aharonov-Bohm effect. Phys Rev B 95, 165134 (2017). doi: 10.1103/PhysRevB.95.165134

    CrossRef Google Scholar

    [11] Zenin VA, Evlyukhin AB, Novikov SM, Yang YQ, Malureanu R et al. Direct amplitude-phase near-field observation of higher-order anapole states. Nano Lett 17, 7152–7159 (2017). doi: 10.1021/acs.nanolett.7b04200

    CrossRef Google Scholar

    [12] Gongora JST, Miroshnichenko AE, Kivshar YS, Fratalocchi A. Anapole nanolasers for mode-locking and ultrafast pulse generation. Nat Commun 8, 15535 (2017). doi: 10.1038/ncomms15535

    CrossRef Google Scholar

    [13] Grinblat G, Li Y, Nielsen MP, Oulton RF, Maier SA. Efficient third harmonic generation and nonlinear subwavelength imaging at a higher-order anapole mode in a single germanium nanodisk. ACS Nano 11, 953–960 (2017). doi: 10.1021/acsnano.6b07568

    CrossRef Google Scholar

    [14] Luk'yanchuk B, Paniagua-Domínguez R, Kuznetsov AI, Miroshnichenko AE, Kivshar YS. Hybrid anapole modes of high-index dielectric nanoparticles. Phys Rev A 95, 063820 (2017). doi: 10.1103/PhysRevA.95.063820

    CrossRef Google Scholar

    [15] Yang YQ, Zenin VA, Bozhevolnyi SI. Anapole-assisted strong field enhancement in individual all-dielectric nanostructures. ACS Photonics 5, 1960–1966 (2018). doi: 10.1021/acsphotonics.7b01440

    CrossRef Google Scholar

    [16] Parker JA, Sugimoto H, Coe B, Eggena D, Fujii M et al. Excitation of nonradiating anapoles in dielectric nanospheres. Phys Rev Lett 124, 097402 (2020). doi: 10.1103/PhysRevLett.124.097402

    CrossRef Google Scholar

    [17] Manna U, Sugimoto H, Eggena D, Coe B, Wang R et al. Selective excitation and enhancement of multipolar resonances in dielectric nanospheres using cylindrical vector beams. J Appl Phys 127, 033101 (2020). doi: 10.1063/1.5132791

    CrossRef Google Scholar

    [18] Zhang TY, Che Y, Chen K, Xu J, Xu Y et al. Anapole mediated giant photothermal nonlinearity in nanostructured silicon. Nat Commun 11, 3027 (2020). doi: 10.1038/s41467-020-16845-x

    CrossRef Google Scholar

    [19] Li Y, Huang ZJ, Sui Z, Chen HJ, Zhang XY et al. Optical anapole mode in nanostructured lithium niobate for enhancing second harmonic generation. Nanophotonics 9, 3575–3585 (2020). doi: 10.1515/nanoph-2020-0222

    CrossRef Google Scholar

    [20] Sanz-Fernández C, Molezuelas-Ferreras M, Lasa-Alonso J, de Sousa N, Zambrana-Puyalto X et al. Multiple Kerker anapoles in dielectric microspheres. Laser Photonics Rev 15, 2100035 (2021). doi: 10.1002/lpor.202100035

    CrossRef Google Scholar

    [21] Luk'yanchuk B, Paniagua-Domínguez R, Kuznetsov AI, Miroshnichenko AE, Kivshar YS. Suppression of scattering for small dielectric particles: anapole mode and invisibility. Philos Trans R Soc A:Mathemat Phys Eng Sci 375, 20160069 (2017).

    Google Scholar

    [22] Baryshnikova KV, Smirnova DA, Luk'yanchuk BS, Kivshar YS. Optical anapoles: concepts and applications. Adv Opt Mater 7, 1801350 (2019). doi: 10.1002/adom.201801350

    CrossRef Google Scholar

    [23] Koshelev K, Favraud G, Bogdanov A, Kivshar Y, Fratalocchi A. Nonradiating photonics with resonant dielectric nanostructures. Nanophotonics 8, 725–745 (2019). doi: 10.1515/nanoph-2019-0024

    CrossRef Google Scholar

    [24] Yang YQ, Bozhevolnyi SI. Nonradiating anapole states in nanophotonics: from fundamentals to applications. Nanotechnology 30, 204001 (2019). doi: 10.1088/1361-6528/ab02b0

    CrossRef Google Scholar

    [25] Fang CZ, Yang QY, Yuan QC, Gan XT, Zhao JL et al. High-Q resonances governed by the quasi-bound states in the continuum in all-dielectric metasurfaces. Opto-Electron Adv 4, 200030 (2021). doi: 10.29026/oea.2021.200030

    CrossRef Google Scholar

    [26] Savinov V, Papasimakis N, Tsai DP, Zheludev NI. Optical anapoles. Commun Phys 2, 69 (2019). doi: 10.1038/s42005-019-0167-z

    CrossRef Google Scholar

    [27] Monticone F, Sounas D, Krasnok A, Alù A. Can a nonradiating mode be externally excited? Nonscattering states versus embedded eigenstates. ACS Photonics 6, 3108–3114 (2019). doi: 10.1021/acsphotonics.9b01104

    CrossRef Google Scholar

    [28] Wu PC, Liao CY, Savinov V, Chung TL, Chen WT et al. Optical anapole metamaterial. ACS Nano 12, 1920–1927 (2018). doi: 10.1021/acsnano.7b08828

    CrossRef Google Scholar

    [29] Youngworth KS, Brown TG. Focusing of high numerical aperture cylindrical-vector beams. Opt Express 7, 77–87 (2000). doi: 10.1364/OE.7.000077

    CrossRef Google Scholar

    [30] Zhan QW, Leger JR. Focus shaping using cylindrical vector beams. Opt Express 10, 324–331 (2002). doi: 10.1364/OE.10.000324

    CrossRef Google Scholar

    [31] Gu B, Cui YP. Nonparaxial and paraxial focusing of azimuthal-variant vector beams. Opt Express 20, 17684–17694 (2012). doi: 10.1364/OE.20.017684

    CrossRef Google Scholar

    [32] Lou YJ, Fang YS, Ruan ZC. Optical computation of divergence operation for vector fields. Phys Rev Appl 14, 034013 (2020). doi: 10.1103/PhysRevApplied.14.034013

    CrossRef Google Scholar

    [33] Xian MC, Xu Y, Ouyang X, Cao YY, Lan S et al. Segmented cylindrical vector beams for massively-encoded optical data storage. Sci Bull 65, 2072–2079 (2020). doi: 10.1016/j.scib.2020.07.016

    CrossRef Google Scholar

    [34] Das T, Iyer PP, DeCrescent RA, Schuller JA. Beam engineering for selective and enhanced coupling to multipolar resonances. Phys Rev B 92, 241110 (2015). doi: 10.1103/PhysRevB.92.241110

    CrossRef Google Scholar

    [35] Woźniak P, Banzer P, Leuchs G. Selective switching of individual multipole resonances in single dielectric nanoparticles. Laser Photonics Rev 9, 231–240 (2015). doi: 10.1002/lpor.201400188

    CrossRef Google Scholar

    [36] Guclu C, Veysi M, Capolino F. Photoinduced magnetic nanoprobe excited by an azimuthally polarized vector beam. ACS Photonics 3, 2049–2058 (2016). doi: 10.1021/acsphotonics.6b00329

    CrossRef Google Scholar

    [37] Das T, Schuller JA. Dark modes and field enhancements in dielectric dimers illuminated by cylindrical vector beams. Phys Rev B 95, 201111 (2017). doi: 10.1103/PhysRevB.95.201111

    CrossRef Google Scholar

    [38] Manna U, Lee JH, Deng TS, Parker J, Shepherd N et al. Selective induction of optical magnetism. Nano Lett 17, 7196–7206 (2017). doi: 10.1021/acs.nanolett.7b02144

    CrossRef Google Scholar

    [39] Deng F, Liu HF, Panmai M, Lan S. Sharp bending and power distribution of a focused radially polarized beam by using silicon nanoparticle dimers. Opt Express 26, 20051–20062 (2018). doi: 10.1364/OE.26.020051

    CrossRef Google Scholar

    [40] Klimov V. Manifestation of extremely high-Q pseudo-modes in scattering of a Bessel light beam by a sphere. Opt Lett 45, 4300–4303 (2020). doi: 10.1364/OL.393570

    CrossRef Google Scholar

    [41] Melik-Gaykazyan EV, Kruk SS, Camacho-Morales R, Xu L, Rahmani M et al. Selective third-harmonic generation by structured light in Mie-resonant nanoparticles. ACS Photonics 5, 728–733 (2018). doi: 10.1021/acsphotonics.7b01277

    CrossRef Google Scholar

    [42] Koshelev K, Kruk S, Melik-Gaykazyan E, Choi JH, Bogdanov A et al. Subwavelength dielectric resonators for nonlinear nanophotonics. Science 367, 288–292 (2020). doi: 10.1126/science.aaz3985

    CrossRef Google Scholar

    [43] Zhan QW. Trapping metallic Rayleigh particles with radial polarization. Opt Express 12, 3377–3382 (2004). doi: 10.1364/OPEX.12.003377

    CrossRef Google Scholar

    [44] Zhang YQ, Shen JF, Min CJ, Jin YF, Jiang YQ et al. Nonlinearity-induced multiplexed optical trapping and manipulation with femtosecond vector beams. Nano Lett 18, 5538–5543 (2018). doi: 10.1021/acs.nanolett.8b01929

    CrossRef Google Scholar

    [45] Liu J, Zheng M, Xiong ZJ, Li ZY. 3D dynamic motion of a dielectric micro-sphere within optical tweezers. Opto-Electron Adv 4, 200015 (2021). doi: 10.29026/oea.2021.200015

    CrossRef Google Scholar

    [46] Novotny L, Beversluis MR, Youngworth KS, Brown TG. Longitudinal field modes probed by single molecules. Phys Rev Lett 86, 5251–5254 (2001). doi: 10.1103/PhysRevLett.86.5251

    CrossRef Google Scholar

    [47] Bauer T, Orlov S, Peschel U, Banzer P, Leuchs G. Nanointerferometric amplitude and phase reconstruction of tightly focused vector beams. Nat Photonics 8, 23–27 (2014). doi: 10.1038/nphoton.2013.289

    CrossRef Google Scholar

    [48] Feng TH, Xu Y, Zhang W, Miroshnichenko AE. Ideal magnetic dipole scattering. Phys Rev Lett 118, 173901 (2017). doi: 10.1103/PhysRevLett.118.173901

    CrossRef Google Scholar

    [49] Liu W, Zhang JF, Miroshnichenko AE. Toroidal dipole-induced transparency in core–shell nanoparticles. Laser Photonics Rev 9, 564–570 (2015). doi: 10.1002/lpor.201500102

    CrossRef Google Scholar

    [50] Papasimakis N, Fedotov VA, Savinov V, Raybould TA, Zheludev NI. Electromagnetic toroidal excitations in matter and free space. Nat Mater 15, 263–271 (2016). doi: 10.1038/nmat4563

    CrossRef Google Scholar

    [51] Kaelberer T, Fedotov VA, Papasimakis N, Tsai DP, Zheludev NI. Toroidal dipolar response in a metamaterial. Science 330, 1510–1512 (2010). doi: 10.1126/science.1197172

    CrossRef Google Scholar

    [52] Hoang TX, Chen XD, Sheppard CJR. Multipole theory for tight focusing of polarized light, including radially polarized and other special cases. J Opt Soc Am A 29, 32–43 (2012). doi: 10.1364/JOSAA.29.000032

    CrossRef Google Scholar

  • Supplementary information for Cylindrical vector beams reveal radiationless anapole condition in a resonant state
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Article Metrics

Article views(7987) PDF downloads(974) Cited by(0)

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint