Citation: | Wolf A, Dostovalov A, Bronnikov K, Skvortsov M, Wabnitz S et al. Advances in femtosecond laser direct writing of fiber Bragg gratings in multicore fibers: technology, sensor and laser applications. Opto-Electron Adv 5, 210055 (2022). doi: 10.29026/oea.2022.210055 |
[1] | Saitoh K, Matsuo S. Multicore fiber technology. J Light Technol 34, 55–66 (2016). doi: 10.1109/JLT.2015.2466444 |
[2] | Richardson DJ, Fini JM, Nelson LE. Space-division multiplexing in optical fibres. Nat Photonics 7, 354–362 (2013). doi: 10.1038/nphoton.2013.94 |
[3] | Tang M. Multicore fibers. In Handbook of Optical Fibers 895–966 (Springer, 2019); http://doi.org/10.1007/978-981-10-7087-7_37. |
[4] | Ramirez LP, Hanna M, Bouwmans G, El Hamzaoui H, Bouazaoui M et al. Coherent beam combining with an ultrafast multicore Yb-doped fiber amplifier. Opt Express 23, 5406–5416 (2015). doi: 10.1364/OE.23.005406 |
[5] | Klenke A, Müller M, Stark H, Stutzki F, Hupel C et al. Coherently combined 16-channel multicore fiber laser system. Opt Lett 43, 1519–1522 (2018). doi: 10.1364/OL.43.001519 |
[6] | Gasulla I, Barrera D, Hervás J, Sales S. Spatial division multiplexed microwave signal processing by selective grating inscription in homogeneous multicore fibers. Sci Rep 7, 41727 (2017). doi: 10.1038/srep41727 |
[7] | Zhao ZY, Tang M, Lu C. Distributed multicore fiber sensors. Opto-Electron Adv 3, 190024 (2020). |
[8] | Rubenchik AM, Chekhovskoy IS, Fedoruk MP, Shtyrina OV, Turitsyn SK. Nonlinear pulse combining and pulse compression in multi-core fibers. Opt Lett 40, 721–724 (2015). doi: 10.1364/OL.40.000721 |
[9] | Xavier GB, Lima G. Quantum information processing with space-division multiplexing optical fibres. Commun Phys 3, 9 (2020). doi: 10.1038/s42005-019-0269-7 |
[10] | Haque M, Lee KKC, Ho S, Fernandes LA, Herman PR. Chemical-assisted femtosecond laser writing of lab-in-fibers. Lab Chip 14, 3817–3829 (2014). doi: 10.1039/C4LC00648H |
[11] | Skvortsov MI, Abdullina SR, Wolf AA, Dostovalov AV, Vlasov AA et al. Random Raman fiber laser based on a twin-core fiber with FBGs inscribed by femtosecond radiation. Opt Lett 44, 295–298 (2019). doi: 10.1364/OL.44.000295 |
[12] | Donko A, Beresna M, Jung Y, Hayes J, Richardson DJ et al. Point-by-point femtosecond laser micro-processing of independent core-specific fiber Bragg gratings in a multi-core fiber. Opt Express 26, 2039–2044 (2018). doi: 10.1364/OE.26.002039 |
[13] | Wolf A, Dostovalov A, Bronnikov K, Babin S. Arrays of fiber Bragg gratings selectively inscribed in different cores of 7-core spun optical fiber by IR femtosecond laser pulses. Opt Express 27, 13978–13990 (2019). doi: 10.1364/OE.27.013978 |
[14] | Saffari P, Allsop T, Adebayo A, Webb D, Haynes R et al. Long period grating in multicore optical fiber: an ultra-sensitive vector bending sensor for low curvatures. Opt Lett 39, 3508–3511 (2014). doi: 10.1364/OL.39.003508 |
[15] | Westbrook PS, Kremp T, Feder KS, Ko W, Monberg EM et al. Continuous multicore optical fiber grating arrays for distributed sensing applications. J Light Technol 35, 1248–1252 (2017). doi: 10.1109/JLT.2017.2661680 |
[16] | Yue CX, Ding H, Ding W, Xu CW. Weakly-coupled multicore optical fiber taper-based high-temperature sensor. Sens Actuators A:Phys 280, 139–144 (2018). doi: 10.1016/j.sna.2018.07.016 |
[17] | Singh R, Kumar S, Liu FZ, Shuang C, Zhang BY et al. Etched multicore fiber sensor using copper oxide and gold nanoparticles decorated graphene oxide structure for cancer cells detection. Biosens Bioelectron 168, 112557 (2020). doi: 10.1016/j.bios.2020.112557 |
[18] | Zhang C, Jiang ZS, Fu SN, Tang M, Tong WJ et al. Femtosecond laser enabled selective micro-holes drilling on the multicore-fiber facet for displacement sensor application. Opt Express 27, 10777–10786 (2019). doi: 10.1364/OE.27.010777 |
[19] | Rifat AA, Mahdiraji GA, Sua YM, Ahmed R, Shee YG et al. Highly sensitive multi-core flat fiber surface plasmon resonance refractive index sensor. Opt Express 24, 2485–2495 (2016). doi: 10.1364/OE.24.002485 |
[20] | Zhang SY, Tang SJ, Feng SF, Xiao YF, Cui WY et al. High-Q polymer microcavities integrated on a multicore fiber facet for vapor sensing. Adv Opt Mater 7, 1900602 (2019). doi: 10.1002/adom.201900602 |
[21] | Rademacher G, Puttnam BJ, Luís RS, Sakaguchi J, Klaus W et al. 10.66 Peta-Bit/s transmission over a 38-Core-three-mode fibeR. In 2020 Optical Fiber Communications Conference and Exhibition (OFC) 1–3 (IEEE, 2020);http://doi.org/10.1364/OFC.2020.Th3H.1. |
[22] | Rademacher G, Luís RS, Puttnam BJ, Ryf R, Van Der Heide S et al. 172 Tb/s C+L band transmission over 2040 km strongly coupled 3-core fiber. In 2020 Optical Fiber Communications Conference and Exhibition (OFC) 1–3 (IEEE, 2020);http://doi.org/10.1364/OFC.2020.Th4C.5. |
[23] | Moore JP, Rogge MD. Shape sensing using multi-core fiber optic cable and parametric curve solutions. Opt Express 20, 2967–2973 (2012). doi: 10.1364/OE.20.002967 |
[24] | Jäckle S, Eixmann T, Schulz-Hildebrandt H, Hüttmann G, Pätz T. Fiber optical shape sensing of flexible instruments for endovascular navigation. Int J Comput Assist Radiol Surg 14, 2137–2145 (2019). doi: 10.1007/s11548-019-02059-0 |
[25] | Bronnikov K, Wolf A, Yakushin S, Dostovalov A, Egorova O et al. Durable shape sensor based on FBG array inscribed in polyimide-coated multicore optical fiber. Opt Express 27, 38421–38434 (2019). doi: 10.1364/OE.380816 |
[26] | Zhao ZY, Soto MA, Tang M, Thévenaz L. Distributed shape sensing using Brillouin scattering in multi-core fibers. Opt Express 24, 25211–25223 (2016). doi: 10.1364/OE.24.025211 |
[27] | Ryu SC, Dupont PE. FBG-based shape sensing tubes for continuum robots. In 2014 IEEE International Conference on Robotics and Automation (ICRA) 3531–3537 (IEEE, 2014);http://doi.org/10.1109/ICRA.2014.6907368. |
[28] | Boilard T, Bilodeau G, Morency S, Messaddeq Y, Fortier R et al. Curvature sensing using a hybrid polycarbonate-silica multicore fiber. Opt Express 28, 39387–39399 (2020). doi: 10.1364/OE.411363 |
[29] | Wolf A, Bronnikov K, Dostovalov A, Simonov V, Terentyev V et al. Multiparameter point sensing with the FBG-containing multicore optical fiber. Proc SPIE 11354, 113540F (2020). doi: 10.1117/12.2555325 |
[30] | May-Arrioja DA, Guzman-Sepulveda JR. Fiber optic sensors based on multicore structures. In Fiber Optic Sensors (eds. Matias IR, Ikezawa S, Corres J. ) 347–371 (Springer, 2017);http://doi.org/10.1007/978-3-319-42625-9_16. |
[31] | Prevost F, Lombard L, Primot J, Ramirez LP, Bigot L et al. Coherent beam combining of a narrow-linewidth long-pulse Er3+-doped multicore fiber amplifier. Opt Express 25, 9528–9534 (2017). doi: 10.1364/OE.25.009528 |
[32] | Ji JH, Raghuraman S, Huang XS, Zang JC, Ho D et al. 115 W fiber laser with an all solid-structure and a large-mode-area multicore fiber. Opt Lett 43, 3369–3372 (2018). doi: 10.1364/OL.43.003369 |
[33] | Sidharthan R, Ji JH, Xia N, Zhou YY, Zang JC et al. Mode selection in large-mode-area step-index multicore fiber laser and amplifier. IEEE Photonics Technol Lett 32, 722–725 (2020). doi: 10.1109/LPT.2020.2992031 |
[34] | Budarnykh AE, Lobach IA, Zlobina EA, Velmiskin VV, Kablukov SI et al. Raman fiber laser with random distributed feedback based on a twin-core fiber. Opt Lett 43, 567–570 (2018). doi: 10.1364/OL.43.000567 |
[35] | Gander MJ, MacPherson WN, McBride R, Jones JDC, Zhang L et al. Bend measurement using Bragg gratings in multicore fibre. Electron Lett 36, 120–121 (2000). doi: 10.1049/el:20000157 |
[36] | Flockhart GMH, Macpherson WN, Barton JS, Jones JDC, Zhang L et al. Two-axis bend measurement with Bragg gratings in multicore optical fiber. Opt Lett 28, 387–389 (2003). doi: 10.1364/OL.28.000387 |
[37] | Bao WJ, Sahoo N, Sun ZY, Wang CL, Liu S et al. Selective fiber Bragg grating inscription in four-core fiber for two-dimension vector bending sensing. Opt Express 28, 26461–26469 (2020). doi: 10.1364/OE.398794 |
[38] | He J, Xu BJ, Xu XZ, Liao CR, Wang YP. Review of femtosecond-laser-inscribed fiber bragg gratings: fabrication technologies and sensing applications. Photonic Sens 11, 203–226 (2021). doi: 10.1007/s13320-021-0629-2 |
[39] | Gattass RR, Mazur E. Femtosecond laser micromachining in transparent materials. Nat Photon 2, 219–225 (2008). doi: 10.1038/nphoton.2008.47 |
[40] | Martinez A, Dubov M, Khrushchev I, Bennion I. Direct writing of fibre Bragg gratings by femtosecond laser. Electron Lett 40, 1170–1172 (2004). doi: 10.1049/el:20046050 |
[41] | Marshall GD, Ams M, Withford MJ. Direct laser written waveguide–Bragg gratings in bulk fused silica. Opt Lett 31, 2690–2691 (2006). doi: 10.1364/OL.31.002690 |
[42] | Mihailov SJ, Grobnic D, Hnatovsky C, Walker RB, Lu P et al. Extreme environment sensing using femtosecond laser-inscribed fiber Bragg gratings. Sensors 17, 2909 (2017). doi: 10.3390/s17122909 |
[43] | Maes F, Stihler C, Pleau LP, Fortin V, Limpert J et al. 3.42 µm lasing in heavily-erbium-doped fluoride fibers. Opt Express 27, 2170–2183 (2019). doi: 10.1364/OE.27.002170 |
[44] | Bernier M, Faucher D, Caron N, Vallée R. Highly stable and efficient erbium-doped 2.8 μm all fiber laser. Opt Express 17, 16941–16946 (2009). doi: 10.1364/OE.17.016941 |
[45] | Wolf AA, Dostovalov AV, Wabnitz S, Babin SA. Femtosecond writing of refractive index structures in multimode and multicore optical fibres. Quantum Electron 48, 1128–1131 (2018). doi: 10.1070/QEL16852 |
[46] | Zlobina EA, Kablukov SI, Wolf AA, Dostovalov AV, Babin SA. Nearly single-mode Raman lasing at 954 nm in a graded-index fiber directly pumped by a multimode laser diode. Opt Lett 42, 9–12 (2017). doi: 10.1364/OL.42.000009 |
[47] | Marshall GD, Williams RJ, Jovanovic N, Steel MJ, Withford MJ. Point-by-point written fiber-Bragg gratings and their application in complex grating designs. Opt Express 18, 19844–19859 (2010). doi: 10.1364/OE.18.019844 |
[48] | Mihailov SJ, Smelser CW, Lu P, Walker RB, Grobnic D et al. Fiber Bragg gratings made with a phase mask and 800-nm femtosecond radiation. Opt Lett 28, 995–997 (2003). doi: 10.1364/OL.28.000995 |
[49] | Bernier M, Trépanier F, Carrier J, Vallée R. High mechanical strength fiber Bragg gratings made with infrared femtosecond pulses and a phase mask. Opt Lett 39, 3646–3649 (2014). doi: 10.1364/OL.39.003646 |
[50] | Suo R, Lousteau J, Li HX, Jiang X, Zhou KM et al. Fiber Bragg gratings inscribed using 800nm femtosecond laser and a phase mask in single-and multi-core mid-IR glass fibers. Opt Express 17, 7540–7548 (2009). doi: 10.1364/OE.17.007540 |
[51] | Alon Y, Halstuch A, Sidharthan R, Yoo S, Ishaaya AA. Femtosecond Bragg grating inscription in an Yb-doped large-mode-area multicore fiber for high-power laser applications. Opt Lett 45, 4563–4566 (2020). doi: 10.1364/OL.397415 |
[52] | Williams RJ, Krämer RG, Nolte S, Withford MJ, Steel MJ. Detuning in apodized point-by-point fiber Bragg gratings: insights into the grating morphology. Opt Express 21, 26854–26867 (2013). doi: 10.1364/OE.21.026854 |
[53] | Burgmeier J, Waltermann C, Flachenecker G, Schade W. Point-by-point inscription of phase-shifted fiber Bragg gratings with electro-optic amplitude modulated femtosecond laser pulses. Opt Lett 39, 540–543 (2014). doi: 10.1364/OL.39.000540 |
[54] | Skvortsov MI, Wolf AA, Vlasov AA, Proskurina KV, Dostovalov AV et al. Advanced distributed feedback lasers based on composite fiber heavily doped with erbium ions. Sci Rep 10, 14487 (2020). doi: 10.1038/s41598-020-71432-w |
[55] | Dostovalov AV, Wolf AA, Parygin AV, Zyubin VE, Babin SA. Femtosecond point-by-point inscription of Bragg gratings by drawing a coated fiber through ferrule. Opt Express 24, 16232–16237 (2016). doi: 10.1364/OE.24.016232 |
[56] | Zhou KM, Dubov M, Mou CB, Zhang L, Mezentsev VK et al. Line-by-line fiber Bragg grating made by femtosecond laser. IEEE Photon Technol Lett 22, 1190–1192 (2010). doi: 10.1109/LPT.2010.2050877 |
[57] | Lu P, Mihailov SJ, Ding HM, Grobnic D, Walker RB et al. Plane-by-plane inscription of grating structures in optical fibers. J Light Technol 36, 926–931 (2018). doi: 10.1109/JLT.2017.2750490 |
[58] | Zhang HB, Eaton SM, Herman PR. Single-step writing of Bragg grating waveguides in fused silica with an externally modulated femtosecond fiber laser. Opt Lett 32, 2559–2561 (2007). doi: 10.1364/OL.32.002559 |
[59] | Gross S, Withford MJ. Ultrafast-laser-inscribed 3D integrated photonics: challenges and emerging applications. Nanophotonics 4, 332–352 (2015). doi: 10.1515/nanoph-2015-0020 |
[60] | Fernandes LA, Grenier JR, Aitchison JS, Herman PR. Fiber optic stress-independent helical torsion sensor. Opt Lett 40, 657–660 (2015). doi: 10.1364/OL.40.000657 |
[61] | Waltermann C, Doering A, Köhring M, Angelmahr M, Schade W. Cladding waveguide gratings in standard single-mode fiber for 3D shape sensing. Opt Lett 40, 3109–3112 (2015). doi: 10.1364/OL.40.003109 |
[62] | Watanabe K, Saito T, Imamura K, Shiino M. Development of fiber bundle type fan-out for multicore fiber. In 2012 17th Opto-Electronics and Communications Conference 475–476 (IEEE, 2012); http://doi.org/10.1109/OECC.2012.6276529. |
[63] | Van Uden RGH, Correa RA, Lopez EA, Huijskens FM, Xia C et al. Ultra-high-density spatial division multiplexing with a few-mode multicore fibre. Nat Photon 8, 865–870 (2014). doi: 10.1038/nphoton.2014.243 |
[64] | Tan DZ, Wang Z, Xu BB, Qiu JR. Photonic circuits written by femtosecond laser in glass: improved fabrication and recent progress in photonic devices. Adv Photon 3, 024002 (2021). |
[65] | Thomson RR, Harris RJ, Birks TA, Brown G, Allington-Smith J et al. Ultrafast laser inscription of a 121-waveguide fan-out for astrophotonics. Opt Lett 37, 2331–2333 (2012). doi: 10.1364/OL.37.002331 |
[66] | Lu P, Lalam N, Badar M, Liu B, Chorpening BT et al. Distributed optical fiber sensing: review and perspective. Appl Phys Rev 6, 041302 (2019). doi: 10.1063/1.5113955 |
[67] | Barrias A, Casas JR, Villalba S. A review of distributed optical fiber sensors for civil engineering applications. Sensors 16, 748 (2016). doi: 10.3390/s16050748 |
[68] | Zhao ZY, Dang YL, Tang M, Wang L, Gan L et al. Enabling simultaneous DAS and DTS through space-division multiplexing based on multicore fiber. J Light Technol 36, 5707–5713 (2018). doi: 10.1109/JLT.2018.2878559 |
[69] | Zhao ZY, Tang M, Wang L, Guo N, Tam HY et al. Distributed vibration sensor based on space-division multiplexed reflectometer and interferometer in multicore fiber. J Light Technol 36, 5764–5772 (2018). doi: 10.1109/JLT.2018.2878450 |
[70] | Miller GA, Askins CG, Friebele EJ. Shape sensing using distributed fiber optic strain measurements. Proc SPIE 5502, 528–531 (2004). doi: 10.1117/12.566653 |
[71] | Duncan RG, Froggatt ME, Kreger ST, Seeley RJ, Gifford DK et al. High-accuracy fiber-optic shape sensing. Proc SPIE 6530, 65301S (2007). doi: 10.1117/12.720914 |
[72] | Roesthuis RJ, Misra S. Steering of multisegment continuum manipulators using rigid-link modeling and FBG-based shape sensing. IEEE Trans Robot 32, 372–382 (2016). doi: 10.1109/TRO.2016.2527047 |
[73] | Shi CY, Luo XB, Qi P, Li TL, Song S et al. Shape sensing techniques for continuum robots in minimally invasive surgery: a survey. IEEE Trans Biomed Eng 64, 1665–1678 (2017). doi: 10.1109/TBME.2016.2622361 |
[74] | Roesthuis RJ, Kemp M, Van Den Dobbelsteen JJ, Misra S. Three-dimensional needle shape reconstruction using an array of fiber Bragg grating sensors. IEEE/ASME Trans Mechatron 19, 1115–1126 (2014). doi: 10.1109/TMECH.2013.2269836 |
[75] | Abayazid M, Kemp M, Misra S. 3D flexible needle steering in soft-tissue phantoms using Fiber Bragg Grating sensors. In 2013 IEEE International Conference on Robotics and Automation 5843–5849 (IEEE, 2013);http://doi.org/10.1109/ICRA.2013.6631418. |
[76] | He XC, Handa J, Gehlbach P, Taylor R, Iordachita I. A submillimetric 3-DOF force sensing instrument with integrated fiber Bragg grating for retinal microsurgery. IEEE Trans Biomed Eng 61, 522–534 (2014). doi: 10.1109/TBME.2013.2283501 |
[77] | Feng Q, Liang YB, Tang M, Ou JP. Multi-parameter monitoring for steel pipe structures using monolithic multicore fibre based on spatial-division-multiplex sensing. Measurement 164, 108121 (2020). doi: 10.1016/j.measurement.2020.108121 |
[78] | Floris I, Madrigal J, Sales S, Calderón PA, Adam JM. Twisting measurement and compensation of optical shape sensor based on spun multicore fiber. Mech Syst Signal Process 140, 106700 (2020). doi: 10.1016/j.ymssp.2020.106700 |
[79] | Askins CG, Miller GA, Friebele EJ. Bend and twist sensing in a multi-core optical fiber. In LEOS 2008 - 21st Annual Meeting of the IEEE Lasers and Electro-Optics Society 109–110 (IEEE, 2008); http://doi.org/10.1109/LEOS.2008.4688512. |
[80] | Lim S, Han S. Shape estimation of a bent and twisted cylinder using strain from a sensor array in triple helices. Meas Sci Technol 29, 095003 (2018). doi: 10.1088/1361-6501/aacfb6 |
[81] | Khan F, Barrera D, Sales S, Misra S. Curvature, twist and pose measurements using fiber Bragg gratings in multi-core fiber: a comparative study between helical and straight core fibers. Sens Actuators A:Phys 317, 112442 (2021). doi: 10.1016/j.sna.2020.112442 |
[82] | Xu R, Yurkewich A, Patel RV. Curvature, torsion, and force sensing in continuum robots using helically wrapped FBG sensors. IEEE Robot Autom Lett 1, 1052–1059 (2016). doi: 10.1109/LRA.2016.2530867 |
[83] | Hill KO, Meltz G. Fiber Bragg grating technology fundamentals and overview. J Light Technol 15, 1263–1276 (1997). doi: 10.1109/50.618320 |
[84] | Khan F, Denasi A, Barrera D, Madrigal J, Sales S et al. Multi-core optical fibers with Bragg gratings as shape sensor for flexible medical instruments. IEEE Sens J 19, 5878–5884 (2019). doi: 10.1109/JSEN.2019.2905010 |
[85] | Cui JW, Zhao SY, Yang CQ, Tan JB. Parallel transport frame for fiber shape sensing. IEEE Photon J 10, 6801012 (2018). |
[86] | Paloschi D, Bronnikov KA, Korganbayev S, Wolf AA, Dostovalov A et al. 3D shape sensing with multicore optical fibers: transformation matrices versus frenet-serret equations for real-time application. IEEE Sens J 21, 4599–4609 (2021). doi: 10.1109/JSEN.2020.3032480 |
[87] | Weisbrich M, Holschemacher K. Comparison between different fiber coatings and adhesives on steel surfaces for distributed optical strain measurements based on Rayleigh backscattering. J Sens Sens Syst 7, 601–608 (2018). doi: 10.5194/jsss-7-601-2018 |
[88] | Yang SY, Ji M. Polyimide matrices for carbon fiber composites. In Advanced Polyimide Materials 93–136 (Elsevier, 2018);http://doi.org/10.1016/B978-0-12-812640-0.00003-2. |
[89] | Stolov AA, Simoff DA, Li J. Thermal stability of specialty optical fibers. J Light Technol 26, 3443–3451 (2008). doi: 10.1109/JLT.2008.925698 |
[90] | Henken KR, Dankelman J, Van Den Dobbelsteen JJ, Cheng LK, Van Der Heiden MS. Error analysis of FBG-based shape sensors for medical needle tracking. IEEE/ASME Trans Mechatron 19, 1523–1531 (2014). doi: 10.1109/TMECH.2013.2287764 |
[91] | Chen XY, Yi XH, Qian JW, Zhang YN, Shen LY et al. Updated shape sensing algorithm for space curves with FBG sensors. Opt Lasers Eng 129, 106057 (2020). doi: 10.1016/j.optlaseng.2020.106057 |
[92] | Kurkov AS, Paramonov VM, Dianov EM, Isaev VA, Ivanov GA. Fiber laser based on 4-core Yb-doped fiber and multimode Bragg grating. Laser Phys Lett 3, 441–444 (2006). doi: 10.1002/lapl.200610027 |
[93] | Kurkov AS, Babin SA, Lobach IA, Kablukov SI. Mechanism of mode coupling in multicore fiber lasers. Opt Lett 33, 61–63 (2008). doi: 10.1364/OL.33.000061 |
[94] | Andrianov AV, Kalinin NA, Anashkina EA, Egorova ON, Lipatov DS et al. Selective excitation and amplification of peak-power-scalable out-of-phase supermode in Yb-doped multicore fiber. J Light Technol 38, 2464–2470 (2020). doi: 10.1109/JLT.2020.2966025 |
[95] | Wrage M, Glas P, Fischer D, Leitner M, Vysotsky DV et al. Phase locking in a multicore fiber laser by means of a Talbot resonator. Opt Lett 25, 1436–1438 (2000). doi: 10.1364/OL.25.001436 |
[96] | Büttner TFS, Hudson DD, Mägi EC, Bedoya AC, Taunay T et al. Multicore, tapered optical fiber for nonlinear pulse reshaping and saturable absorption. Opt Lett 37, 2469–2471 (2012). doi: 10.1364/OL.37.002469 |
[97] | Andrianov AV, Kalinin NA, Koptev MY, Egorova ON, Kim AV et al. High-energy femtosecond pulse shaping, compression, and contrast enhancement using multicore fiber. Opt Lett 44, 303–306 (2019). doi: 10.1364/OL.44.000303 |
[98] | Abdullina SR, Skvortsov MI, Vlasov AA, Podivilov EV, Babin SA. Coherent Raman lasing in a short polarization-maintaining fiber with a random fiber Bragg grating array. Laser Phys Lett 16, 105001 (2019). doi: 10.1088/1612-202X/ab3a28 |
7-core MCFs with straight (a) and twisted (b) side cores.
Microphotographs of different type MCFs manufactured by E.M. Dianov Fiber Optics Research Center. The scale bar corresponds to 20 µm.
Schematic view of an FBG structure induced in the fiber core with different direct fs writing methods. (a) Point-by-point method (Gaussian beam). (b) Line-by-line method (Gaussian beam with transverse scanning). (c) Plane-by-plane method (astigmatic Gaussian beam).
Refractive index change induced by fs laser pulses in the cross section of a single-mode fiber in the case of a Gaussian beam (a) and an astigmatic Gaussian beam (b) for different pulse energies.
Focusing the fs laser beam into a selected core of the MCF during FBG writing. (a) 3D view. (b) 2D view in XY plane.
Microphotographs of point-by-point FBGs written individually in the MCF cores. (a) Single FBG in one of the side cores of FORC 7-CF #1. (b) 6 FBGs in the side cores of FORC 7-CF #2.
(а) MCF cross-section sketch, and relevant parameters for curvature calculation. (b) Schematic representation of the 3D FBG array written in a 7-core MCF through polyimide protective coating.
Result of test shapes reconstruction. (a) 3D shapes − spiral curves with different diameter and pitch (solid − reconstructed curves, dashed − reference curves)25. (b) 2D shape − S-curve, reference curve (solid line) together with reconstructed curves for algorithms based on the Frenet-Serret equations and homogeneous transformation matrices for m = 100 (dashed lines)86. Figure reproduced with permission from: (a) ref.25, (b) ref.86, under a Creative Commons Attribution 4.0 International License
(a) Controlling the bending of the papillotome , and (b) result of the papillotome shape reconstruction with an integrated FBG array written in a 7-core fiber .
Schematic of an experimental setup for detecting AE in a PCM plate using FBG-FPIs (A, B, and C) written in different cores of the MCF.
(а) Signals from FBG-FPI sensors (A, B and C) and one PD (P-C), as well as their variants processed with a low-pass filter, when hitting point T2. (b) The derivatives of the signals processed by a low-pass filter when hitting point T2 for measuring the speed of sound. The yellow area shows the corridor, the crossing of the boundaries of which indicates the arrival of the wavefront in the sensor area; intersection points are shown with vertical dashed lines.
(a) 7-core fiber Raman laser scheme. (b) Reflection spectra measured for FBGs written in the side cores of the MCF. The inset shows the cleaved end of the MCF fiber used in the experiments.
7-core Raman fiber laser power characteristics: output power of the backward Stokes (■), forward Stokes (●) and transmitted pump power (♦) as a function of input pump power. Red line is the result of numerical simulations for Stokes generation, blue line − numerical simulations for transmitted pump power.
(а) Backward Stokes wave spectra of the central core. (b) Forward Stokes wave spectra of the central and two side cores at the maximum input pump power.
The output beams from different cores measured by the beam profiler at a maximum pump power. (a) Unabsorbed pump. (b) Forward Stokes wave.