Wolf A, Dostovalov A, Bronnikov K, Skvortsov M, Wabnitz S et al. Advances in femtosecond laser direct writing of fiber Bragg gratings in multicore fibers: technology, sensor and laser applications. Opto-Electron Adv 5, 210055 (2022). doi: 10.29026/oea.2022.210055
Citation: Wolf A, Dostovalov A, Bronnikov K, Skvortsov M, Wabnitz S et al. Advances in femtosecond laser direct writing of fiber Bragg gratings in multicore fibers: technology, sensor and laser applications. Opto-Electron Adv 5, 210055 (2022). doi: 10.29026/oea.2022.210055

Review Open Access

Advances in femtosecond laser direct writing of fiber Bragg gratings in multicore fibers: technology, sensor and laser applications

More Information
  • In this article, we review recent advances in the technology of writing fiber Bragg gratings (FBGs) in selected cores of multicore fibers (MCFs) by using femtosecond laser pulses. The writing technology of such a key element as the FBG opens up wide opportunities for the creation of next generation fiber lasers and sensors based on MCFs. The advantages of the technology are shown by using the examples of 3D shape sensors, acoustic emission sensors with spatially multiplexed channels, as well as multicore fiber Raman lasers.
  • 加载中
  • [1] Saitoh K, Matsuo S. Multicore fiber technology. J Light Technol 34, 55–66 (2016). doi: 10.1109/JLT.2015.2466444

    CrossRef Google Scholar

    [2] Richardson DJ, Fini JM, Nelson LE. Space-division multiplexing in optical fibres. Nat Photonics 7, 354–362 (2013). doi: 10.1038/nphoton.2013.94

    CrossRef Google Scholar

    [3] Tang M. Multicore fibers. In Handbook of Optical Fibers 895–966 (Springer, 2019); http://doi.org/10.1007/978-981-10-7087-7_37.

    Google Scholar

    [4] Ramirez LP, Hanna M, Bouwmans G, El Hamzaoui H, Bouazaoui M et al. Coherent beam combining with an ultrafast multicore Yb-doped fiber amplifier. Opt Express 23, 5406–5416 (2015). doi: 10.1364/OE.23.005406

    CrossRef Google Scholar

    [5] Klenke A, Müller M, Stark H, Stutzki F, Hupel C et al. Coherently combined 16-channel multicore fiber laser system. Opt Lett 43, 1519–1522 (2018). doi: 10.1364/OL.43.001519

    CrossRef Google Scholar

    [6] Gasulla I, Barrera D, Hervás J, Sales S. Spatial division multiplexed microwave signal processing by selective grating inscription in homogeneous multicore fibers. Sci Rep 7, 41727 (2017). doi: 10.1038/srep41727

    CrossRef Google Scholar

    [7] Zhao ZY, Tang M, Lu C. Distributed multicore fiber sensors. Opto-Electron Adv 3, 190024 (2020).

    Google Scholar

    [8] Rubenchik AM, Chekhovskoy IS, Fedoruk MP, Shtyrina OV, Turitsyn SK. Nonlinear pulse combining and pulse compression in multi-core fibers. Opt Lett 40, 721–724 (2015). doi: 10.1364/OL.40.000721

    CrossRef Google Scholar

    [9] Xavier GB, Lima G. Quantum information processing with space-division multiplexing optical fibres. Commun Phys 3, 9 (2020). doi: 10.1038/s42005-019-0269-7

    CrossRef Google Scholar

    [10] Haque M, Lee KKC, Ho S, Fernandes LA, Herman PR. Chemical-assisted femtosecond laser writing of lab-in-fibers. Lab Chip 14, 3817–3829 (2014). doi: 10.1039/C4LC00648H

    CrossRef Google Scholar

    [11] Skvortsov MI, Abdullina SR, Wolf AA, Dostovalov AV, Vlasov AA et al. Random Raman fiber laser based on a twin-core fiber with FBGs inscribed by femtosecond radiation. Opt Lett 44, 295–298 (2019). doi: 10.1364/OL.44.000295

    CrossRef Google Scholar

    [12] Donko A, Beresna M, Jung Y, Hayes J, Richardson DJ et al. Point-by-point femtosecond laser micro-processing of independent core-specific fiber Bragg gratings in a multi-core fiber. Opt Express 26, 2039–2044 (2018). doi: 10.1364/OE.26.002039

    CrossRef Google Scholar

    [13] Wolf A, Dostovalov A, Bronnikov K, Babin S. Arrays of fiber Bragg gratings selectively inscribed in different cores of 7-core spun optical fiber by IR femtosecond laser pulses. Opt Express 27, 13978–13990 (2019). doi: 10.1364/OE.27.013978

    CrossRef Google Scholar

    [14] Saffari P, Allsop T, Adebayo A, Webb D, Haynes R et al. Long period grating in multicore optical fiber: an ultra-sensitive vector bending sensor for low curvatures. Opt Lett 39, 3508–3511 (2014). doi: 10.1364/OL.39.003508

    CrossRef Google Scholar

    [15] Westbrook PS, Kremp T, Feder KS, Ko W, Monberg EM et al. Continuous multicore optical fiber grating arrays for distributed sensing applications. J Light Technol 35, 1248–1252 (2017). doi: 10.1109/JLT.2017.2661680

    CrossRef Google Scholar

    [16] Yue CX, Ding H, Ding W, Xu CW. Weakly-coupled multicore optical fiber taper-based high-temperature sensor. Sens Actuators A:Phys 280, 139–144 (2018). doi: 10.1016/j.sna.2018.07.016

    CrossRef Google Scholar

    [17] Singh R, Kumar S, Liu FZ, Shuang C, Zhang BY et al. Etched multicore fiber sensor using copper oxide and gold nanoparticles decorated graphene oxide structure for cancer cells detection. Biosens Bioelectron 168, 112557 (2020). doi: 10.1016/j.bios.2020.112557

    CrossRef Google Scholar

    [18] Zhang C, Jiang ZS, Fu SN, Tang M, Tong WJ et al. Femtosecond laser enabled selective micro-holes drilling on the multicore-fiber facet for displacement sensor application. Opt Express 27, 10777–10786 (2019). doi: 10.1364/OE.27.010777

    CrossRef Google Scholar

    [19] Rifat AA, Mahdiraji GA, Sua YM, Ahmed R, Shee YG et al. Highly sensitive multi-core flat fiber surface plasmon resonance refractive index sensor. Opt Express 24, 2485–2495 (2016). doi: 10.1364/OE.24.002485

    CrossRef Google Scholar

    [20] Zhang SY, Tang SJ, Feng SF, Xiao YF, Cui WY et al. High-Q polymer microcavities integrated on a multicore fiber facet for vapor sensing. Adv Opt Mater 7, 1900602 (2019). doi: 10.1002/adom.201900602

    CrossRef Google Scholar

    [21] Rademacher G, Puttnam BJ, Luís RS, Sakaguchi J, Klaus W et al. 10.66 Peta-Bit/s transmission over a 38-Core-three-mode fibeR. In 2020 Optical Fiber Communications Conference and Exhibition (OFC) 1–3 (IEEE, 2020);http://doi.org/10.1364/OFC.2020.Th3H.1.

    Google Scholar

    [22] Rademacher G, Luís RS, Puttnam BJ, Ryf R, Van Der Heide S et al. 172 Tb/s C+L band transmission over 2040 km strongly coupled 3-core fiber. In 2020 Optical Fiber Communications Conference and Exhibition (OFC) 1–3 (IEEE, 2020);http://doi.org/10.1364/OFC.2020.Th4C.5.

    Google Scholar

    [23] Moore JP, Rogge MD. Shape sensing using multi-core fiber optic cable and parametric curve solutions. Opt Express 20, 2967–2973 (2012). doi: 10.1364/OE.20.002967

    CrossRef Google Scholar

    [24] Jäckle S, Eixmann T, Schulz-Hildebrandt H, Hüttmann G, Pätz T. Fiber optical shape sensing of flexible instruments for endovascular navigation. Int J Comput Assist Radiol Surg 14, 2137–2145 (2019). doi: 10.1007/s11548-019-02059-0

    CrossRef Google Scholar

    [25] Bronnikov K, Wolf A, Yakushin S, Dostovalov A, Egorova O et al. Durable shape sensor based on FBG array inscribed in polyimide-coated multicore optical fiber. Opt Express 27, 38421–38434 (2019). doi: 10.1364/OE.380816

    CrossRef Google Scholar

    [26] Zhao ZY, Soto MA, Tang M, Thévenaz L. Distributed shape sensing using Brillouin scattering in multi-core fibers. Opt Express 24, 25211–25223 (2016). doi: 10.1364/OE.24.025211

    CrossRef Google Scholar

    [27] Ryu SC, Dupont PE. FBG-based shape sensing tubes for continuum robots. In 2014 IEEE International Conference on Robotics and Automation (ICRA) 3531–3537 (IEEE, 2014);http://doi.org/10.1109/ICRA.2014.6907368.

    Google Scholar

    [28] Boilard T, Bilodeau G, Morency S, Messaddeq Y, Fortier R et al. Curvature sensing using a hybrid polycarbonate-silica multicore fiber. Opt Express 28, 39387–39399 (2020). doi: 10.1364/OE.411363

    CrossRef Google Scholar

    [29] Wolf A, Bronnikov K, Dostovalov A, Simonov V, Terentyev V et al. Multiparameter point sensing with the FBG-containing multicore optical fiber. Proc SPIE 11354, 113540F (2020). doi: 10.1117/12.2555325

    CrossRef Google Scholar

    [30] May-Arrioja DA, Guzman-Sepulveda JR. Fiber optic sensors based on multicore structures. In Fiber Optic Sensors (eds. Matias IR, Ikezawa S, Corres J. ) 347–371 (Springer, 2017);http://doi.org/10.1007/978-3-319-42625-9_16.

    Google Scholar

    [31] Prevost F, Lombard L, Primot J, Ramirez LP, Bigot L et al. Coherent beam combining of a narrow-linewidth long-pulse Er3+-doped multicore fiber amplifier. Opt Express 25, 9528–9534 (2017). doi: 10.1364/OE.25.009528

    CrossRef Google Scholar

    [32] Ji JH, Raghuraman S, Huang XS, Zang JC, Ho D et al. 115 W fiber laser with an all solid-structure and a large-mode-area multicore fiber. Opt Lett 43, 3369–3372 (2018). doi: 10.1364/OL.43.003369

    CrossRef Google Scholar

    [33] Sidharthan R, Ji JH, Xia N, Zhou YY, Zang JC et al. Mode selection in large-mode-area step-index multicore fiber laser and amplifier. IEEE Photonics Technol Lett 32, 722–725 (2020). doi: 10.1109/LPT.2020.2992031

    CrossRef Google Scholar

    [34] Budarnykh AE, Lobach IA, Zlobina EA, Velmiskin VV, Kablukov SI et al. Raman fiber laser with random distributed feedback based on a twin-core fiber. Opt Lett 43, 567–570 (2018). doi: 10.1364/OL.43.000567

    CrossRef Google Scholar

    [35] Gander MJ, MacPherson WN, McBride R, Jones JDC, Zhang L et al. Bend measurement using Bragg gratings in multicore fibre. Electron Lett 36, 120–121 (2000). doi: 10.1049/el:20000157

    CrossRef Google Scholar

    [36] Flockhart GMH, Macpherson WN, Barton JS, Jones JDC, Zhang L et al. Two-axis bend measurement with Bragg gratings in multicore optical fiber. Opt Lett 28, 387–389 (2003). doi: 10.1364/OL.28.000387

    CrossRef Google Scholar

    [37] Bao WJ, Sahoo N, Sun ZY, Wang CL, Liu S et al. Selective fiber Bragg grating inscription in four-core fiber for two-dimension vector bending sensing. Opt Express 28, 26461–26469 (2020). doi: 10.1364/OE.398794

    CrossRef Google Scholar

    [38] He J, Xu BJ, Xu XZ, Liao CR, Wang YP. Review of femtosecond-laser-inscribed fiber bragg gratings: fabrication technologies and sensing applications. Photonic Sens 11, 203–226 (2021). doi: 10.1007/s13320-021-0629-2

    CrossRef Google Scholar

    [39] Gattass RR, Mazur E. Femtosecond laser micromachining in transparent materials. Nat Photon 2, 219–225 (2008). doi: 10.1038/nphoton.2008.47

    CrossRef Google Scholar

    [40] Martinez A, Dubov M, Khrushchev I, Bennion I. Direct writing of fibre Bragg gratings by femtosecond laser. Electron Lett 40, 1170–1172 (2004). doi: 10.1049/el:20046050

    CrossRef Google Scholar

    [41] Marshall GD, Ams M, Withford MJ. Direct laser written waveguide–Bragg gratings in bulk fused silica. Opt Lett 31, 2690–2691 (2006). doi: 10.1364/OL.31.002690

    CrossRef Google Scholar

    [42] Mihailov SJ, Grobnic D, Hnatovsky C, Walker RB, Lu P et al. Extreme environment sensing using femtosecond laser-inscribed fiber Bragg gratings. Sensors 17, 2909 (2017). doi: 10.3390/s17122909

    CrossRef Google Scholar

    [43] Maes F, Stihler C, Pleau LP, Fortin V, Limpert J et al. 3.42 µm lasing in heavily-erbium-doped fluoride fibers. Opt Express 27, 2170–2183 (2019). doi: 10.1364/OE.27.002170

    CrossRef Google Scholar

    [44] Bernier M, Faucher D, Caron N, Vallée R. Highly stable and efficient erbium-doped 2.8 μm all fiber laser. Opt Express 17, 16941–16946 (2009). doi: 10.1364/OE.17.016941

    CrossRef Google Scholar

    [45] Wolf AA, Dostovalov AV, Wabnitz S, Babin SA. Femtosecond writing of refractive index structures in multimode and multicore optical fibres. Quantum Electron 48, 1128–1131 (2018). doi: 10.1070/QEL16852

    CrossRef Google Scholar

    [46] Zlobina EA, Kablukov SI, Wolf AA, Dostovalov AV, Babin SA. Nearly single-mode Raman lasing at 954 nm in a graded-index fiber directly pumped by a multimode laser diode. Opt Lett 42, 9–12 (2017). doi: 10.1364/OL.42.000009

    CrossRef Google Scholar

    [47] Marshall GD, Williams RJ, Jovanovic N, Steel MJ, Withford MJ. Point-by-point written fiber-Bragg gratings and their application in complex grating designs. Opt Express 18, 19844–19859 (2010). doi: 10.1364/OE.18.019844

    CrossRef Google Scholar

    [48] Mihailov SJ, Smelser CW, Lu P, Walker RB, Grobnic D et al. Fiber Bragg gratings made with a phase mask and 800-nm femtosecond radiation. Opt Lett 28, 995–997 (2003). doi: 10.1364/OL.28.000995

    CrossRef Google Scholar

    [49] Bernier M, Trépanier F, Carrier J, Vallée R. High mechanical strength fiber Bragg gratings made with infrared femtosecond pulses and a phase mask. Opt Lett 39, 3646–3649 (2014). doi: 10.1364/OL.39.003646

    CrossRef Google Scholar

    [50] Suo R, Lousteau J, Li HX, Jiang X, Zhou KM et al. Fiber Bragg gratings inscribed using 800nm femtosecond laser and a phase mask in single-and multi-core mid-IR glass fibers. Opt Express 17, 7540–7548 (2009). doi: 10.1364/OE.17.007540

    CrossRef Google Scholar

    [51] Alon Y, Halstuch A, Sidharthan R, Yoo S, Ishaaya AA. Femtosecond Bragg grating inscription in an Yb-doped large-mode-area multicore fiber for high-power laser applications. Opt Lett 45, 4563–4566 (2020). doi: 10.1364/OL.397415

    CrossRef Google Scholar

    [52] Williams RJ, Krämer RG, Nolte S, Withford MJ, Steel MJ. Detuning in apodized point-by-point fiber Bragg gratings: insights into the grating morphology. Opt Express 21, 26854–26867 (2013). doi: 10.1364/OE.21.026854

    CrossRef Google Scholar

    [53] Burgmeier J, Waltermann C, Flachenecker G, Schade W. Point-by-point inscription of phase-shifted fiber Bragg gratings with electro-optic amplitude modulated femtosecond laser pulses. Opt Lett 39, 540–543 (2014). doi: 10.1364/OL.39.000540

    CrossRef Google Scholar

    [54] Skvortsov MI, Wolf AA, Vlasov AA, Proskurina KV, Dostovalov AV et al. Advanced distributed feedback lasers based on composite fiber heavily doped with erbium ions. Sci Rep 10, 14487 (2020). doi: 10.1038/s41598-020-71432-w

    CrossRef Google Scholar

    [55] Dostovalov AV, Wolf AA, Parygin AV, Zyubin VE, Babin SA. Femtosecond point-by-point inscription of Bragg gratings by drawing a coated fiber through ferrule. Opt Express 24, 16232–16237 (2016). doi: 10.1364/OE.24.016232

    CrossRef Google Scholar

    [56] Zhou KM, Dubov M, Mou CB, Zhang L, Mezentsev VK et al. Line-by-line fiber Bragg grating made by femtosecond laser. IEEE Photon Technol Lett 22, 1190–1192 (2010). doi: 10.1109/LPT.2010.2050877

    CrossRef Google Scholar

    [57] Lu P, Mihailov SJ, Ding HM, Grobnic D, Walker RB et al. Plane-by-plane inscription of grating structures in optical fibers. J Light Technol 36, 926–931 (2018). doi: 10.1109/JLT.2017.2750490

    CrossRef Google Scholar

    [58] Zhang HB, Eaton SM, Herman PR. Single-step writing of Bragg grating waveguides in fused silica with an externally modulated femtosecond fiber laser. Opt Lett 32, 2559–2561 (2007). doi: 10.1364/OL.32.002559

    CrossRef Google Scholar

    [59] Gross S, Withford MJ. Ultrafast-laser-inscribed 3D integrated photonics: challenges and emerging applications. Nanophotonics 4, 332–352 (2015). doi: 10.1515/nanoph-2015-0020

    CrossRef Google Scholar

    [60] Fernandes LA, Grenier JR, Aitchison JS, Herman PR. Fiber optic stress-independent helical torsion sensor. Opt Lett 40, 657–660 (2015). doi: 10.1364/OL.40.000657

    CrossRef Google Scholar

    [61] Waltermann C, Doering A, Köhring M, Angelmahr M, Schade W. Cladding waveguide gratings in standard single-mode fiber for 3D shape sensing. Opt Lett 40, 3109–3112 (2015). doi: 10.1364/OL.40.003109

    CrossRef Google Scholar

    [62] Watanabe K, Saito T, Imamura K, Shiino M. Development of fiber bundle type fan-out for multicore fiber. In 2012 17th Opto-Electronics and Communications Conference 475–476 (IEEE, 2012); http://doi.org/10.1109/OECC.2012.6276529.

    Google Scholar

    [63] Van Uden RGH, Correa RA, Lopez EA, Huijskens FM, Xia C et al. Ultra-high-density spatial division multiplexing with a few-mode multicore fibre. Nat Photon 8, 865–870 (2014). doi: 10.1038/nphoton.2014.243

    CrossRef Google Scholar

    [64] Tan DZ, Wang Z, Xu BB, Qiu JR. Photonic circuits written by femtosecond laser in glass: improved fabrication and recent progress in photonic devices. Adv Photon 3, 024002 (2021).

    Google Scholar

    [65] Thomson RR, Harris RJ, Birks TA, Brown G, Allington-Smith J et al. Ultrafast laser inscription of a 121-waveguide fan-out for astrophotonics. Opt Lett 37, 2331–2333 (2012). doi: 10.1364/OL.37.002331

    CrossRef Google Scholar

    [66] Lu P, Lalam N, Badar M, Liu B, Chorpening BT et al. Distributed optical fiber sensing: review and perspective. Appl Phys Rev 6, 041302 (2019). doi: 10.1063/1.5113955

    CrossRef Google Scholar

    [67] Barrias A, Casas JR, Villalba S. A review of distributed optical fiber sensors for civil engineering applications. Sensors 16, 748 (2016). doi: 10.3390/s16050748

    CrossRef Google Scholar

    [68] Zhao ZY, Dang YL, Tang M, Wang L, Gan L et al. Enabling simultaneous DAS and DTS through space-division multiplexing based on multicore fiber. J Light Technol 36, 5707–5713 (2018). doi: 10.1109/JLT.2018.2878559

    CrossRef Google Scholar

    [69] Zhao ZY, Tang M, Wang L, Guo N, Tam HY et al. Distributed vibration sensor based on space-division multiplexed reflectometer and interferometer in multicore fiber. J Light Technol 36, 5764–5772 (2018). doi: 10.1109/JLT.2018.2878450

    CrossRef Google Scholar

    [70] Miller GA, Askins CG, Friebele EJ. Shape sensing using distributed fiber optic strain measurements. Proc SPIE 5502, 528–531 (2004). doi: 10.1117/12.566653

    CrossRef Google Scholar

    [71] Duncan RG, Froggatt ME, Kreger ST, Seeley RJ, Gifford DK et al. High-accuracy fiber-optic shape sensing. Proc SPIE 6530, 65301S (2007). doi: 10.1117/12.720914

    CrossRef Google Scholar

    [72] Roesthuis RJ, Misra S. Steering of multisegment continuum manipulators using rigid-link modeling and FBG-based shape sensing. IEEE Trans Robot 32, 372–382 (2016). doi: 10.1109/TRO.2016.2527047

    CrossRef Google Scholar

    [73] Shi CY, Luo XB, Qi P, Li TL, Song S et al. Shape sensing techniques for continuum robots in minimally invasive surgery: a survey. IEEE Trans Biomed Eng 64, 1665–1678 (2017). doi: 10.1109/TBME.2016.2622361

    CrossRef Google Scholar

    [74] Roesthuis RJ, Kemp M, Van Den Dobbelsteen JJ, Misra S. Three-dimensional needle shape reconstruction using an array of fiber Bragg grating sensors. IEEE/ASME Trans Mechatron 19, 1115–1126 (2014). doi: 10.1109/TMECH.2013.2269836

    CrossRef Google Scholar

    [75] Abayazid M, Kemp M, Misra S. 3D flexible needle steering in soft-tissue phantoms using Fiber Bragg Grating sensors. In 2013 IEEE International Conference on Robotics and Automation 5843–5849 (IEEE, 2013);http://doi.org/10.1109/ICRA.2013.6631418.

    Google Scholar

    [76] He XC, Handa J, Gehlbach P, Taylor R, Iordachita I. A submillimetric 3-DOF force sensing instrument with integrated fiber Bragg grating for retinal microsurgery. IEEE Trans Biomed Eng 61, 522–534 (2014). doi: 10.1109/TBME.2013.2283501

    CrossRef Google Scholar

    [77] Feng Q, Liang YB, Tang M, Ou JP. Multi-parameter monitoring for steel pipe structures using monolithic multicore fibre based on spatial-division-multiplex sensing. Measurement 164, 108121 (2020). doi: 10.1016/j.measurement.2020.108121

    CrossRef Google Scholar

    [78] Floris I, Madrigal J, Sales S, Calderón PA, Adam JM. Twisting measurement and compensation of optical shape sensor based on spun multicore fiber. Mech Syst Signal Process 140, 106700 (2020). doi: 10.1016/j.ymssp.2020.106700

    CrossRef Google Scholar

    [79] Askins CG, Miller GA, Friebele EJ. Bend and twist sensing in a multi-core optical fiber. In LEOS 2008 - 21st Annual Meeting of the IEEE Lasers and Electro-Optics Society 109–110 (IEEE, 2008); http://doi.org/10.1109/LEOS.2008.4688512.

    Google Scholar

    [80] Lim S, Han S. Shape estimation of a bent and twisted cylinder using strain from a sensor array in triple helices. Meas Sci Technol 29, 095003 (2018). doi: 10.1088/1361-6501/aacfb6

    CrossRef Google Scholar

    [81] Khan F, Barrera D, Sales S, Misra S. Curvature, twist and pose measurements using fiber Bragg gratings in multi-core fiber: a comparative study between helical and straight core fibers. Sens Actuators A:Phys 317, 112442 (2021). doi: 10.1016/j.sna.2020.112442

    CrossRef Google Scholar

    [82] Xu R, Yurkewich A, Patel RV. Curvature, torsion, and force sensing in continuum robots using helically wrapped FBG sensors. IEEE Robot Autom Lett 1, 1052–1059 (2016). doi: 10.1109/LRA.2016.2530867

    CrossRef Google Scholar

    [83] Hill KO, Meltz G. Fiber Bragg grating technology fundamentals and overview. J Light Technol 15, 1263–1276 (1997). doi: 10.1109/50.618320

    CrossRef Google Scholar

    [84] Khan F, Denasi A, Barrera D, Madrigal J, Sales S et al. Multi-core optical fibers with Bragg gratings as shape sensor for flexible medical instruments. IEEE Sens J 19, 5878–5884 (2019). doi: 10.1109/JSEN.2019.2905010

    CrossRef Google Scholar

    [85] Cui JW, Zhao SY, Yang CQ, Tan JB. Parallel transport frame for fiber shape sensing. IEEE Photon J 10, 6801012 (2018).

    Google Scholar

    [86] Paloschi D, Bronnikov KA, Korganbayev S, Wolf AA, Dostovalov A et al. 3D shape sensing with multicore optical fibers: transformation matrices versus frenet-serret equations for real-time application. IEEE Sens J 21, 4599–4609 (2021). doi: 10.1109/JSEN.2020.3032480

    CrossRef Google Scholar

    [87] Weisbrich M, Holschemacher K. Comparison between different fiber coatings and adhesives on steel surfaces for distributed optical strain measurements based on Rayleigh backscattering. J Sens Sens Syst 7, 601–608 (2018). doi: 10.5194/jsss-7-601-2018

    CrossRef Google Scholar

    [88] Yang SY, Ji M. Polyimide matrices for carbon fiber composites. In Advanced Polyimide Materials 93–136 (Elsevier, 2018);http://doi.org/10.1016/B978-0-12-812640-0.00003-2.

    Google Scholar

    [89] Stolov AA, Simoff DA, Li J. Thermal stability of specialty optical fibers. J Light Technol 26, 3443–3451 (2008). doi: 10.1109/JLT.2008.925698

    CrossRef Google Scholar

    [90] Henken KR, Dankelman J, Van Den Dobbelsteen JJ, Cheng LK, Van Der Heiden MS. Error analysis of FBG-based shape sensors for medical needle tracking. IEEE/ASME Trans Mechatron 19, 1523–1531 (2014). doi: 10.1109/TMECH.2013.2287764

    CrossRef Google Scholar

    [91] Chen XY, Yi XH, Qian JW, Zhang YN, Shen LY et al. Updated shape sensing algorithm for space curves with FBG sensors. Opt Lasers Eng 129, 106057 (2020). doi: 10.1016/j.optlaseng.2020.106057

    CrossRef Google Scholar

    [92] Kurkov AS, Paramonov VM, Dianov EM, Isaev VA, Ivanov GA. Fiber laser based on 4-core Yb-doped fiber and multimode Bragg grating. Laser Phys Lett 3, 441–444 (2006). doi: 10.1002/lapl.200610027

    CrossRef Google Scholar

    [93] Kurkov AS, Babin SA, Lobach IA, Kablukov SI. Mechanism of mode coupling in multicore fiber lasers. Opt Lett 33, 61–63 (2008). doi: 10.1364/OL.33.000061

    CrossRef Google Scholar

    [94] Andrianov AV, Kalinin NA, Anashkina EA, Egorova ON, Lipatov DS et al. Selective excitation and amplification of peak-power-scalable out-of-phase supermode in Yb-doped multicore fiber. J Light Technol 38, 2464–2470 (2020). doi: 10.1109/JLT.2020.2966025

    CrossRef Google Scholar

    [95] Wrage M, Glas P, Fischer D, Leitner M, Vysotsky DV et al. Phase locking in a multicore fiber laser by means of a Talbot resonator. Opt Lett 25, 1436–1438 (2000). doi: 10.1364/OL.25.001436

    CrossRef Google Scholar

    [96] Büttner TFS, Hudson DD, Mägi EC, Bedoya AC, Taunay T et al. Multicore, tapered optical fiber for nonlinear pulse reshaping and saturable absorption. Opt Lett 37, 2469–2471 (2012). doi: 10.1364/OL.37.002469

    CrossRef Google Scholar

    [97] Andrianov AV, Kalinin NA, Koptev MY, Egorova ON, Kim AV et al. High-energy femtosecond pulse shaping, compression, and contrast enhancement using multicore fiber. Opt Lett 44, 303–306 (2019). doi: 10.1364/OL.44.000303

    CrossRef Google Scholar

    [98] Abdullina SR, Skvortsov MI, Vlasov AA, Podivilov EV, Babin SA. Coherent Raman lasing in a short polarization-maintaining fiber with a random fiber Bragg grating array. Laser Phys Lett 16, 105001 (2019). doi: 10.1088/1612-202X/ab3a28

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(15)

Article Metrics

Article views() PDF downloads() Cited by()

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint