Citation: | Hong PL, Xu L, Rahmani M. Dual bound states in the continuum enhanced second harmonic generation with transition metal dichalcogenides monolayer. Opto-Electron Adv 5, 200097 (2022). doi: 10.29026/oea.2022.200097 |
[1] | Ashton M, Paul J, Sinnott SB, Hennig RG. Topology-scaling identification of layered solids and stable exfoliated 2D materials. Phys Rev Lett 118, 106101 (2017). doi: 10.1103/PhysRevLett.118.106101 |
[2] | Schaibley JR, Yu H, Clark G, Rivera P, Ross JS et al. Valleytronics in 2D materials. Nat Rev Mater 1, 16055 (2016). doi: 10.1038/natrevmats.2016.55 |
[3] | Mak KF, Shan J. Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides. Nat Photonics 10, 216–226 (2016). doi: 10.1038/nphoton.2015.282 |
[4] | Malard LM, Alencar TV, Barboza APM, Mak KF, De Paula AM. Observation of intense second harmonic generation from MoS2 atomic crystals. Phys Rev B 87, 201401 (2013). doi: 10.1103/PhysRevB.87.201401 |
[5] | Liu ML, Wu HB, Liu XM, Wang YR, Lei M et al. Optical properties and applications of SnS2 SAs with different thickness. Opto-Electron Adv 4, 200029 (2021). doi: 10.29026/oea.2021.200029 |
[6] | Kumar N, Najmaei S, Cui QN, Ceballos F, Ajayan PM et al. Second harmonic microscopy of monolayer MoS2. Phys Rev B 87, 161403 (2013). doi: 10.1103/PhysRevB.87.161403 |
[7] | Klein J, Wierzbowski J, Steinhoff A, Florian M, Rösner M et al. Electric-field switchable second-harmonic generation in bilayer MoS2 by inversion symmetry breaking. Nano Lett 17, 392–398 (2017). doi: 10.1021/acs.nanolett.6b04344 |
[8] | Autere A, Jussila H, Marini A, Saavedra JRM, Dai YY et al. Optical harmonic generation in monolayer group-VI transition metal dichalcogenides. Phys Rev B 98, 115426 (2018). doi: 10.1103/PhysRevB.98.115426 |
[9] | Janisch C, Wang YX, Ma D, Mehta N, Elías AL et al. Extraordinary second harmonic generation in tungsten disulfide monolayers. Sci Rep 4, 5530 (2014). |
[10] | Li Y, Kang M, Shi JJ, Wu K, Zhang SP et al. Transversely divergent second harmonic generation by surface Plasmon polaritons on single metallic nanowires. Nano Lett 17, 7803–7808 (2017). doi: 10.1021/acs.nanolett.7b04016 |
[11] | Wang Z, Dong ZG, Zhu H, Jin L, Chiu MH et al. Selectively plasmon-enhanced second-harmonic generation from monolayer tungsten diselenide on flexible substrates. ACS Nano 12, 1859–1867 (2018). doi: 10.1021/acsnano.7b08682 |
[12] | Shi J, Liang WY, Raja SS, Sang YG, Zhang XQ et al. Plasmonic enhancement and manipulation of optical nonlinearity in monolayer tungsten disulfide. Laser Photonics Rev 12, 1800188 (2018). doi: 10.1002/lpor.201800188 |
[13] | Day JK, Chung MH, Lee YH, Menon VM. Microcavity enhanced second harmonic generation in 2D MoS2. Opt Mater Express 6, 2360–2365 (2016). doi: 10.1364/OME.6.002360 |
[14] | Fang CZ, Yang QY, Yuan QC, Gan XT, Zhao JL et al. High-Q resonances governed by the quasi-bound states in the continuum in all-dielectric metasurfaces. Opto-Electron Adv 4, 200030 (2021). doi: 10.29026/oea.2021.200030 |
[15] | Yi F, Ren ML, Reed JC, Zhu H, Hou JC et al. Optomechanical enhancement of doubly resonant 2D optical nonlinearity. Nano Lett 16, 1631–1636 (2016). doi: 10.1021/acs.nanolett.5b04448 |
[16] | Fryett TK, Seyler KL, Zheng JJ, Liu CH, Xu XD et al. Silicon photonic crystal cavity enhanced second-harmonic generation from monolayer WSe2. 2D Mater 4, 015031 (2016). doi: 10.1088/2053-1583/4/1/015031 |
[17] | Chen HT, Corboliou V, Solntsev AS, Choi DY, Vincenti MA et al. Enhanced second-harmonic generation from two-dimensional MoSe2 on a silicon waveguide. Light Sci Appl 6, e17060 (2017). doi: 10.1038/lsa.2017.60 |
[18] | Hsu CW, Zhen B, Stone AD, Joannopoulos JD, Soljačić M. Bound states in the continuum. Nat Rev Mater 1, 16048 (2016). doi: 10.1038/natrevmats.2016.48 |
[19] | Koshelev K, Bogdanov A, Kivshar Y. Meta-optics and bound states in the continuum. Sci Bull 64, 836–842 (2019). doi: 10.1016/j.scib.2018.12.003 |
[20] | Hsu CW, Zhen B, Lee J, Chua SL, Johnson SG et al. Observation of trapped light within the radiation continuum. Nature 499, 188–191 (2013). doi: 10.1038/nature12289 |
[21] | Zhen B, Hsu CW, Lu L, Stone AD, Soljačić M. Topological nature of optical bound states in the continuum. Phys Rev Lett 113, 257401 (2014). doi: 10.1103/PhysRevLett.113.257401 |
[22] | Doeleman HM, Monticone F, Den Hollander W, Alù A, Koenderink AF. Experimental observation of a polarization vortex at an optical bound state in the continuum. Nat Photonics 12, 397–401 (2018). doi: 10.1038/s41566-018-0177-5 |
[23] | Jin JC, Yin XF, Ni LF, Soljačić M, Zhen B et al. Topologically enabled ultrahigh-Q guided resonances robust to out-of-plane scattering. Nature 574, 501–504 (2019). doi: 10.1038/s41586-019-1664-7 |
[24] | Yin XF, Jin JC, Soljačić M, Peng C, Zhen B. Observation of topologically enabled unidirectional guided resonances. Nature 580, 467–471 (2020). doi: 10.1038/s41586-020-2181-4 |
[25] | Kodigala A, Lepetit T, Gu Q, Bahari B, Fainman Y et al. Lasing action from photonic bound states in continuum. Nature 541, 196–199 (2017). doi: 10.1038/nature20799 |
[26] | Zhang YW, Chen A, Liu WZ, Hsu CW, Wang B et al. Observation of polarization vortices in momentum space. Phys Rev Lett 120, 186103 (2018). doi: 10.1103/PhysRevLett.120.186103 |
[27] | Carletti L, Koshelev K, De Angelis C, Kivshar Y. Giant nonlinear response at the nanoscale driven by bound states in the continuum. Phys Rev Lett 121, 033903 (2018). doi: 10.1103/PhysRevLett.121.033903 |
[28] | Koshelev K, Kruk S, Melik-Gaykazyan E, Choi JH, Bogdanov A et al. Subwavelength dielectric resonators for nonlinear nanophotonics. Science 367, 288–292 (2020). doi: 10.1126/science.aaz3985 |
[29] | Koshelev K, Tang YT, Li K, Choi DY, Li G et al. Nonlinear metasurfaces governed by bound states in the continuum. ACS Photonics 6, 1639–1644 (2019). doi: 10.1021/acsphotonics.9b00700 |
[30] | Kravtsov V, Khestanova E, Benimetskiy FA, Ivanova T, Samusev AK et al. Nonlinear polaritons in a monolayer semiconductor coupled to optical bound states in the continuum. Light Sci Appl 9, 56 (2020). doi: 10.1038/s41377-020-0286-z |
[31] | Xu L, Kamali KZ, Huang LJ, Rahmani M, Smirnov A et al. Dynamic nonlinear image tuning through magnetic dipole quasi-BIC ultrathin resonators. Adv Sci 6, 1802119 (2019). doi: 10.1002/advs.201802119 |
[32] | Minkov M, Gerace D, Fan SH. Doubly resonant χ(2) nonlinear photonic crystal cavity based on a bound state in the continuum. Optica 6, 1039–1045 (2019). doi: 10.1364/OPTICA.6.001039 |
[33] | Wang J, Clementi M, Minkov M, Barone A, Carlin JF et al. Doubly resonant second-harmonic generation of a vortex beam from a bound state in the continuum. Optica 7, 1126–1132 (2020). doi: 10.1364/OPTICA.396408 |
[34] | Wang TC, Zhang SH. Large enhancement of second harmonic generation from transition-metal dichalcogenide monolayer on grating near bound states in the continuum. Opt Express 26, 322–337 (2018). doi: 10.1364/OE.26.000322 |
[35] | Bernhardt N, Koshelev K, White SJU, Meng KWC, Fröch JE et al. Quasi-BIC resonant enhancement of second-harmonic generation in WS2 monolayers. Nano Lett 20, 5309–5314 (2020). doi: 10.1021/acs.nanolett.0c01603 |
[36] | Bond WL. Measurement of the refractive indices of several crystals. J Appl Phys 36, 1674–1677 (1965). doi: 10.1063/1.1703106 |
[37] | Fan SH, Suh W, Joannopoulos JD. Temporal coupled-mode theory for the Fano resonance in optical resonators. J Opt Soc Am A 20, 569–572 (2003). doi: 10.1364/JOSAA.20.000569 |
[38] | Rodriguez A, Soljačić M, Joannopoulos JD, Johnson SG. χ(2) and χ(3) harmonic generation at a critical power in inhomogeneous doubly resonant cavities. Opt Express 15, 7303–7318 (2007). doi: 10.1364/OE.15.007303 |
[39] | Lin ZN, Liang XD, Lončar M, Johnson SG, Rodriguez AW. Cavity-enhanced second-harmonic generation via nonlinear-overlap optimization. Optica 3, 233–238 (2016). doi: 10.1364/OPTICA.3.000233 |
[40] | Li YL, Chernikov A, Zhang X, Rigosi A, Hill HM et al. Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS2, MoSe2, WS2, and WSe2. Phys Rev B 90, 205422 (2014). doi: 10.1103/PhysRevB.90.205422 |
[41] | Maragkakis GM, Psilodimitrakopoulos S, Mouchliadis L, Paradisanos I, Lemonis A et al. Imaging the crystal orientation of 2D transition metal dichalcogenides using polarization-resolved second-harmonic generation. Opto-Electron Adv 2, 190026 (2019). doi: 10.29026/oea.2019.190026 |
[42] | Psilodimitrakopoulos S, Mouchliadis L, Paradisanos I, Kourmoulakis G, Lemonis A et al. Twist angle mapping in layered WS2 by polarization-resolved second harmonic generation. Sci Rep 9, 14285 (2019). doi: 10.1038/s41598-019-50534-0 |
[43] | Mouchliadis L, Psilodimitrakopoulos S, Maragkakis GM, Demeridou I, Kourmoulakis G et al. Probing valley population imbalance in transition metal dichalcogenides via temperature-dependent second harmonic generation imaging. npj 2D Mater Appl 5, 6 (2021). doi: 10.1038/s41699-020-00183-z |
[44] | Sanatinia R, Swillo M, Anand S. Surface second-harmonic generation from vertical gap nanopillars. Nano Lett 12, 820–826 (2012). doi: 10.1021/nl203866y |
[45] | Cambiasso J, Grinblat G, Li Y, Rakovich A, Cortés E et al. Bridging the gap between dielectric nanophotonics and the visible regime with effectively lossless gallium phosphide antennas. Nano Lett 17, 1219–1225 (2017). doi: 10.1021/acs.nanolett.6b05026 |
[46] | Rahmani M, Leo G, Brener I, Zayats AV, Maier SA et al. Nonlinear frequency conversion in optical nanoantennas and metasurfaces: materials evolution and fabrication. Opto-Electron Adv 1, 180021 (2018). doi: 10.29026/oea.2018.180021 |
[47] | Anthur AP, Zhang HZ, Paniagua-Dominguez R, Kalashnikov DA, Ha ST et al. Continuous wave second harmonic generation enabled by quasi-bound-states in the continuum on gallium phosphide metasurfaces. Nano Lett 20, 8745–8751 (2020). doi: 10.1021/acs.nanolett.0c03601 |
[48] | Tilmann B, Grinblat G, Berté R, Özcan M, Kunzelmann VF et al. Nanostructured amorphous gallium phosphide on silica for nonlinear and ultrafast nanophotonics. Nanoscale Horiz 5, 1500–1508 (2020). doi: 10.1039/D0NH00461H |
[49] | Fedorov VV, Bolshakov A, Sergaeva O, Neplokh V, Markina D et al. Gallium phosphide nanowires in a free-standing, flexible, and semitransparent membrane for large-scale infrared-to-visible light conversion. ACS Nano 14, 10624–10632 (2020). doi: 10.1021/acsnano.0c04872 |
Supplymenatary information for Dual bound states in the continuum enhanced second harmonic generation with Transition Metal Dichalcogenides monolayer |
![]() |
Photonic grating slab with a pair of BICs for enhancing SHG. (a) Photonic grating slab that contains TE-type and TM-type BICs. (b) Spatial distribution of the electric field of TE and TM modes in a unit cell at Kx = 0, respectively. (c) Band structure of the target TE and TM modes of the photonic grating slab with thickness t = 0.37 · a, respectively. (d) Kx dependent quality factor of the TE and TM modes shown in (c), respectively.
Spatial overlap coefficient and SHG efficiency with a homogeneous WS2 on top of the photonic grating slab. (a) The Kx dependent spatial overlap coefficient
Spatial overlap coefficient and SHG efficiency with a patterned WS2 on top of the photonic grating slab. (a) The Kx dependent spatial overlap coefficient