Hong PL, Xu L, Rahmani M. Dual bound states in the continuum enhanced second harmonic generation with transition metal dichalcogenides monolayer. Opto-Electron Adv 5, 200097 (2022). doi: 10.29026/oea.2022.200097
Citation: Hong PL, Xu L, Rahmani M. Dual bound states in the continuum enhanced second harmonic generation with transition metal dichalcogenides monolayer. Opto-Electron Adv 5, 200097 (2022). doi: 10.29026/oea.2022.200097

Original Article Open Access

Dual bound states in the continuum enhanced second harmonic generation with transition metal dichalcogenides monolayer

More Information
  • The emergence of two dimensional (2D) materials has opened new possibilities for exhibiting second harmonic generation (SHG) at the nanoscale, due to their remarkable optical response related to stable excitons at room temperature. However, the ultimate atomic-scale interaction length with light makes the SHG of Transition Metal Dichalcogenides (TMDs) monolayers naturally weak. Here, we propose coupling a monolayer of TMDs with a photonic grating slab that works with doubly resonant bound states in the continuum (BIC). The BIC slabs are designed to exhibit a pair of BICs, resonant with both the fundamental wave (FW) and the second harmonic wave (SHW). Firstly, the spatial mode matching can be fulfilled by tilting FW's incident angle. We theoretically demonstrate that this strategy leads to more than four orders of magnitude enhancement of SHG efficiency than a sole monolayer of TMDs, under a pump light intensity of 0.1 GW/cm2. Moreover, we demonstrate that patterning the TMDs monolayer can further enhance the spatial overlap coefficient, which leads to an extra three orders of magnitude enhancement of SHG efficiency. These results demonstrate remarkable possibilities for enhancing SHG with nonlinear 2D materials, opening many opportunities for chip-based light sources, nanolasers, imaging, and biochemical sensing.
  • 加载中
  • [1] Ashton M, Paul J, Sinnott SB, Hennig RG. Topology-scaling identification of layered solids and stable exfoliated 2D materials. Phys Rev Lett 118, 106101 (2017). doi: 10.1103/PhysRevLett.118.106101

    CrossRef Google Scholar

    [2] Schaibley JR, Yu H, Clark G, Rivera P, Ross JS et al. Valleytronics in 2D materials. Nat Rev Mater 1, 16055 (2016). doi: 10.1038/natrevmats.2016.55

    CrossRef Google Scholar

    [3] Mak KF, Shan J. Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides. Nat Photonics 10, 216–226 (2016). doi: 10.1038/nphoton.2015.282

    CrossRef Google Scholar

    [4] Malard LM, Alencar TV, Barboza APM, Mak KF, De Paula AM. Observation of intense second harmonic generation from MoS2 atomic crystals. Phys Rev B 87, 201401 (2013). doi: 10.1103/PhysRevB.87.201401

    CrossRef Google Scholar

    [5] Liu ML, Wu HB, Liu XM, Wang YR, Lei M et al. Optical properties and applications of SnS2 SAs with different thickness. Opto-Electron Adv 4, 200029 (2021). doi: 10.29026/oea.2021.200029

    CrossRef Google Scholar

    [6] Kumar N, Najmaei S, Cui QN, Ceballos F, Ajayan PM et al. Second harmonic microscopy of monolayer MoS2. Phys Rev B 87, 161403 (2013). doi: 10.1103/PhysRevB.87.161403

    CrossRef Google Scholar

    [7] Klein J, Wierzbowski J, Steinhoff A, Florian M, Rösner M et al. Electric-field switchable second-harmonic generation in bilayer MoS2 by inversion symmetry breaking. Nano Lett 17, 392–398 (2017). doi: 10.1021/acs.nanolett.6b04344

    CrossRef Google Scholar

    [8] Autere A, Jussila H, Marini A, Saavedra JRM, Dai YY et al. Optical harmonic generation in monolayer group-VI transition metal dichalcogenides. Phys Rev B 98, 115426 (2018). doi: 10.1103/PhysRevB.98.115426

    CrossRef Google Scholar

    [9] Janisch C, Wang YX, Ma D, Mehta N, Elías AL et al. Extraordinary second harmonic generation in tungsten disulfide monolayers. Sci Rep 4, 5530 (2014).

    Google Scholar

    [10] Li Y, Kang M, Shi JJ, Wu K, Zhang SP et al. Transversely divergent second harmonic generation by surface Plasmon polaritons on single metallic nanowires. Nano Lett 17, 7803–7808 (2017). doi: 10.1021/acs.nanolett.7b04016

    CrossRef Google Scholar

    [11] Wang Z, Dong ZG, Zhu H, Jin L, Chiu MH et al. Selectively plasmon-enhanced second-harmonic generation from monolayer tungsten diselenide on flexible substrates. ACS Nano 12, 1859–1867 (2018). doi: 10.1021/acsnano.7b08682

    CrossRef Google Scholar

    [12] Shi J, Liang WY, Raja SS, Sang YG, Zhang XQ et al. Plasmonic enhancement and manipulation of optical nonlinearity in monolayer tungsten disulfide. Laser Photonics Rev 12, 1800188 (2018). doi: 10.1002/lpor.201800188

    CrossRef Google Scholar

    [13] Day JK, Chung MH, Lee YH, Menon VM. Microcavity enhanced second harmonic generation in 2D MoS2. Opt Mater Express 6, 2360–2365 (2016). doi: 10.1364/OME.6.002360

    CrossRef Google Scholar

    [14] Fang CZ, Yang QY, Yuan QC, Gan XT, Zhao JL et al. High-Q resonances governed by the quasi-bound states in the continuum in all-dielectric metasurfaces. Opto-Electron Adv 4, 200030 (2021). doi: 10.29026/oea.2021.200030

    CrossRef Google Scholar

    [15] Yi F, Ren ML, Reed JC, Zhu H, Hou JC et al. Optomechanical enhancement of doubly resonant 2D optical nonlinearity. Nano Lett 16, 1631–1636 (2016). doi: 10.1021/acs.nanolett.5b04448

    CrossRef Google Scholar

    [16] Fryett TK, Seyler KL, Zheng JJ, Liu CH, Xu XD et al. Silicon photonic crystal cavity enhanced second-harmonic generation from monolayer WSe2. 2D Mater 4, 015031 (2016). doi: 10.1088/2053-1583/4/1/015031

    CrossRef Google Scholar

    [17] Chen HT, Corboliou V, Solntsev AS, Choi DY, Vincenti MA et al. Enhanced second-harmonic generation from two-dimensional MoSe2 on a silicon waveguide. Light Sci Appl 6, e17060 (2017). doi: 10.1038/lsa.2017.60

    CrossRef Google Scholar

    [18] Hsu CW, Zhen B, Stone AD, Joannopoulos JD, Soljačić M. Bound states in the continuum. Nat Rev Mater 1, 16048 (2016). doi: 10.1038/natrevmats.2016.48

    CrossRef Google Scholar

    [19] Koshelev K, Bogdanov A, Kivshar Y. Meta-optics and bound states in the continuum. Sci Bull 64, 836–842 (2019). doi: 10.1016/j.scib.2018.12.003

    CrossRef Google Scholar

    [20] Hsu CW, Zhen B, Lee J, Chua SL, Johnson SG et al. Observation of trapped light within the radiation continuum. Nature 499, 188–191 (2013). doi: 10.1038/nature12289

    CrossRef Google Scholar

    [21] Zhen B, Hsu CW, Lu L, Stone AD, Soljačić M. Topological nature of optical bound states in the continuum. Phys Rev Lett 113, 257401 (2014). doi: 10.1103/PhysRevLett.113.257401

    CrossRef Google Scholar

    [22] Doeleman HM, Monticone F, Den Hollander W, Alù A, Koenderink AF. Experimental observation of a polarization vortex at an optical bound state in the continuum. Nat Photonics 12, 397–401 (2018). doi: 10.1038/s41566-018-0177-5

    CrossRef Google Scholar

    [23] Jin JC, Yin XF, Ni LF, Soljačić M, Zhen B et al. Topologically enabled ultrahigh-Q guided resonances robust to out-of-plane scattering. Nature 574, 501–504 (2019). doi: 10.1038/s41586-019-1664-7

    CrossRef Google Scholar

    [24] Yin XF, Jin JC, Soljačić M, Peng C, Zhen B. Observation of topologically enabled unidirectional guided resonances. Nature 580, 467–471 (2020). doi: 10.1038/s41586-020-2181-4

    CrossRef Google Scholar

    [25] Kodigala A, Lepetit T, Gu Q, Bahari B, Fainman Y et al. Lasing action from photonic bound states in continuum. Nature 541, 196–199 (2017). doi: 10.1038/nature20799

    CrossRef Google Scholar

    [26] Zhang YW, Chen A, Liu WZ, Hsu CW, Wang B et al. Observation of polarization vortices in momentum space. Phys Rev Lett 120, 186103 (2018). doi: 10.1103/PhysRevLett.120.186103

    CrossRef Google Scholar

    [27] Carletti L, Koshelev K, De Angelis C, Kivshar Y. Giant nonlinear response at the nanoscale driven by bound states in the continuum. Phys Rev Lett 121, 033903 (2018). doi: 10.1103/PhysRevLett.121.033903

    CrossRef Google Scholar

    [28] Koshelev K, Kruk S, Melik-Gaykazyan E, Choi JH, Bogdanov A et al. Subwavelength dielectric resonators for nonlinear nanophotonics. Science 367, 288–292 (2020). doi: 10.1126/science.aaz3985

    CrossRef Google Scholar

    [29] Koshelev K, Tang YT, Li K, Choi DY, Li G et al. Nonlinear metasurfaces governed by bound states in the continuum. ACS Photonics 6, 1639–1644 (2019). doi: 10.1021/acsphotonics.9b00700

    CrossRef Google Scholar

    [30] Kravtsov V, Khestanova E, Benimetskiy FA, Ivanova T, Samusev AK et al. Nonlinear polaritons in a monolayer semiconductor coupled to optical bound states in the continuum. Light Sci Appl 9, 56 (2020). doi: 10.1038/s41377-020-0286-z

    CrossRef Google Scholar

    [31] Xu L, Kamali KZ, Huang LJ, Rahmani M, Smirnov A et al. Dynamic nonlinear image tuning through magnetic dipole quasi-BIC ultrathin resonators. Adv Sci 6, 1802119 (2019). doi: 10.1002/advs.201802119

    CrossRef Google Scholar

    [32] Minkov M, Gerace D, Fan SH. Doubly resonant χ(2) nonlinear photonic crystal cavity based on a bound state in the continuum. Optica 6, 1039–1045 (2019). doi: 10.1364/OPTICA.6.001039

    CrossRef Google Scholar

    [33] Wang J, Clementi M, Minkov M, Barone A, Carlin JF et al. Doubly resonant second-harmonic generation of a vortex beam from a bound state in the continuum. Optica 7, 1126–1132 (2020). doi: 10.1364/OPTICA.396408

    CrossRef Google Scholar

    [34] Wang TC, Zhang SH. Large enhancement of second harmonic generation from transition-metal dichalcogenide monolayer on grating near bound states in the continuum. Opt Express 26, 322–337 (2018). doi: 10.1364/OE.26.000322

    CrossRef Google Scholar

    [35] Bernhardt N, Koshelev K, White SJU, Meng KWC, Fröch JE et al. Quasi-BIC resonant enhancement of second-harmonic generation in WS2 monolayers. Nano Lett 20, 5309–5314 (2020). doi: 10.1021/acs.nanolett.0c01603

    CrossRef Google Scholar

    [36] Bond WL. Measurement of the refractive indices of several crystals. J Appl Phys 36, 1674–1677 (1965). doi: 10.1063/1.1703106

    CrossRef Google Scholar

    [37] Fan SH, Suh W, Joannopoulos JD. Temporal coupled-mode theory for the Fano resonance in optical resonators. J Opt Soc Am A 20, 569–572 (2003). doi: 10.1364/JOSAA.20.000569

    CrossRef Google Scholar

    [38] Rodriguez A, Soljačić M, Joannopoulos JD, Johnson SG. χ(2) and χ(3) harmonic generation at a critical power in inhomogeneous doubly resonant cavities. Opt Express 15, 7303–7318 (2007). doi: 10.1364/OE.15.007303

    CrossRef Google Scholar

    [39] Lin ZN, Liang XD, Lončar M, Johnson SG, Rodriguez AW. Cavity-enhanced second-harmonic generation via nonlinear-overlap optimization. Optica 3, 233–238 (2016). doi: 10.1364/OPTICA.3.000233

    CrossRef Google Scholar

    [40] Li YL, Chernikov A, Zhang X, Rigosi A, Hill HM et al. Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS2, MoSe2, WS2, and WSe2. Phys Rev B 90, 205422 (2014). doi: 10.1103/PhysRevB.90.205422

    CrossRef Google Scholar

    [41] Maragkakis GM, Psilodimitrakopoulos S, Mouchliadis L, Paradisanos I, Lemonis A et al. Imaging the crystal orientation of 2D transition metal dichalcogenides using polarization-resolved second-harmonic generation. Opto-Electron Adv 2, 190026 (2019). doi: 10.29026/oea.2019.190026

    CrossRef Google Scholar

    [42] Psilodimitrakopoulos S, Mouchliadis L, Paradisanos I, Kourmoulakis G, Lemonis A et al. Twist angle mapping in layered WS2 by polarization-resolved second harmonic generation. Sci Rep 9, 14285 (2019). doi: 10.1038/s41598-019-50534-0

    CrossRef Google Scholar

    [43] Mouchliadis L, Psilodimitrakopoulos S, Maragkakis GM, Demeridou I, Kourmoulakis G et al. Probing valley population imbalance in transition metal dichalcogenides via temperature-dependent second harmonic generation imaging. npj 2D Mater Appl 5, 6 (2021). doi: 10.1038/s41699-020-00183-z

    CrossRef Google Scholar

    [44] Sanatinia R, Swillo M, Anand S. Surface second-harmonic generation from vertical gap nanopillars. Nano Lett 12, 820–826 (2012). doi: 10.1021/nl203866y

    CrossRef Google Scholar

    [45] Cambiasso J, Grinblat G, Li Y, Rakovich A, Cortés E et al. Bridging the gap between dielectric nanophotonics and the visible regime with effectively lossless gallium phosphide antennas. Nano Lett 17, 1219–1225 (2017). doi: 10.1021/acs.nanolett.6b05026

    CrossRef Google Scholar

    [46] Rahmani M, Leo G, Brener I, Zayats AV, Maier SA et al. Nonlinear frequency conversion in optical nanoantennas and metasurfaces: materials evolution and fabrication. Opto-Electron Adv 1, 180021 (2018). doi: 10.29026/oea.2018.180021

    CrossRef Google Scholar

    [47] Anthur AP, Zhang HZ, Paniagua-Dominguez R, Kalashnikov DA, Ha ST et al. Continuous wave second harmonic generation enabled by quasi-bound-states in the continuum on gallium phosphide metasurfaces. Nano Lett 20, 8745–8751 (2020). doi: 10.1021/acs.nanolett.0c03601

    CrossRef Google Scholar

    [48] Tilmann B, Grinblat G, Berté R, Özcan M, Kunzelmann VF et al. Nanostructured amorphous gallium phosphide on silica for nonlinear and ultrafast nanophotonics. Nanoscale Horiz 5, 1500–1508 (2020). doi: 10.1039/D0NH00461H

    CrossRef Google Scholar

    [49] Fedorov VV, Bolshakov A, Sergaeva O, Neplokh V, Markina D et al. Gallium phosphide nanowires in a free-standing, flexible, and semitransparent membrane for large-scale infrared-to-visible light conversion. ACS Nano 14, 10624–10632 (2020). doi: 10.1021/acsnano.0c04872

    CrossRef Google Scholar

  • Supplymenatary information for Dual bound states in the continuum enhanced second harmonic generation with Transition Metal Dichalcogenides monolayer
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(3)

Article Metrics

Article views(6136) PDF downloads(796) Cited by(0)

Access History

Other Articles By Authors

Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint