Citation: | Gigli C, Leo G. All-dielectric χ(2) metasurfaces: recent progress. Opto-Electron Adv 5, 210093 (2022). doi: 10.29026/oea.2022.210093 |
[1] | Koenderink AF, Alù A, Polman A. Nanophotonics: shrinking light-based technology. Science 348, 516–521 (2015). doi: 10.1126/science.1261243 |
[2] | Novotny L, van Hulst N. Antennas for light. Nat Photonics 5, 83–90 (2011). doi: 10.1038/nphoton.2010.237 |
[3] | Giannini V, Fernández-Domínguez AI, Heck SC, Maier SA. Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters. Chem Rev 111, 3888–3912 (2011). doi: 10.1021/cr1002672 |
[4] | Schuller JA, Barnard ES, Cai WS, Jun YC, White JS et al. Plasmonics for extreme light concentration and manipulation. Nat Mater 9, 193–204 (2010). doi: 10.1038/nmat2630 |
[5] | Baumberg JJ, Aizpurua J, Mikkelsen MH, Smith DR. Extreme nanophotonics from ultrathin metallic gaps. Nat Mater 18, 668–678 (2019). doi: 10.1038/s41563-019-0290-y |
[6] | Pelton M. Modified spontaneous emission in nanophotonic structures. Nat Photonics 9, 427–435 (2015). doi: 10.1038/nphoton.2015.103 |
[7] | Anger P, Bharadwaj P, Novotny L. Enhancement and quenching of single-molecule fluorescence. Phys Rev Lett 96, 113002 (2006). doi: 10.1103/PhysRevLett.96.113002 |
[8] | Curto AG, Volpe G, Taminiau TH, Kreuzer MP, Quidant R et al. Unidirectional emission of a quantum dot coupled to a nanoantenna. Science 329, 930–933 (2010). doi: 10.1126/science.1191922 |
[9] | Shaltout AM, Shalaev VM, Brongersma ML. Spatiotemporal light control with active metasurfaces. Science 364, eaat3100 (2019). doi: 10.1126/science.aat3100 |
[10] | Kamali SM, Arbabi E, Arbabi A, Faraon A. A review of dielectric optical metasurfaces for wavefront control. Nanophotonics 7, 1041–1068 (2018). doi: 10.1515/nanoph-2017-0129 |
[11] | Zhang Y B, Liu H, Cheng H, Tian J G, Chen S Q. Multidimensional manipulation of wave fields based on artificial microstructures. Opto-Electron Adv 3, 200002 (2020). doi: 10.29026/oea.2020.200002 |
[12] | Notomi M. Manipulating light with strongly modulated photonic crystals. Rep Prog Phys 73, 096501 (2010). doi: 10.1088/0034-4885/73/9/096501 |
[13] | Luk’yanchuk B, Zheludev NI, Maier SA, Halas NJ, Nordlander P et al. The Fano resonance in plasmonic nanostructures and metamaterials. Nat Mater 9, 707–715 (2010). doi: 10.1038/nmat2810 |
[14] | Miroshnichenko AE, Flach S, Kivshar YS. Fano resonances in nanoscale structures. Rev Mod Phys 82, 2257–2298 (2010). doi: 10.1103/RevModPhys.82.2257 |
[15] | Limonov MF, Rybin MV, Poddubny AN, Kivshar YS. Fano resonances in photonics. Nat Photonics 11, 543–554 (2017). doi: 10.1038/NPHOTON.2017.142 |
[16] | Kerker M, Wang DS, Giles CL. Electromagnetic scattering by magnetic spheres. J Opt Soc Am 73, 765–767 (1983). doi: 10.1364/JOSA.73.000765 |
[17] | Person S, Jain M, Lapin Z, Sáenz JJ, Wicks G et al. Demonstration of zero optical backscattering from single nanoparticles. Nano Lett 13, 1806–1809 (2013). doi: 10.1021/nl4005018 |
[18] | Fu YH, Kuznetsov AI, Miroshnichenko AE, Yu YF, Luk’yanchuk B. Directional visible light scattering by silicon nanoparticles. Nat Commun 4, 1527 (2013). doi: 10.1038/ncomms2538 |
[19] | Miroshnichenko AE, Evlyukhin AB, Yu YF, Bakker RM, Chipouline A et al. Nonradiating anapole modes in dielectric nanoparticles. Nat Commun 6, 8069 (2015). doi: 10.1038/ncomms9069 |
[20] | Monticone F, Alù A. Embedded photonic eigenvalues in 3D nanostructures. Phys Rev Lett 112, 213903 (2014). doi: 10.1103/PhysRevLett.112.213903 |
[21] | Rybin MV, Koshelev KL, Sadrieva ZF, Samusev KB, Bogdanov AA et al. High-Q supercavity modes in subwavelength dielectric resonators. Phys Rev Lett 119, 243901 (2017). doi: 10.1103/PhysRevLett.119.243901 |
[22] | Bogdanov AA, Koshelev KL, Kapitanova PV, Rybin MV, Gladyshev SA et al. Bound states in the continuum and fano resonances in the strong mode coupling regime. Adv Photonics 1, 016001 (2019). doi: 10.1117/1.ap.1.1.016001 |
[23] | Fang CZ, Yang QY, Yuan QC, Gan XT, Zhao JL et al. High-Q resonances governed by the quasi-bound states in the continuum in all-dielectric metasurfaces. Opto-Electron Adv 4, 200030 (2021). doi: 10.29026/oea.2021.200030 |
[24] | Khurgin JB. How to deal with the loss in plasmonics and metamaterials. Nat Nanotechnol 10, 2–6 (2015). doi: 10.1038/nnano.2014.310 |
[25] | Kuznetsov AI, Miroshnichenko AE, Brongersma ML, Kivshar YS, Luk’yanchuk B. Optically resonant dielectric nanostructures. Science 354, aag2472 (2016). doi: 10.1126/science.aag2472 |
[26] | Tittl A, Leitis A, Liu MK, Yesilkoy F, Choi DY et al. Imaging-based molecular barcoding with pixelated dielectric metasurfaces. Science 360, 1105–1109 (2018). doi: 10.1126/science.aas9768 |
[27] | Yavas O, Svedendahl M, Dobosz P, Sanz V, Quidant R. On-a-chip biosensing based on all-dielectric nanoresonators. Nano Lett 17, 4421–4426 (2017). doi: 10.1021/acs.nanoLett.7b01518 |
[28] | Yesilkoy F, Arvelo ER, Jahani Y, Liu MK, Tittl A et al. Ultrasensitive hyperspectral imaging and biodetection enabled by dielectric metasurfaces. Nat Photonics 13, 390–396 (2019). doi: 10.1038/s41566-019-0394-6 |
[29] | Bozhevolnyi SI, Khurgin JB. The case for quantum plasmonics. Nat Photonics 11, 398–400 (2017). doi: 10.1038/nphoton.2017.103 |
[30] | Stav T, Faerman A, Maguid E, Oren D, Kleiner V et al. Quantum entanglement of the spin and orbital angular momentum of photons using metamaterials. Science 361, 1101–1104 (2018). doi: 10.1126/science.aat9042 |
[31] | Liu J, Shi MQ, Chen Z, Wang SM, Wang ZL et al. Quantum photonics based on metasurfaces. Opto-Electron Adv 4, 200092 (2021). doi: 10.29026/oea.2021.200092 |
[32] | Smirnova D, Kivshar YS. Multipolar nonlinear nanophotonics. Optica 3, 1241–1255 (2016). doi: 10.1364/OPTICA.3.001241 |
[33] | Caspani L, Xiong CL, Eggleton BJ, Bajoni D, Liscidini M et al. Integrated sources of photon quantum states based on nonlinear optics. Light Sci Appl 6, e17100 (2017). doi: 10.1038/lsa.2017.100 |
[34] | Marty G, Combrié S, Raineri F, De Rossi A. Photonic crystal optical parametric oscillator. Nat Photonics 15, 53–58 (2021). doi: 10.1038/s41566-020-00737-z |
[35] | Husko C, De Rossi A, Combrié S, Tran QV, Raineri F et al. Ultrafast all-optical modulation in GaAs photonic crystal cavities. Appl Phys Lett 94, 021111 (2009). doi: 10.1063/1.3068755 |
[36] | Koos C, Vorreau P, Vallaitis T, Dumon P, Bogaerts W et al. All-optical high-speed signal processing with silicon-organic hybrid slot waveguides. Nat Photonics 3, 216–219 (2009). doi: 10.1038/nphoton.2009.25 |
[37] | Nozaki K, Tanabe T, Shinya A, Matsuo S, Sato T et al. Sub-femtojoule all-optical switching using a photonic-crystal nanocavity. Nat Photonics 4, 477–483 (2010). doi: 10.1038/nphoton.2010.89 |
[38] | Krasnok A, Tymchenko M, Alù A. Nonlinear metasurfaces: a paradigm shift in nonlinear optics. Mater Today 21, 8–21 (2018). doi: 10.1016/j.mattod.2017.06.007 |
[39] | Pertsch T, Kivshar Y. Nonlinear optics with resonant metasurfaces. MRS Bull 45, 210–220 (2020). doi: 10.1557/mrs.2020.65 |
[40] | Sain B, Meier C, Zentgraf T. Nonlinear optics in all-dielectric nanoantennas and metasurfaces: a review. Adv Photonics 1, 024002 (2019). doi: 10.1117/1.ap.1.2.024002 |
[41] | Li GX, Zhang S, Zentgraf T. Nonlinear photonic metasurfaces. Nat Rev Mater 2, 17010 (2017). doi: 10.1038/natrevmats.2017.10 |
[42] | Lippitz M, van Dijk MA, Orrit M. Third-harmonic generation from single gold nanoparticles. Nano Lett 5, 799–802 (2005). doi: 10.1021/nl0502571 |
[43] | Danckwerts M, Novotny L. Optical frequency mixing at coupled gold nanoparticles. Phys Rev Lett 98, 026104 (2007). doi: 10.1103/PhysRevLett.98.026104 |
[44] | Hanke T, Krauss G, Träutlein D, Wild B, Bratschitsch R et al. Efficient nonlinear light emission of single gold optical antennas driven by few-cycle near-infrared pulses. Phys Rev Lett 103, 257404 (2009). doi: 10.1103/PhysRevLett.103.257404 |
[45] | Baida H, Mongin D, Christofilos D, Bachelier G, Crut A et al. Ultrafast nonlinear optical response of a single gold nanorod near its surface plasmon resonance. Phys Rev Lett 107, 057402 (2011). doi: 10.1103/PhysRevLett.107.057402 |
[46] | Biagioni P, Brida D, Huang JS, Kern J, Duò L et al. Dynamics of four-photon photoluminescence in gold nanoantennas. Nano Lett 12, 2941–2947 (2012). doi: 10.1021/nl300616s |
[47] | Celebrano M, Wu XF, Baselli M, Großmann S, Biagioni P et al. Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation. Nat Nanotechnol 10, 412–417 (2015). doi: 10.1038/nnano.2015.69 |
[48] | Shcherbakov MR, Neshev DN, Hopkins B, Shorokhov AS, Staude I et al. Enhanced third-harmonic generation in silicon nanoparticles driven by magnetic response. Nano Lett 14, 6488–6492 (2014). doi: 10.1021/nl503029j |
[49] | Shcherbakov MR, Shorokhov AS, Neshev DN, Hopkins B, Staude I et al. Nonlinear interference and tailorable third-harmonic generation from dielectric oligomers. ACS Photonics 2, 578–582 (2015). doi: 10.1021/acsphotonics.5b00065 |
[50] | Liu S, Sinclair MB, Saravi S, Keeler GA, Yang YM et al Resonantly enhanced second-harmonic generation using III-V semiconductor all-dielectric metasurfaces. Nano Lett 16, 5426–5432 (2016);http://doi.org/10.1021/acs.nanoLett.6b01816. |
[51] | Gili VF, Carletti L, Locatelli A, Rocco D, Finazzi M et al. Monolithic AlGaAs second-harmonic nanoantennas. Opt Express 24, 15965–15971 (2016). doi: 10.1364/OE.24.015965 |
[52] | Camacho-Morales R, Rahmani M, Kruk S, Wang L, Xu L et al. Nonlinear generation of vector beams from AlGaAs nanoantennas. Nano Lett 16, 7191–7197 (2016). doi: 10.1021/acs.nanoLett.6b03525 |
[53] | Grinblat G, Li Y, Nielsen MP, Oulton RF, Maier SA. Enhanced third harmonic generation in single germanium nanodisks excited at the anapole mode. Nano Lett 16, 4635–4640 (2016). doi: 10.1021/acs.nanoLett.6b01958 |
[54] | Fedotova A, Younesi M, Sautter J, Vaskin A, Löchner FJF et al. Second-harmonic generation in resonant nonlinear metasurfaces based on lithium niobate. Nano Lett 20, 8608–8614 (2020). doi: 10.1021/acs.nanoLett.0c03290 |
[55] | Timpu F, Sendra J, Renaut C, Lang L, Timofeeva M et al. Lithium niobate nanocubes as linear and nonlinear ultraviolet mie resonators. ACS Photonics 6, 545–552 (2019). doi: 10.1021/acsphotonics.8b01594 |
[56] | Shen KC, Huang YT, Chung TL, Tseng ML, Tsai WY et al. Giant efficiency of visible second-harmonic light by an all-dielectric multiple-quantum-well metasurface. Phys Rev Appl 12, 064056 (2019). doi: 10.1103/PhysRevApplied.12.064056 |
[57] | Busschaert S, Reimann R, Cavigelli M, Khelifa R, Jain A et al. Transition metal dichalcogenide resonators for second harmonic signal enhancement. ACS Photonics 7, 2482–2488 (2020). doi: 10.1021/acsphotonics.0c00751 |
[58] | Adachi S. Optical dispersion relations for GaP, GaAs, GaSb, InP, InAs, InSb, AlxGa1-xAs, and In1-xGaxAsyP1-y. J Appl Phys 66, 6030–6040 (1989). doi: 10.1063/1.343580 |
[59] | Shoji I, Kondo T, Kitamoto A, Shirane M, Ito R. Absolute scale of second-order nonlinear-optical coefficients. J Opt Soc Am B 14, 2268–2294 (1997). doi: 10.1364/josab.14.002268 |
[60] | Gehrsitz S, Reinhart FK, Gourgon C, Herres N, Vonlanthen A et al. The refractive index of AlxGa1-xAs below the band gap: accurate determination and empirical modeling. J Appl Phys 87, 7825–7837 (2000). doi: 10.1063/1.373462 |
[61] | Ohashi M, Kondo T, Ito R, Fukatsu S, Shiraki Y et al. Determination of quadratic nonlinear optical coefficient of AlxGa1-xAs system by the method of reflected second harmonics. J Appl Phys 74, 596–601 (1993). doi: 10.1063/1.355272 |
[62] | Pernice WHP, Xiong C, Schuck C, Tang HX. Second harmonic generation in phase matched aluminum nitride waveguides and micro-ring resonators. Appl Phys Lett 100, 223501 (2012). doi: 10.1063/1.4722941 |
[63] | Berger V. Second-harmonic generation in monolithic cavities. J Opt Soc Am B 14, 1351–1360 (1997). doi: 10.1364/JOSAB.14.001351 |
[64] | Liscidini M, Andreani LC. Second-harmonic generation in doubly resonant microcavities with periodic dielectric mirrors. Phys Rev E 73, 016613 (2006). doi: 10.1103/PhysRevE.73.016613 |
[65] | Lalanne P, Yan W, Vynck K, Sauvan C, Hugonin JP. Light interaction with photonic and plasmonic resonances. Laser Photonics Rev 12, 1700113 (2018). doi: 10.1002/lpor.201700113 |
[66] | Bernhardt N, Koshelev K, White SJU, Meng KWC, Fröch JE et al. Quasi-bic resonant enhancement of second-harmonic generation in WS2 monolayers. Nano Lett 20, 5309–5314 (2020). doi: 10.1021/acs.nanoLett.0c01603 |
[67] | Gigli C, Wu T, Marino G, Borne A, Leo G et al. Quasinormal-mode non-hermitian modeling and design in nonlinear nano-optics. ACS Photonics 7, 1197–1205 (2020). doi: 10.1021/acsphotonics.0c00014 |
[68] | Koshelev K, Kruk S, Melik-Gaykazyan E, Choi JH, Bogdanov A et al. Subwavelength dielectric resonators for nonlinear nanophotonics. Science 367, 288–292 (2020). doi: 10.1126/science.aaz3985 |
[69] | Frizyuk K, Volkovskaya I, Smirnova D, Poddubny A, Petrov M. Second-harmonic generation in mie-resonant dielectric nanoparticles made of noncentrosymmetric materials. Phys Rev B 99, 075425 (2019). doi: 10.1103/PhysRevB.99.075425 |
[70] | Gili VF, Carletti L, Chouchane F, Wang G, Ricolleau C et al. Role of the substrate in monolithic AlGaAs nonlinear nanoantennas. Nanophotonics 7, 517–521 (2017). doi: 10.1515/nanoph-2017-0026 |
[71] | Balanis CA. Antenna Theory: Analysis and Design 4th ed (John Wiley & Sons, Hoboken, 2016). |
[72] | Carletti L, Rocco D, Locatelli A, De Angelis C, Gili VF et al. Controlling second-harmonic generation at the nanoscale with monolithic AlGaAs-on-AlOx antennas. Nanotechnology 28, 114005 (2017). doi: 10.1088/1361-6528/aa5645 |
[73] | Xu L, Rahmani M, Smirnova D, Kamali KZ, Zhang GQ et al. Highly-efficient longitudinal second-harmonic generation from doubly-resonant AlGaAs nanoantennas. Photonics 5, 29 (2018). doi: 10.3390/photonics5030029 |
[74] | Xu L, Rahmani M, Kamali KZ, Lamprianidis A, Ghirardini L et al. Boosting third-harmonic generation by a mirror-enhanced anapole resonator. Light Sci Appl 7, 44 (2018). doi: 10.1038/s41377-018-0051-8 |
[75] | Gili VF, Ghirardini L, Rocco D, Marino G, Favero I et al. Metal-dielectric hybrid nanoantennas for efficient frequency conversion at the anapole mode. Beilstein J Nanotechnol 9, 2306–2314 (2018). doi: 10.3762/bjnano.9.215 |
[76] | Timofeeva M, Lang L, Timpu F, Renaut C, Bouravleuv A et al. Anapoles in free-standing III-V nanodisks enhancing second-harmonic generation. Nano Lett 18, 3695–3702 (2018). doi: 10.1021/acs.nanoLett.8b00830 |
[77] | Semmlinger M, Zhang M, Tseng ML, Huang TT, Yang J et al. Generating third harmonic vacuum ultraviolet light with a TiO2 metasurface. Nano Lett 19, 8972–8978 (2019). doi: 10.1021/acs.nanoLett.9b03961 |
[78] | Carletti L, Koshelev K, De Angelis C, Kivshar Y. Giant nonlinear response at the nanoscale driven by bound states in the continuum. Phys Rev Lett 121, 033903 (2018). doi: 10.1103/PhysRevLett.121.033903 |
[79] | Volkovskaya I, Xu L, Huang LJ, Smirnov AI, Miroshnichenko AE et al. Multipolar second-harmonic generation from high-Q quasi-BIC states in subwavelength resonators. Nanophotonics 9, 3953–3963 (2020). doi: 10.1515/nanoph-2020-0156 |
[80] | Carletti L, Locatelli A, Neshev D, De Angelis C. Shaping the radiation pattern of second-harmonic generation from AlGaAs dielectric nanoantennas. ACS Photonics 3, 1500–1507 (2016). doi: 10.1021/acsphotonics.6b00050 |
[81] | Ghirardini L, Marino G, Gili VF, Favero I, Rocco D et al. Shaping the nonlinear emission pattern of a dielectric nanoantenna by integrated holographic gratings. Nano Lett 18, 6750–6755 (2018). doi: 10.1021/acs.nanoLett.8b02432 |
[82] | Xu L, Saerens G, Timofeeva M, Smirnova DA, Volkovskaya I et al. Forward and backward switching of nonlinear unidirectional emission from GaAs nanoantennas. ACS Nano 14, 1379–1389 (2020). doi: 10.1021/acsnano.9b07117 |
[83] | Saerens G, Tang I, Petrov MI, Frizyuk K, Renaut C et al. Engineering of the second-harmonic emission directionality with III–V semiconductor rod nanoantennas. Laser Photonics Rev 14, 2000028 (2020). doi: 10.1002/lpor.202000028 |
[84] | Rocco D, Gigli C, Carletti L, Marino G, Vincenti MA et al. Vertical second harmonic generation in asymmetric dielectric nanoantennas. IEEE Photonics J 12, 4500507 (2020). doi: 10.1109/JPHOT.2020.2988502 |
[85] | Sautter JD, Xu L, Miroshnichenko AE, Lysevych M, Volkovskaya I et al. Tailoring second-harmonic emission from (111)-GaAs nanoantennas. Nano Lett 19, 3905–3911 (2019). doi: 10.1021/acs.nanoLett.9b01112 |
[86] | Ghirardini L, Carletti L, Gili V, Pellegrini G, Duò L et al. Polarization properties of second-harmonic generation in AlGaAs optical nanoantennas. Opt Lett 42, 559–562 (2017). doi: 10.1364/OL.42.000559 |
[87] | Kruk SS, Camacho-Morales R, Xu L, Rahmani M, Smirnova DA et al. Nonlinear optical magnetism revealed by second-harmonic generation in nanoantennas. Nano Lett 17, 3914–3918 (2017). doi: 10.1021/acs.nanoLett.7b01488 |
[88] | Zou SL, Schatz GC. Theoretical studies of plasmon resonances in one-dimensional nanoparticle chains: narrow lineshapes with tunable widths. Nanotechnology 17, 2813–2820 (2006). doi: 10.1088/0957-4484/17/11/014 |
[89] | Evlyukhin AB, Reinhardt C, Seidel A, Luk’yanchuk BS, Chichkov BN. Optical response features of Si-nanoparticle arrays. Phys Rev B 82, 045404 (2010). doi: 10.1103/PhysRevB.82.045404 |
[90] | Kravets VG, Kabashin AV, Barnes WL, Grigorenko AN. Plasmonic surface lattice resonances: a review of properties and applications. Chem Rev 118, 5912–5951 (2018). doi: 10.1021/acs.chemRev.8b00243 |
[91] | Castellanos GW, Bai P, Rivas JG. Lattice resonances in dielectric metasurfaces. J Appl Phys 125, 213105 (2019). doi: 10.1063/1.5094122 |
[92] | Babicheva VE, Evlyukhin AB. Multipole lattice effects in high refractive index metasurfaces. J Appl Phys 129, 040902 (2021). doi: 10.1063/5.0024274 |
[93] | Vincent Vinel, Zejian Li, Adrien Borne, Adrien Bensemhoun, Ivan Favero et al. Non-Hermitian bath model for arrays of coupled nanoresonators. Opt Express 29, 34015–34023 (2021). |
[94] | Rybin MV, Limonov MF. Resonance effects in photonic crystals and metamaterials: (100th anniversary of the ioffe institute). Phys-Usp 62, 823–838 (2019). doi: 10.3367/UFNe.2019.03.038543 |
[95] | Grahn P, Shevchenko A, Kaivola M. Electromagnetic multipole theory for optical nanomaterials. New J Phys 14, 093033 (2012). doi: 10.1088/1367-2630/14/9/093033 |
[96] | Liu S, Vabishchevich PP, Vaskin A, Reno JL, Keeler GA et al. An all-dielectric metasurface as a broadband optical frequency mixer. Nat Commun 9, 2507 (2018). doi: 10.1038/s41467-018-04944-9 |
[97] | Semmlinger M, Tseng ML, Yang J, Zhang M, Zhang C et al. Vacuum ultraviolet light-generating metasurface. Nano Lett 18, 5738–5743 (2018). doi: 10.1021/acs.nanoLett.8b02346 |
[98] | Löchner FJF, Fedotova AN, Liu S, Keeler GA, Peake GM et al. Polarization-dependent second harmonic diffraction from resonant GaAs metasurfaces. ACS Photonics 5, 1786–1793 (2018). doi: 10.1021/acsphotonics.7b01533 |
[99] | Marino G, Gigli C, Rocco D, Lemaître A, Favero I et al. Zero-order second harmonic generation from AlGaAs-on-insulator metasurfaces. ACS Photonics 6, 1226–1231 (2019). doi: 10.1021/acsphotonics.9b00110 |
[100] | Gigli C, Marino G, Suffit S, Patriarche G, Beaudoin G et al. Polarization- and diffraction-controlled second-harmonic generation from semiconductor metasurfaces. J Opt Soc Am B 36, E55–E64 (2019). doi: 10.1364/JOSAB.36.000E55 |
[101] | Carletti L, Zilli A, Moia F, Toma A, Finazzi M et al. Steering and encoding the polarization of the second harmonic in the visible with a monolithic LiNbO3 metasurface. ACS Photonics 8, 731–737 (2021). doi: 10.1021/acsphotonics.1c00026 |
[102] | Carletti L, Li C, Sautter J, Staude I, De Angelis C et al. Second harmonic generation in monolithic lithium niobate metasurfaces. Opt Express 27, 33391–33398 (2019). doi: 10.1364/oe.27.033391 |
[103] | Frizyuk K. Second-harmonic generation in dielectric nanoparticles with different symmetries. J Opt Soc Am B 36, F32–F37 (2019). doi: 10.1364/josab.36.000f32 |
[104] | Gigli C, Li QT, Chavel P, Leo G, Brongersma ML et al. Fundamental limitations of huygens’ metasurfaces for optical beam shaping. Laser Photonics Rev 15, 2000448 (2021). doi: 10.1002/lpor.202000448 |
[105] | Li GX, Chen SM, Pholchai N, Reineke B, Wong PWH et al. Continuous control of the nonlinearity phase for harmonic generations. Nat Mater 14, 607–612 (2015). doi: 10.1038/nmat4267 |
[106] | Wang L, Kruk S, Koshelev K, Kravchenko I, Luther-Davies B et al. Nonlinear wavefront control with all-dielectric metasurfaces. Nano Lett 18, 3978–3984 (2018). doi: 10.1021/acs.nanoLett.8b01460 |
[107] | Schlickriede C, Kruk SS, Wang L, Sain B, Kivshar Y et al. Nonlinear imaging with all-dielectric metasurfaces. Nano Lett 20, 4370–4376 (2020). doi: 10.1021/acs.nanoLett.0c01105 |
[108] | Gigli C, Marino G, Artioli A, Rocco D, De Angelis C et al. Tensorial phase control in nonlinear meta-optics. Optica 8, 269–276 (2021). doi: 10.1364/optica.413329 |
[109] | Bar-David J, Levy U. Nonlinear diffraction in asymmetric dielectric metasurfaces. Nano Lett 19, 1044–1051 (2019). doi: 10.1021/acs.nanoLett.8b04342 |
[110] | Yu NF, Genevet P, Kats MA, Aieta F, Tetienne JP et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334, 333–337 (2011). doi: 10.1126/science.1210713 |
[111] | Aieta F, Genevet P, Kats MA, Yu NF, Blanchard R et al. Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces. Nano Lett 12, 4932–4936 (2012). doi: 10.1021/nl302516v |
[112] | Almeida E, Bitton O, Prior Y. Nonlinear metamaterials for holography. Nat Commun 7, 12533 (2016). doi: 10.1038/ncomms12533 |
[113] | Almeida E, Shalem G, Prior Y. Subwavelength nonlinear phase control and anomalous phase matching in plasmonic metasurfaces. Nat Commun 7, 10367 (2016). doi: 10.1038/ncomms10367 |
[114] | Schlickriede C, Waterman N, Reineke B, Georgi P, Li GX et al. Imaging through nonlinear metalens using second harmonic generation. Adv Mater 30, 1703843 (2018). doi: 10.1002/adma.201703843 |
[115] | Ye WM, Zeuner F, Li X, Reineke B, He S et al. Spin and wavelength multiplexed nonlinear metasurface holography. Nat Commun 7, 11930 (2016). doi: 10.1038/ncomms11930 |
[116] | Walter F, Li GX, Meier C, Zhang S, Zentgraf T. Ultrathin nonlinear metasurface for optical image encoding. Nano Lett 17, 3171–3175 (2017). doi: 10.1021/acs.nanoLett.7b00676 |
[117] | Reineke B, Sain B, Zhao RZ, Carletti L, Liu BY et al. Silicon metasurfaces for third harmonic geometric phase manipulation and multiplexed holography. Nano Lett 19, 6585–6591 (2019). doi: 10.1021/acs.nanoLett.9b02844 |
[118] | Dasgupta A, Gao J, Yang XD. Second-harmonic optical vortex conversion from WS2 monolayer. Sci Rep 9, 8780 (2019). doi: 10.1038/s41598-019-45424-4 |
[119] | Hu GW, Hong XM, Wang K, Wu J, Xu HX et al. Coherent steering of nonlinear chiral valley photons with a synthetic Au–WS2 metasurface. Nat Photonics 13, 467–472 (2019). doi: 10.1038/s41566-019-0399-1 |
[120] | Powell DA. Interference between the modes of an all-dielectric meta-atom. Phys Rev Appl 7, 034006 (2017). doi: 10.1103/PhysRevApplied.7.034006 |
[121] | Yang YM, Wang WY, Boulesbaa A, Kravchenko II, Briggs DP et al. Nonlinear fano-resonant dielectric metasurfaces. Nano Lett 15, 7388–7393 (2015). doi: 10.1021/acs.nanoLett.5b02802 |
[122] | Liu HZ, Guo C, Vampa G, Zhang JL, Sarmiento T et al. Enhanced high-harmonic generation from an all-dielectric metasurface. Nat Phys 14, 1006–1010 (2018). doi: 10.1038/s41567-018-0233-6 |
[123] | Huang ZJ, Lu HH, Xiong HQ, Li Y, Chen HJ et al. Fano resonance on nanostructured lithium niobate for highly efficient and tunable second harmonic generation. Nanomaterials 9, 69 (2019). doi: 10.3390/nano9010069 |
[124] | Vabishchevich PP, Liu S, Sinclair MB, Keeler GA, Peake GM et al. Enhanced second-harmonic generation using broken symmetry III-V semiconductor fano metasurfaces. ACS Photonics 5, 1685–1690 (2018). doi: 10.1021/acsphotonics.7b01478 |
[125] | Koshelev K, Tang YT, Li KF, Choi DY, Li GX et al. Nonlinear metasurfaces governed by bound states in the continuum. ACS Photonics 6, 1639–1644 (2019). doi: 10.1021/acsphotonics.9b00700 |
[126] | Liu ZJ, Xu Y, Lin Y, Xiang J, Feng TH et al. High- Q quasibound states in the continuum for nonlinear metasurfaces. Phys Rev Lett 123, 253901 (2019). doi: 10.1103/PhysRevLett.123.253901 |
[127] | Anthur AP, Zhang HZ, Paniagua-Dominguez R, Kalashnikov DA, Ha ST et al. Continuous wave second harmonic generation enabled by quasi-bound-states in the continuum on gallium phosphide metasurfaces. Nano Lett 20, 8745–8751 (2020). doi: 10.1021/acs.nanoLett.0c03601 |
[128] | Fan SH, Joannopoulos JD. Analysis of guided resonances in photonic crystal slabs. Phys Rev B 65, 235112 (2002). doi: 10.1103/PhysRevB.65.235112 |
[129] | Lalanne P, Hugonin JP, Chavel P. Optical properties of deep lamellar gratings: a coupled bloch-mode insight. J Light Technol 24, 2442–2449 (2006). doi: 10.1109/JLT.2006.874555 |
[130] | Hsu CW, Zhen B, Stone AD, Joannopoulos JD, Soljačić M. Bound states in the continuum. Nat Rev Mater 1, 16048 (2016). doi: 10.1038/natrevmats.2016.48 |
[131] | Koshelev K, Lepeshov S, Liu MK, Bogdanov A, Kivshar Y. Asymmetric metasurfaces with high-Q resonances governed by bound states in the continuum. Phys Rev Lett 121, 193903 (2018). doi: 10.1103/PhysRevLett.121.193903 |
[132] | Campione S, Liu S, Basilio LI, Warne LK, Langston WL et al. Broken symmetry dielectric resonators for high quality factor fano metasurfaces. ACS Photonics 3, 2362–2367 (2016). doi: 10.1021/acsphotonics.6b00556 |
[133] | Tong WY, Gong C, Liu XJ, Yuan S, Huang QZ et al. Enhanced third harmonic generation in a silicon metasurface using trapped mode. Opt Express 24, 19661–19670 (2016). doi: 10.1364/oe.24.019661 |
[134] | Löchner FJF, George A, Koshelev K, Bucher T, Najafidehaghani E et al. Hybrid dielectric metasurfaces for enhancing second-harmonic generation in chemical vapor deposition grown MoS2 monolayers. ACS Photonics 8, 218–227 (2021). doi: 10.1021/acsphotonics.0c01375 |
[135] | Scaccabarozzi L, Fejer MM, Huo YJ, Fan SH, Yu XJ et al. Enhanced second-harmonic generation in AlGaAs/AlxOy tightly confining waveguides and resonant cavities. Opt Lett 31, 3626–3628 (2006). doi: 10.1364/ol.31.003626 |
[136] | Guo X, Zou CL, Tang HX. Second-harmonic generation in aluminum nitride microrings with 2500%/W conversion efficiency. Optica 3, 1126–1131 (2016). doi: 10.1364/optica.3.001126 |
[137] | Bruch AW, Liu XW, Guo X, Surya JB, Gong Z et al. 17 000%/W second-harmonic conversion efficiency in single-crystalline aluminum nitride microresonators. Appl Phys Lett 113, 131102 (2018). doi: 10.1063/1.5042506 |
[138] | Lu JJ, Surya JB, Liu XW, Bruch AW, Gong Z et al. Periodically poled thin-film lithium niobate microring resonators with a second-harmonic generation efficiency of 250, 000%/W. Optica 6, 1455–1460 (2019). doi: 10.1364/optica.6.001455 |
[139] | Ilchenko VS, Savchenkov AA, Matsko AB, Maleki L. Nonlinear optics and crystalline whispering gallery mode cavities. Phys Rev Lett 92, 043903 (2004). doi: 10.1103/PhysRevLett.92.043903 |
[140] | Fürst JU, Strekalov DV, Elser D, Lassen M, Andersen UL et al. Naturally phase-matched second-harmonic generation in a whispering-gallery-mode resonator. Phys Rev Lett 104, 153901 (2010). doi: 10.1103/PhysRevLett.104.153901 |
[141] | Mariani S, Andronico A, Lemaître A, Favero I, Ducci S et al. Second-harmonic generation in AlGaAs microdisks in the telecom range. Opt Lett 39, 3062–3065 (2014). doi: 10.1364/ol.39.003062 |
[142] | Kuo PS, Bravo-Abad J Solomon GS. Second-harmonic generation using-quasi-phasematching in a GaAs whispering-gallery-mode microcavity. Nat Commun 5, 3109 (2014). doi: 10.1038/ncomms4109 |
[143] | Wang C, Burek MJ, Lin Z, Atikian HA, Venkataraman V et al. Integrated high quality factor lithium niobate microdisk resonators. Opt Express 22, 30924–30933 (2014). doi: 10.1364/oe.22.030924 |
[144] | Lin JT, Xu YX, Ni JL, Wang M, Fang ZW et al. Phase-matched second-harmonic generation in an on-chip LiNbO3 microresonator. Phys Rev Appl 6, 014002 (2016). doi: 10.1103/PhysRevApplied.6.014002 |
[145] | Corcoran B, Monat C, Grillet C, Moss DJ, Eggleton BJ et al. Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides. Nat Photonics 3, 206–210 (2009). doi: 10.1038/nphoton.2009.28 |
[146] | Galli M, Gerace D, Welna K, Krauss TF, O’Faolain L et al. Low-power continuous-wave generation of visible harmonics in silicon photonic crystal nanocavities. Opt Express 18, 26613–26624 (2010). doi: 10.1364/OE.18.026613 |
[147] | Rivoire K, Lin ZL, Hatami F, Masselink WT, Vučković J. Second harmonic generation in gallium phosphide photonic crystal nanocavities with ultralow continuous wave pump power. Opt Express 17, 22609–22615 (2009). doi: 10.1364/OE.17.022609 |
[148] | Diziain S, Geiss R, Zilk M, Schrempel F, Kley EB et al. Second harmonic generation in free-standing lithium niobate photonic crystal L3 cavity. Appl Phys Lett 103, 051117 (2013). doi: 10.1063/1.4817507 |
[149] | Yamada S, Song BS, Jeon S, Upham J, Tanaka Y et al. Second-harmonic generation in a silicon-carbide-based photonic crystal nanocavity. Opt Lett 39, 1768–1771 (2014). doi: 10.1364/ol.39.001768 |
[150] | Mohamed MS, Simbula A, Carlin JF, Minkov M, Gerace D et al. Efficient continuous-wave nonlinear frequency conversion in high-Q gallium nitride photonic crystal cavities on silicon. APL Photonics 2, 031301 (2017). doi: 10.1063/1.4974311 |
[151] | Buckley S, Radulaski M, Petykiewicz J, Lagoudakis KG, Kang JH et al. Second-harmonic generation in GaAs photonic crystal cavities in (111)B and (001) crystal orientations. ACS Photonics 1, 516–523 (2014). doi: 10.1021/ph500054u |
[152] | Minkov M, Gerace D, Fan SH. Doubly resonant χ(2) nonlinear photonic crystal cavity based on a bound state in the continuum. Optica 6, 1039–1045 (2019). doi: 10.1364/OPTICA.6.001039 |
[153] | Wang J, Clementi M, Minkov M, Barone A, Carlin JF et al. Doubly resonant second-harmonic generation of a vortex beam from a bound state in the continuum. Optica 7, 1126–1132 (2020). doi: 10.1364/optica.396408 |
[154] | Seghilani MS, Myara M, Sellahi M, Legratiet L, Sagnes I et al. Vortex Laser based on III-V semiconductor metasurface: direct generation of coherent laguerre-gauss modes carrying controlled orbital angular momentum. Sci Rep 6, 38156 (2016). doi: 10.1038/srep38156 |
[155] | Shcherbakov MR, Vabishchevich PP, Shorokhov AS, Chong KE, Choi DY et al. Ultrafast all-optical switching with magnetic resonances in nonlinear dielectric nanostructures. Nano Lett 15, 6985–6990 (2015). doi: 10.1021/acs.nanoLett.5b02989 |
[156] | Rocco D, Carletti L, Caputo R, Finazzi M, Celebrano M et al. Switching the second harmonic generation by a dielectric metasurface via tunable liquid crystal. Opt Express 28, 12037–12046 (2020). doi: 10.1364/oe.386776 |
[157] | Baranov DG, Zuev DA, Lepeshov SI, Kotov OV, Krasnok AE et al. All-dielectric nanophotonics: the quest for better materials and fabrication techniques. Optica 4, 814–825 (2017). doi: 10.1364/OPTICA.4.000814 |
[158] | Makarov SV, Zalogina AS, Tajik M, Zuev DA, Rybin MV et al. Light-induced tuning and reconfiguration of nanophotonic structures. Laser Photonics Rev 11, 1700108 (2017). doi: 10.1002/lpor.201700108 |
[159] | Shcherbakov MR, Eilenberger F, Staude I. Interaction of semiconductor metasurfaces with short laser pulses: from nonlinear-optical response toward spatiotemporal shaping. J Appl Phys 126, 085705 (2019). doi: 10.1063/1.5108630 |
[160] | Keren-Zur S, Michaeli L, Suchowski H, Ellenbogen T. Shaping light with nonlinear metasurfaces. Adv Opt Photonics 10, 309–353 (2018). doi: 10.1364/AOP.10.000309 |
[161] | Gao H, Fan XH, Xiong W, Hong MH. Recent advances in optical dynamic meta-holography. Opto-Electron Adv 4, 210030 (2021). doi: 10.29026/oea.2021.210030 |
[162] | Smirnova D, Smirnov AI, Kivshar YS. Multipolar second-harmonic generation by Mie-resonant dielectric nanoparticles. Phys Rev A 97, 013807 (2018). doi: 10.1103/PhysRevA.97.013807 |
[163] | Elsawy MMR, Lanteri S, Duvigneau R, Fan JA, Genevet P. Numerical optimization methods for metasurfaces. Laser Photonics Rev 14, 1900445 (2020). doi: 10.1002/lpor.201900445 |
Simplified scheme of SHG in a leaky cavity. FF (SH) beam is represented in red (blue), κin (κout) denotes the input (output) coupling coefficient and
Comparison between isolated (top) and arrayed (bottom) air-suspended GaAs nanoantennas with radius r = 200 nm and height h=400 nm. A normally impinging beam is linearly polarized along x, and the array (bottom) has a period of p=1 μm. (a) Scattering cross section decomposed in electric (blue) and magnetic (red) multipolar contributions, computed by projecting the field inside a nanoparticle onto vector spherical harmonics95. The scattering cross section from the isolated particle has been scaled by a factor 6 to be compared with the plot on the bottom. The black dashed curve (bottom) displays the array transmission. (b) Near-field enhancement corresponding to the magnetic-dipole resonance.
Arrays of quasi-independent dielectric χ(2) Mie-type resonators. (a) SHG from a GaAs metasurface radiated into different diffraction orders vs. pump polarization angle. Green: total; blue: (0,±1) orders; red: (±1,0) orders; black: (0,0) order98. (b) SH back-focal plane (BFP) imaging of a LiNbO3 metasurface for horizontally (center) or vertically (right) polarized pump101. (c) Mechanism to partially redirect SHG from an AlGaAs metasurface close to normal direction99. (d) Controlling SH polarization. BFP imaging of SH from isolated (left) or arrayed (right) AlGaAs nanoantennas with elliptical basis100. (e) Broadband frequency generation in a GaAs metasurface through multiple nonlinear processes96.
Nonlinear wavefront shaping in dielectric metasurfaces. (a) Si metasurface implementing the first Kerker condition and funneling THG into the (-1)-diffraction order106. (b) Top: TH focusing from a Si metasurface. Bottom: Nonlinear imaging and spatial correlation for two apertures107. (c) SH beam-steering (left) and focusing (right) from an AlGaAs metasurface108. (d) SH geometric phase control in a Si metasurface109.
Quasi-BIC mode generation in nonlinear metasurfaces. A few ways to break the symmetry and reveal the high-Q resonance are sketched in the top row. Yellow (blue) color denotes a material addition (removal). (a) L-shaped GaAs/AlGaO heterostructures124. (b) Asymmetric Si nanodimers made of two rods with different widths125. (c) T-shaped Si resonators126. (d) Asymmetric GaP nanodimers made of two elliptical-basis cylinders rotated by an angle θ127.
SHG efficiency vs. Q-factor of the dominant FF mode for different resonant devices (markers’ color) and materials (markers’ shape).