Citation: | Zhang L, Zhang M, Chen TN, Liu DJ, Hong SH et al. Ultrahigh-resolution on-chip spectrometer with silicon photonic resonators. Opto-Electron Adv 5, 210100 (2022). doi: 10.29026/oea.2022.210100 |
[1] | Savage N. Spectrometers. Nat Photonics 3, 601–602 (2009). doi: 10.1038/nphoton.2009.185 |
[2] | Yuan SF, Naveh D, Watanabe K, Taniguchi T, Xia FN. A wavelength-scale black phosphorus spectrometer. Nat Photonics 15, 601–607 (2021). doi: 10.1038/s41566-021-00787-x |
[3] | Yang ZY, Albrow-Owen T, Cai WW, Hasan T. Miniaturization of optical spectrometers. Science 371, eabe0722 (2021). doi: 10.1126/science.abe0722 |
[4] | Chen Q, Liang L, Zheng QL, Zhang YX, Wen L. On-chip readout plasmonic mid-IR gas sensor. Opto-Electron Adv 3 (2020). doi: 10.29026/oea.2020.190040 |
[5] | Wang JZ, Zheng BJ, Wang XM. Strategies for high performance and scalable on-chip spectrometers. J Phys Photonics 3, 012006 (2021). doi: 10.1088/2515-7647/abc897 |
[6] | Cheben P, Schmid JH, Delâge A, Densmore A, Janz S et al. A high-resolution silicon-on-insulator arrayed waveguide grating microspectrometer with sub-micrometer aperture waveguides. Opt Express 15, 2299–2306 (2007). doi: 10.1364/OE.15.002299 |
[7] | Zheng SN, Cai H, Song JF, Zou J, Liu PY et al. A single-chip integrated spectrometer via Tunable Microring resonator array. IEEE Photonics J 11, 6602809 (2019). |
[8] | Ma KQ, Chen KX, Zhu N, Liu L, He SL. High-resolution compact on-chip spectrometer based on an echelle grating with densely packed waveguide array. IEEE Photonics J 11, 4900107 (2019). |
[9] | Cheng RS, Zou CL, Guo X, Wang SH, Han X et al. Broadband on-chip single-photon spectrometer. Nat Commun 10, 4104 (2019). doi: 10.1038/s41467-019-12149-x |
[10] | Kyotoku BBC, Chen L, Lipson M. Sub-nm resolution cavity enhanced micro-spectrometer. Opt Express 18, 102–107 (2010). doi: 10.1364/OE.18.000102 |
[11] | Xia ZX, Eftekhar AA, Soltani M, Momeni B, Li Q et al. High resolution on-chip spectroscopy based on miniaturized microdonut resonators. Opt Express 19, 12356–12364 (2011). doi: 10.1364/OE.19.012356 |
[12] | Lin ZJ, Dadalyan T, Bélanger-de Villers S, Galstian T, Shi W. Chip-scale full-Stokes spectropolarimeter in silicon photonic circuits. Photonics Res 8, 864–874 (2020). doi: 10.1364/PRJ.385008 |
[13] | Souza MCMM, Grieco A, Frateschi NC, Fainman Y. Fourier transform spectrometer on silicon with thermo-optic non-linearity and dispersion correction. Nat Commun 9, 665 (2018). doi: 10.1038/s41467-018-03004-6 |
[14] | Kita DM, Miranda B, Favela D, Bono D, Michon J et al. High-performance and scalable on-chip digital Fourier transform spectroscopy. Nat Commun 9, 4405 (2018). doi: 10.1038/s41467-018-06773-2 |
[15] | Podmore H, Scott A, Cheben P, Velasco AV, Schmid JH et al. Demonstration of a compressive-sensing Fourier-transform on-chip spectrometer. Opt Lett 42, 1440–1443 (2017). doi: 10.1364/OL.42.001440 |
[16] | Paudel U, Rose T. Ultra-high resolution and broadband chip-scale speckle enhanced Fourier-transform spectrometer. Opt Express 28, 16469–16485 (2020). doi: 10.1364/OE.388153 |
[17] | Yang ZY, Albrow-Owen T, Cui HX, Alexander-Webber J, Gu FX et al. Single-nanowire spectrometers. Science 365, 1017–1020 (2019). doi: 10.1126/science.aax8814 |
[18] | Nezhadbadeh S, Neumann A, Zarkesh-Ha P, Brueck SRJ. Chirped-grating spectrometer-on-a-chip. Opt Express 28, 24501–24510 (2020). doi: 10.1364/OE.398072 |
[19] | Gao BS, Shi ZM, Boyd RW. Design of flat-band superprism structures for on-chip spectroscopy. Opt Express 23, 6491–6496 (2015). doi: 10.1364/OE.23.006491 |
[20] | Redding B, Liew SF, Sarma R, Cao H. Compact spectrometer based on a disordered photonic chip. Nat Photonics 7, 746–751 (2013). doi: 10.1038/nphoton.2013.190 |
[21] | Bao J, Bawendi MG. A colloidal quantum dot spectrometer. Nature 523, 67–70 (2015). doi: 10.1038/nature14576 |
[22] | Zheng SN, Zou J, Cai H, Song JF, Chin L K et al. Microring resonator-assisted Fourier transform spectrometer with enhanced resolution and large bandwidth in single chip solution. Nat Commun 10, 2349 (2019). doi: 10.1038/s41467-019-10282-1 |
[23] | Wang XX, Liu JF. Emerging technologies in Si active photonics. J Semicond 39, 061001 (2018). doi: 10.1088/1674-4926/39/6/061001 |
[24] | Chakravarty S, Teng M, Safian R, Zhuang LM. Hybrid material integration in silicon photonic integrated circuits. J Semicond 42, 041303 (2021). doi: 10.1088/1674-4926/42/4/041303 |
[25] | Asakawa K, Sugimoto Y, Nakamura S. Silicon photonics for telecom and data-com applications. Opto-Electron Adv 3, 200011 (2020). doi: 10.29026/oea.2020.200011 |
[26] | Zhang L, Jie LL, Zhang M, Wang Y, Xie YW et al. Ultrahigh-Q silicon racetrack resonators. Photonics Res 8, 684–689 (2020). doi: 10.1364/PRJ.387816 |
[27] | Tan Y, Dai DX. Silicon microring resonators. J Opt 20, 054004 (2018). doi: 10.1088/2040-8986/aaba20 |
[28] | Xiao SJ, Khan MH, Shen H, Qi MH. Silicon-on-insulator microring add-drop filters with free spectral ranges over 30 nm. J Lightwave Technol 26, 228–236 (2008). doi: 10.1109/JLT.2007.911098 |
[29] | Zhang L, Hong SH, Wang Y, Yan H, Xie YW et al. New-generation silicon photonics beyond the singlemode regime. arXiv: 2104.04239 (2021).https://doi.org/10.48550/arXiv.2104.04239 |
[30] | Liu DJ, Zhang L, Tan Y, Dai DX. High-order adiabatic elliptical-microring filter with an ultra-large free-spectral-range. J Lightwave Technol 39, 5910–5916 (2021). doi: 10.1109/JLT.2021.3091724 |
The 3D view (a) and the top view (b) of the present ultra-high-resolution on-chip spectrometer. Schematic configurations of the ultra-high-Q resonator (c) and the wideband resonator (d). (e) The principle of the spectrum retrieved process.
(a) Microscope images of the fabricated ultrahigh-resolution spectrometer. Zoom-in views of the grating coupler (b), the wideband resonator (c), the Euler bend (d), and the heater on ultra-high-Q resonator (e).
(a) Measured spectrum response of the fabricated 10-channel wideband resonators. (b) Measured spectral responses at the through/drop ports of the ultrahigh-Q resonator; Inset: the resonance peak. (c) The spectral response of the ultrahigh-Q resonator when applying different heating power. (d) The resonance wavelength as the heating power Ph increases. (e) The calibrated wavelength-power map. As an example, the arrow indicates the peak wavelength λi dropped by the i-th cascaded wideband resonator when the heating power Ph is 30 mW.
Retrieved spectrum for a given spectrum with a single peak when using the present on-chip spectrometer as well as a commercial OSA with a resolution of 0.02 nm. (a) The peak wavelength is 1546.61 nm locating at channel C1. (b) The peak wavelength is 1549.45 nm locating at channel C4. (c) The peak wavelength is 1552.67 nm locating at channel C7.
Normalized retrieved spectrum with double peak input at channel C7. (a) (1552.627, 1552.632) nm, (b) (1552.024, 1552.624) nm, (c) (1552.643, 1552.646) nm.
Measured results for the spectrum generated from a commercial fiber Bragg filter.