Zhao YY, Ren XL, Zheng ML, Jin F, Liu J et al. Plasmon-enhanced nanosoldering of silver nanoparticles for high-conductive nanowires electrodes. Opto-Electron Adv 4, 200101 (2021). doi: 10.29026/oea.2021.200101
Citation: Zhao YY, Ren XL, Zheng ML, Jin F, Liu J et al. Plasmon-enhanced nanosoldering of silver nanoparticles for high-conductive nanowires electrodes. Opto-Electron Adv 4, 200101 (2021) . doi: 10.29026/oea.2021.200101

Original Article Open Access

Plasmon-enhanced nanosoldering of silver nanoparticles for high-conductive nanowires electrodes

More Information
  • The silver nanowires (Ag NWs) electrodes, which consist of incompact Ag nanoparticles (NPs) formed by multi-photon photoreduction, usually have poor conductivities. An effective strategy for enhancing conductivity of the Ag NWs electrodes is plasmon-enhanced nanosoldering (PLNS) by laser irradiation. Here, plasmon-enhanced photothermal effect is used to locally solder Ag NPs and then aggregates of these NPs grow into large irregular particles in PLNS process. Finite element method (FEM) simulations indicate that the soldering process is triggered by localized surface plasmon-induced electric field enhancement at “hot-spots”. The effectiveness of PLNS for enhancing conductivity depends on laser power density and irradiation time. By optimizing the conditions of PLNS, the electrical conductivity of Ag NWs is significantly enhanced and the conductivity σs is increased to 2.45×107 S/m, which is about 39% of the bulk Ag. This PLNS of Ag NWs provides an efficient and cost-effective technique to rapidly produce large-area metal nanowire electrodes and capacitors with high conductivity, excellent uniformity, and good flexibility.

  • 加载中
  • [1] Hao YY, Gao J, Xu ZS, Zhang N, Luo J et al. Preparation of silver nanoparticles with hyperbranched polymers as a stabilizer for inkjet printing of flexible circuits. New J Chem 43, 2797–2803 (2019). doi: 10.1039/C8NJ05639K

    CrossRef Google Scholar

    [2] Xiong WW, Liu HL, Chen YZ, Zheng ML, Zhao YY et al. Highly conductive, air-stable silver nanowire@iongel composite films toward flexible transparent electrodes. Adv Mater 28, 7167–7172 (2016). doi: 10.1002/adma.201600358

    CrossRef Google Scholar

    [3] Fernandes IJ, Aroche AF, Schuck A, Lamberty P, Peter CR et al. Silver nanoparticle conductive inks: synthesis, characterization, and fabrication of inkjet-printed flexible electrodes. Sci Rep 10, 8878 (2020). doi: 10.1038/s41598-020-65698-3

    CrossRef Google Scholar

    [4] Du DX, Yang X, Yang YL, Zhao YZ, Wang YH. Silver nanowire ink for flexible circuit on textiles. Micromachines 10, 42 (2019). doi: 10.3390/mi10010042

    CrossRef Google Scholar

    [5] Lee S, Jang J, Park T, Park YM, Park JS et al. Electrodeposited silver nanowire transparent conducting electrodes for thin-film solar cells. ACS Appl Mater Interfaces 12, 6169–6175 (2020). doi: 10.1021/acsami.9b17168

    CrossRef Google Scholar

    [6] Tang HH, Feng HR, Wang HK, Wan XJ, Liang JJ et al. Highly conducting Mxene-silver nanowire transparent electrodes for flexible organic solar cells. ACS Appl Mater Interfaces 11, 25330–25337 (2019). doi: 10.1021/acsami.9b04113

    CrossRef Google Scholar

    [7] Lee J, Lee P, Lee H, Lee D, Lee SS et al. Very long Ag nanowire synthesis and its application in a highly transparent, conductive and flexible metal electrode touch panel. Nanoscale 4, 6408–6414 (2012). doi: 10.1039/c2nr31254a

    CrossRef Google Scholar

    [8] Yang H, Bai SC, Chen TR, Zhang Y, Wang HF et al. Facile fabrication of large-scale silver nanowire-PEDOT: PSS composite flexible transparent electrodes for flexible touch panels. Mater Res Express 6, 086315 (2019). doi: 10.1088/2053-1591/ab20d5

    CrossRef Google Scholar

    [9] Zhao YY, Zheng ML, Dong XZ, Jin F, Liu J et al. Tailored silver grid as transparent electrodes directly written by femtosecond laser. Appl Phys Lett 108, 221104 (2016). doi: 10.1063/1.4952591

    CrossRef Google Scholar

    [10] Hirt L, Reiser A, Spolenak R, Zambelli T. Additive manufacturing of metal structures at the micrometer scale. Adv Mater 29, 1604211 (2017). doi: 10.1002/adma.201604211

    CrossRef Google Scholar

    [11] Skylar-Scott M A, Gunasekaran S, Lewis J A. Laser-assisted direct ink writing of planar and 3D metal architectures. Proc Natl Acad Sci USA 113, 6137–6142 (2016). doi: 10.1073/pnas.1525131113

    CrossRef Google Scholar

    [12] Cheng T, Wu YW, Shen XQ, Lai WY, Huang W. Inkjet printed large-area flexible circuits: a simple methodology for optimizing the printing quality. J Semicond 39, 015001 (2018). doi: 10.1088/1674-4926/39/1/015001

    CrossRef Google Scholar

    [13] Ke SH, Xue QW, Pang CY, Guo PW, Yao WJ et al. Printing the ultra-long Ag nanowires inks onto the flexible textile substrate for stretchable electronics. Nanomaterials 9, 686 (2019). doi: 10.3390/nano9050686

    CrossRef Google Scholar

    [14] Cao YY, Takeyasu N, Tanaka T, Duan XM, Kawata S. 3D metallic nanostructure fabrication by surfactant-assisted multiphoton-induced reduction. Small 5, 1144–1148 (2009).

    Google Scholar

    [15] Ren XL, Zheng ML, Jin F, Zhao YY, Dong XZ et al. Laser direct writing of silver nanowire with amino acids-assisted multiphoton photoreduction. J Phys Chem C 120, 26532–26538 (2016). doi: 10.1021/acs.jpcc.6b08395

    CrossRef Google Scholar

    [16] Xu BB, Xia H, Niu LG, Zhang YL, Sun K et al. Flexible nanowiring of metal on nonplanar substrates by femtosecond-laser-induced electroless plating. Small 6, 1762–1766 (2010). doi: 10.1002/smll.201000511

    CrossRef Google Scholar

    [17] Wang H, Zhang YL, Xia H, Chen QD, Lee KS et al. Photodynamic assembly of nanoparticles towards designable patterning. Nanoscale Horiz 1, 201–211 (2016). doi: 10.1039/C5NH00065C

    CrossRef Google Scholar

    [18] Jia YC, Wang SX, Chen F. Femtosecond laser direct writing of flexibly configured waveguide geometries in optical crystals: fabrication and application. Opto-Electron Adv 3, 190042 (2020). doi: 10.29026/oea.2020.190042

    CrossRef Google Scholar

    [19] Livakas N, Skoulas E, Stratakis E. Omnidirectional iridescence via cylindrically-polarized femtosecond laser processing. Opto-Electron Adv 3, 190035 (2020). doi: 10.29026/oea.2020.190035

    CrossRef Google Scholar

    [20] Gu WB, Yuan W, Zhong T, Wu XZ, Zhou CS et al. Fast near infrared sintering of silver nanoparticle ink and applications for flexible hybrid circuits. RSC Adv 8, 30215–30222 (2018). doi: 10.1039/C8RA04468F

    CrossRef Google Scholar

    [21] Han YD, Zhang SM, Jing HY, Wei J, Bu FH et al. The fabrication of highly conductive and flexible Ag patterning through baking Ag nanosphere - nanoplate hybrid ink at a low temperature of 100 °C. Nanotechnology 29, 135301 (2018). doi: 10.1088/1361-6528/aaaa31

    CrossRef Google Scholar

    [22] Kim J, Lin CY, Xing WD, Mecartney ML, Potma EO et al. Laser annealing of nanocrystalline gold nanowires. ACS Appl Mater Interfaces 5, 6808–6814 (2013). doi: 10.1021/am401716u

    CrossRef Google Scholar

    [23] Garnett EC, Cai WS, Cha JJ, Mahmood F, Connor ST et al. Self-limited plasmonic welding of silver nanowire junctions. Nat Mater 11, 241–249 (2012). doi: 10.1038/nmat3238

    CrossRef Google Scholar

    [24] Jahn SF, Blaudeck T, Baumann RR, Jakob A, Ecorchard P et al. Inkjet printing of conductive silver patterns by using the first aqueous particle-free mod ink without additional stabilizing ligands. Chem Mater 22, 3067–3071 (2010). doi: 10.1021/cm9036428

    CrossRef Google Scholar

    [25] Becerril HA, Mao J, Liu ZF, Stoltenberg RM, Bao ZN et al. Evaluation of solution-processed reduced graphene oxide films as transparent conductors. ACS Nano 2, 463–470 (2008). doi: 10.1021/nn700375n

    CrossRef Google Scholar

    [26] Wang X, Zhi LJ, Müllen K. Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Lett 8, 323–327 (2008). doi: 10.1021/nl072838r

    CrossRef Google Scholar

    [27] Kumpulainen T, Pekkanen J, Valkama J, Laakso J, Tuokko R et al. Low temperature nanoparticle sintering with continuous wave and pulse lasers. Opt Laser Technol 43, 570–576 (2011). doi: 10.1016/j.optlastec.2010.08.002

    CrossRef Google Scholar

    [28] Ko SH, Pan H, Grigoropoulos CP, Luscombe CK, Fréchet JMJ et al. All-inkjet-printed flexible electronics fabrication on a polymer substrate by low-temperature high-resolution selective laser sintering of metal nanoparticles. Nanotechnology 18, 345202 (2007). doi: 10.1088/0957-4484/18/34/345202

    CrossRef Google Scholar

    [29] Chung WH, Jang YR, Hwang YT, Kim SH, Kim HS. The surface plasmonic welding of silver nanowires via intense pulsed light irradiation combined with NIR for flexible transparent conductive films. Nanoscale 12, 17725–17737 (2020). doi: 10.1039/C9NR10819J

    CrossRef Google Scholar

    [30] Yang M, Chon MW, Kim JH, Lee SH, Jo JD et al. Mechanical and environmental durability of roll-to-roll printed silver nanoparticle film using a rapid laser annealing process for flexible electronics. Microelectron Reliab 54, 2871–2880 (2014). doi: 10.1016/j.microrel.2014.07.004

    CrossRef Google Scholar

    [31] Huang H, Sivayoganathan M, Duley WW, Zhou Y. Efficient localized heating of silver nanoparticles by low-fluence femtosecond laser pulses. Appl Surf Sci 331, 392–398 (2015). doi: 10.1016/j.apsusc.2015.01.086

    CrossRef Google Scholar

    [32] Govorov AO, Richardson HH. Generating heat with metal nanoparticles. Nano Today 2, 30–38 (2007).

    Google Scholar

    [33] Pitsillides CM, Joe EK, Wei XB, Anderson RR, Lin CP. Selective cell targeting with light-absorbing microparticles and nanoparticles. Biophys J 84, 4023–4032 (2003). doi: 10.1016/S0006-3495(03)75128-5

    CrossRef Google Scholar

    [34] Govorov AO, Zhang W, Skeini T, Richardson H, Lee J et al. Gold nanoparticle ensembles as heaters and actuators: melting and collective plasmon resonances. Nanoscale Res Lett 1, 84 (2006). doi: 10.1007/s11671-006-9015-7

    CrossRef Google Scholar

    [35] Dittrich S, Barcikowski S, Gökce B. Plasma and nanoparticle shielding during pulsed laser ablation in liquids cause ablation efficiency decrease. Opto-Electron Adv 4, 200072 (2021).

    Google Scholar

    [36] Liu ZW, Li Q, Zhang WC, Yang YQ, Qiu M. Nanoscale control of temperature distribution using a plasmonic trimer. Plasmonics 10, 911–918 (2015). doi: 10.1007/s11468-015-9879-4

    CrossRef Google Scholar

    [37] Zhang WC, Li Q, Qiu M. A plasmon ruler based on nanoscale photothermal effect. Opt Express 21, 172–181 (2013). doi: 10.1364/OE.21.000172

    CrossRef Google Scholar

    [38] Hu AQ, Liu S, Zhao JY, Wen T, Zhang WD et al. Controlling plasmon‐exciton interactions through photothermal reshaping. Opto-Electron Adv 3, 190017 (2020). doi: 10.29026/oea.2020.190017

    CrossRef Google Scholar

    [39] Tseng ML, Huang YW, Hsiao MK, Huang HW, Chen HM et al. Fast fabrication of a Ag nanostructure substrate using the femtosecond laser for broad-band and tunable plasmonic enhancement. ACS Nano 6, 5190–5197 (2012). doi: 10.1021/nn300947n

    CrossRef Google Scholar

    [40] Chen Q, Liang L, Zheng Q L, Zhang Y X, Wen L. On-chip readout plasmonic mid-IR gas sensor. Opto-Electron Adv 3, 190040 (2020). doi: 10.29026/oea.2020.190040

    CrossRef Google Scholar

    [41] Chen X, Chen YT, Yan M, Qiu M. Nanosecond photothermal effects in plasmonic nanostructures. ACS Nano 6, 2550–2557 (2012). doi: 10.1021/nn2050032

    CrossRef Google Scholar

    [42] Wen L, Chen YF, Liu WW, Su Q, Grant J et al. Enhanced photoelectric and photothermal responses on silicon platform by plasmonic absorber and omni‐schottky junction. Laser Photonics Rev 11, 1700059 (2017). doi: 10.1002/lpor.201700059

    CrossRef Google Scholar

    [43] Sun Q, Yu H, Ueno K, Zu S, Matsuo Y et al. Revealing the plasmon coupling in gold nanochains directly from the near field. Opto-Electron Adv 2, 180030 (2019).

    Google Scholar

    [44] Hu YW, Liang C, Sun XY, Zheng JF, Duan J A et al. Enhancement of the conductivity and uniformity of silver nanowire flexible transparent conductive films by femtosecond laser-induced nanowelding. Nanomaterials 9, 673 (2019). doi: 10.3390/nano9050673

    CrossRef Google Scholar

    [45] Ding LF, Davidchack RL, Pan JZ. A molecular dynamics study of sintering between nanoparticles. Comput Mater Sci 45, 247–256 (2009). doi: 10.1016/j.commatsci.2008.09.021

    CrossRef Google Scholar

    [46] Kim SJ, Jang DJ. Laser-induced nanowelding of gold nanoparticles. Appl Phys Lett 86, 033112 (2005). doi: 10.1063/1.1856139

    CrossRef Google Scholar

    [47] Mafuné F, Kohno JY, Takeda Y, Kondow T. Nanoscale soldering of metal nanoparticles for construction of higher-order structures. J Am Chem Soc 125, 1686–1687 (2003). doi: 10.1021/ja021250d

    CrossRef Google Scholar

    [48] Shyjumon I, Gopinadhan M, Ivanova O, Quaas M, Wulff H et al. Structural deformation, melting point and lattice parameter studies of size selected silver clusters. Eur Phys J D 37, 409–415 (2006). doi: 10.1140/epjd/e2005-00319-x

    CrossRef Google Scholar

  • Supplementary information for Plasmon-enhanced nanosoldering of silver nanoparticles for high-conductive nanowires electrodes
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Article Metrics

Article views(1663) PDF downloads(369) Cited by(0)

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint