Liu YL, Chen YH, Wang F, Cai YJ, Liang CH et al. Robust far-field imaging by spatial coherence engineering. Opto-Electron Adv 4, 210027 (2021). doi: 10.29026/oea.2021.210027
Citation: Liu YL, Chen YH, Wang F, Cai YJ, Liang CH et al. Robust far-field imaging by spatial coherence engineering. Opto-Electron Adv 4, 210027 (2021). doi: 10.29026/oea.2021.210027

Original Article Open Access

Robust far-field imaging by spatial coherence engineering

More Information
  • The degree of coherence (DOC) function that characterizes the second-order correlations at any two points in a light field is shown to provide a new degree of freedom for carrying information. As a rule, the DOC varies along the beam propagation path, preventing from the efficient information recovery. In this paper, we report that when a partially coherent beam carrying a cross phase propagates in free space, in a paraxial optical system or in a turbulent medium, the modulus of the far-field (focal plane) DOC acquires the same value as it has in the source plane. This unique propagation feature is employed in a novel protocol for far-field imaging via the DOC, applicable to transmission in both free-space and turbulence. The advantages of the proposed approach are the confidentiality and resistance to turbulence, as well as the weaker requirement for the beam alignment accuracy. We demonstrate the feasibility and the robustness of the far-field imaging via the DOC in the turbulent media through both the experiment and the numerical simulations. Our findings have potential applications in optical imaging and remote sensing in natural environments, in the presence of optical turbulence.

  • 加载中
  • [1] Mandel L, Wolf E. Optical Coherence and Quantum Optics (Cambridge University Press, Cambridge, 1995).

    Google Scholar

    [2] Wolf E. Introduction to the Theory of Coherence and Polarization of Light (Cambridge University Press, Cambridge, 2007).

    Google Scholar

    [3] Cai YJ, Wang F, Zhao CL, Zhu SJ, Wu GF et al. Partially coherent vector beams: from theory to experiment. In Zhan QW. Vectorial Optical Fields: Fundamentals and Applications (World Scientific, Hackensack New Jersey, 2014).

    Google Scholar

    [4] Douglass KM, Sieben C, Archetti A, Lambert A, Manley S. Super-resolution imaging of multiple cells by optimized flat-field epi-illumination. Nat Photonics 10, 705–708 (2016). doi: 10.1038/nphoton.2016.200

    CrossRef Google Scholar

    [5] Korotkova O, Gbur G. Applications of optical coherence theory. Prog Opt 65, 43–104 (2020).

    Google Scholar

    [6] Zanotto L, Piccoli R, Dong JL, Morandotti R, Razzari L. Single-pixel terahertz imaging: a review. Opto-Electron Adv 3, 200012 (2020). doi: 10.29026/oea.2020.200012

    CrossRef Google Scholar

    [7] Gori F, Santarsiero M. Devising genuine spatial correlation functions. Opt Lett 32, 3531–3553 (2007). doi: 10.1364/OL.32.003531

    CrossRef Google Scholar

    [8] Gori F, Ramírez-Sánchez V, Santarsiero M, Shirai T. On genuine cross-spectral density matrices. J Opt A: Pure Appl Opt 11, 085706 (2009). doi: 10.1088/1464-4258/11/8/085706

    CrossRef Google Scholar

    [9] Hyde IV MW, Bose-Pillai SR, Wood RA. Synthesis of non-uniformly correlated partially coherent sources using a deformable mirror. Appl Phys Lett 111, 101106 (2017). doi: 10.1063/1.4994669

    CrossRef Google Scholar

    [10] Wang R, Zhu SJ, Chen YK, Huang HK, Li ZH et al. Experimental synthesis of partially coherent sources. Opt Lett 45, 1874–1877 (2020). doi: 10.1364/OL.388307

    CrossRef Google Scholar

    [11] Zhu XL, Yu JY, Chen YH, Wang F, Korotkova O et al. Experimental synthesis of random light sources with circular coherence by digital micro-mirror device. Appl Phys Lett 117, 121102 (2020). doi: 10.1063/5.0024283

    CrossRef Google Scholar

    [12] Lajunen H, Saastamoinen T. Propagation characteristics of partially coherent beams with spatially varying correlations. Opt Lett 36, 4104–4106 (2011). doi: 10.1364/OL.36.004104

    CrossRef Google Scholar

    [13] Sahin S, Korotkova O. Light sources generating far fields with tunable flat profiles. Opt Lett 37, 2970–2972 (2012). doi: 10.1364/OL.37.002970

    CrossRef Google Scholar

    [14] Korotkova O. Random Light Beams: Theory and Applications (CRC Press, Boca Raton, 2013).

    Google Scholar

    [15] Cai YJ, Chen YH, Wang F. Generation and propagation of partially coherent beams with nonconventional correlation functions: a review[Invited]. J Opt Soc Am A 31, 2083–2096 (2014).

    Google Scholar

    [16] Liang CH, Wang F, Liu XL, Cai YJ, Korotkova O. Experimental generation of cosine-Gaussian-correlated Schell-model beams with rectangular symmetry. Opt Lett 39, 769–772 (2014). doi: 10.1364/OL.39.000769

    CrossRef Google Scholar

    [17] Liang CH, Khosravi R, Liang XX, Kacerovská B, Monfared YE. Standard and elegant higher-order Laguerre-Gaussian correlated Schell-model beams. J Opt 21, 085607 (2019). doi: 10.1088/2040-8986/ab2c48

    CrossRef Google Scholar

    [18] Ma LY, Ponomarenko SA. Free-space propagation of optical coherence lattices and periodicity reciprocity. Opt Express 23, 1848–1856 (2015). doi: 10.1364/OE.23.001848

    CrossRef Google Scholar

    [19] Liu XL, Yu JY, Cai YJ, Ponomarenko SA. Propagation of optical coherence lattices in the turbulent atmosphere. Opt Lett 41, 4182–4185 (2016). doi: 10.1364/OL.41.004182

    CrossRef Google Scholar

    [20] Liu X, Xia DN, Monfared YE, Liang CH, Wang F et al. Generation of novel partially coherent truncated Airy beams via Fourier phase processing. Opt Express 28, 9777–9785 (2020). doi: 10.1364/OE.390477

    CrossRef Google Scholar

    [21] Zhou Y, Xu HF, Yuan YS, Peng J, Qu J et al. Trapping two types of particles using a Laguerre-Gaussian correlated Schell-model beam. IEEE Photonics J 8, 6600710 (2016).

    Google Scholar

    [22] Liang CH, Wu GF, Wang F, Li W, Cai YJ et al. Overcoming the classical Rayleigh diffraction limit by controlling two-point correlations of partially coherent light sources. Opt Express 25, 28352–28362 (2017). doi: 10.1364/OE.25.028352

    CrossRef Google Scholar

    [23] Wang F, Chen YH, Liu XL, Cai YJ, Ponomarenko SA. Self-reconstruction of partially coherent light beams scattered by opaque obstacles. Opt Express 24, 23735–23746 (2016). doi: 10.1364/OE.24.023735

    CrossRef Google Scholar

    [24] Xu ZH, Liu XL, Chen YH, Wang F, Liu L et al. Self-healing properties of Hermite-Gaussian correlated Schell-model beams. Opt Express 28, 2828–2837 (2020). doi: 10.1364/OE.383805

    CrossRef Google Scholar

    [25] Lu XY, Shao YF, Zhao CL, Konijnenberg S, Zhu XL et al. Noniterative spatially partially coherent diffractive imaging using pinhole array mask. Adv Photonics 1, 016005 (2019).

    Google Scholar

    [26] Chen YH, Ponomarenko SA, Cai YJ. Experimental generation of optical coherence lattices. Appl Phys Lett 109, 061107 (2016). doi: 10.1063/1.4960966

    CrossRef Google Scholar

    [27] Huang ZF, Chen YH, Wang F, Ponomarenko SA, Cai YJ. Measuring complex degree of coherence of random light fields with generalized hanbury brown-twiss experiment. Phys Rev Appl 13, 044042 (2020). doi: 10.1103/PhysRevApplied.13.044042

    CrossRef Google Scholar

    [28] Ma PJ, Kacerovská B, Khosravi R, Liang CH, Zeng J et al. Numerical approach for studying the evolution of the degrees of coherence of partially coherent beams propagation through an ABCD optical system. Appl Sci 9, 2084 (2019). doi: 10.3390/app9102084

    CrossRef Google Scholar

    [29] Peng DM, Huang ZF, Liu YL, Chen YH, Wang F et al. Optical coherence encryption with structured random light. PhotoniX 2, 6 (2021). doi: 10.1186/s43074-021-00027-z

    CrossRef Google Scholar

    [30] Goodman JW. Statistical Optics (Wiley & Sons, New York, 2000).

    Google Scholar

    [31] Miao JW, Charalambous P, Kirz J, Sayre D. Extending the methodology of X-ray crystallography to allow imaging of micrometre-sized non-crystalline specimens. Nature 400, 342–344 (1999). doi: 10.1038/22498

    CrossRef Google Scholar

    [32] Shechtman Y, Eldar YC, Cohen O, Chapman HN, Miao JW et al. Phase retrieval with application to optical imaging: a contemporary overview. IEEE Sig Process Mag 32, 87–109 (2015). doi: 10.1109/MSP.2014.2352673

    CrossRef Google Scholar

    [33] Soni NK, Vinu RV, Singh RK. Polarization modulation for imaging behind the scattering medium. Opt Lett 41, 906–909 (2016). doi: 10.1364/OL.41.000906

    CrossRef Google Scholar

    [34] Zhang YB, Liu H, Cheng H, Tian JG, Chen SQ. Multidimensional manipulation of wave fields based on artificial microstructures. Opto-Electron Adv 3, 200002 (2020). doi: 10.29026/oea.2020.200002

    CrossRef Google Scholar

    [35] Andrews LC, Phillips RL. Laser Beam Propagation Through Random Media 2nd ed (SPIE Press, Bellingham, 2005).

    Google Scholar

    [36] Newman JA, Luo QE, Webb KJ. Imaging hidden objects with spatial speckle intensity correlations over object position. Phys Rev Lett 116, 073902 (2016). doi: 10.1103/PhysRevLett.116.073902

    CrossRef Google Scholar

    [37] Bertolotti J, van Putten EG, Blum C, Lagendijk A, Vos WL et al. Non-invasive imaging through opaque scattering layers. Nature 491, 232–234 (2012). doi: 10.1038/nature11578

    CrossRef Google Scholar

    [38] Katz O, Heidmann P, Fink M, Gigan S. Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations. Nat Photonics 8, 784–790 (2014). doi: 10.1038/nphoton.2014.189

    CrossRef Google Scholar

    [39] Wan LP, Zhao DM. Controllable rotating Gaussian Schell-model beams. Opt Lett 44, 735–738 (2019). doi: 10.1364/OL.44.000735

    CrossRef Google Scholar

    [40] Liang G, Zhang HC, Fang L, Shou Q, Hu W et al. Influence of transverse cross-phases on propagations of optical beams in linear and nonlinear regimes. Laser Photonics Rev 14, 2000141 (2020). doi: 10.1002/lpor.202000141

    CrossRef Google Scholar

    [41] Liang G, Wang Q. Controllable conversion between Hermite Gaussian and Laguerre Gaussian modes due to cross phase. Opt Express 27, 10684–10691 (2019). doi: 10.1364/OE.27.010684

    CrossRef Google Scholar

    [42] Liu X, Li ZQ, Monfared YE, Liang CH, Wang F et al. Flexible autofocusing properties of ring Pearcey beams by means of a cross phase. Opt Lett 46, 70–73 (2021). doi: 10.1364/OL.413380

    CrossRef Google Scholar

    [43] Shen DH, Zhao DM. Measuring the topological charge of optical vortices with a twisting phase. Opt Lett 44, 2334–2337 (2019). doi: 10.1364/OL.44.002334

    CrossRef Google Scholar

    [44] Ren Y, Wang C, Liu T, Wang ZK, Yin CZ et al. Polygonal shaping and multi-singularity manipulation of optical vortices via high-order cross-phase. Opt Express 28, 26257–26266 (2020). doi: 10.1364/OE.397345

    CrossRef Google Scholar

    [45] Fienup JR. Reconstruction of an object from the modulus of its Fourier transform. Opt Lett 3, 27–29 (1978). doi: 10.1364/OL.3.000027

    CrossRef Google Scholar

  • Supplementary Information for Robust far-field imaging by spatial coherence engineering
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)

Article Metrics

Article views(3369) PDF downloads(522) Cited by(0)

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint