Citation: | Liu YL, Chen YH, Wang F, Cai YJ, Liang CH et al. Robust far-field imaging by spatial coherence engineering. Opto-Electron Adv 4, 210027 (2021). doi: 10.29026/oea.2021.210027 |
[1] | Mandel L, Wolf E. Optical Coherence and Quantum Optics (Cambridge University Press, Cambridge, 1995). |
[2] | Wolf E. Introduction to the Theory of Coherence and Polarization of Light (Cambridge University Press, Cambridge, 2007). |
[3] | Cai YJ, Wang F, Zhao CL, Zhu SJ, Wu GF et al. Partially coherent vector beams: from theory to experiment. In Zhan QW. Vectorial Optical Fields: Fundamentals and Applications (World Scientific, Hackensack New Jersey, 2014). |
[4] | Douglass KM, Sieben C, Archetti A, Lambert A, Manley S. Super-resolution imaging of multiple cells by optimized flat-field epi-illumination. Nat Photonics 10, 705–708 (2016). doi: 10.1038/nphoton.2016.200 |
[5] | Korotkova O, Gbur G. Applications of optical coherence theory. Prog Opt 65, 43–104 (2020). |
[6] | Zanotto L, Piccoli R, Dong JL, Morandotti R, Razzari L. Single-pixel terahertz imaging: a review. Opto-Electron Adv 3, 200012 (2020). doi: 10.29026/oea.2020.200012 |
[7] | Gori F, Santarsiero M. Devising genuine spatial correlation functions. Opt Lett 32, 3531–3553 (2007). doi: 10.1364/OL.32.003531 |
[8] | Gori F, Ramírez-Sánchez V, Santarsiero M, Shirai T. On genuine cross-spectral density matrices. J Opt A: Pure Appl Opt 11, 085706 (2009). doi: 10.1088/1464-4258/11/8/085706 |
[9] | Hyde IV MW, Bose-Pillai SR, Wood RA. Synthesis of non-uniformly correlated partially coherent sources using a deformable mirror. Appl Phys Lett 111, 101106 (2017). doi: 10.1063/1.4994669 |
[10] | Wang R, Zhu SJ, Chen YK, Huang HK, Li ZH et al. Experimental synthesis of partially coherent sources. Opt Lett 45, 1874–1877 (2020). doi: 10.1364/OL.388307 |
[11] | Zhu XL, Yu JY, Chen YH, Wang F, Korotkova O et al. Experimental synthesis of random light sources with circular coherence by digital micro-mirror device. Appl Phys Lett 117, 121102 (2020). doi: 10.1063/5.0024283 |
[12] | Lajunen H, Saastamoinen T. Propagation characteristics of partially coherent beams with spatially varying correlations. Opt Lett 36, 4104–4106 (2011). doi: 10.1364/OL.36.004104 |
[13] | Sahin S, Korotkova O. Light sources generating far fields with tunable flat profiles. Opt Lett 37, 2970–2972 (2012). doi: 10.1364/OL.37.002970 |
[14] | Korotkova O. Random Light Beams: Theory and Applications (CRC Press, Boca Raton, 2013). |
[15] | Cai YJ, Chen YH, Wang F. Generation and propagation of partially coherent beams with nonconventional correlation functions: a review[Invited]. J Opt Soc Am A 31, 2083–2096 (2014). |
[16] | Liang CH, Wang F, Liu XL, Cai YJ, Korotkova O. Experimental generation of cosine-Gaussian-correlated Schell-model beams with rectangular symmetry. Opt Lett 39, 769–772 (2014). doi: 10.1364/OL.39.000769 |
[17] | Liang CH, Khosravi R, Liang XX, Kacerovská B, Monfared YE. Standard and elegant higher-order Laguerre-Gaussian correlated Schell-model beams. J Opt 21, 085607 (2019). doi: 10.1088/2040-8986/ab2c48 |
[18] | Ma LY, Ponomarenko SA. Free-space propagation of optical coherence lattices and periodicity reciprocity. Opt Express 23, 1848–1856 (2015). doi: 10.1364/OE.23.001848 |
[19] | Liu XL, Yu JY, Cai YJ, Ponomarenko SA. Propagation of optical coherence lattices in the turbulent atmosphere. Opt Lett 41, 4182–4185 (2016). doi: 10.1364/OL.41.004182 |
[20] | Liu X, Xia DN, Monfared YE, Liang CH, Wang F et al. Generation of novel partially coherent truncated Airy beams via Fourier phase processing. Opt Express 28, 9777–9785 (2020). doi: 10.1364/OE.390477 |
[21] | Zhou Y, Xu HF, Yuan YS, Peng J, Qu J et al. Trapping two types of particles using a Laguerre-Gaussian correlated Schell-model beam. IEEE Photonics J 8, 6600710 (2016). |
[22] | Liang CH, Wu GF, Wang F, Li W, Cai YJ et al. Overcoming the classical Rayleigh diffraction limit by controlling two-point correlations of partially coherent light sources. Opt Express 25, 28352–28362 (2017). doi: 10.1364/OE.25.028352 |
[23] | Wang F, Chen YH, Liu XL, Cai YJ, Ponomarenko SA. Self-reconstruction of partially coherent light beams scattered by opaque obstacles. Opt Express 24, 23735–23746 (2016). doi: 10.1364/OE.24.023735 |
[24] | Xu ZH, Liu XL, Chen YH, Wang F, Liu L et al. Self-healing properties of Hermite-Gaussian correlated Schell-model beams. Opt Express 28, 2828–2837 (2020). doi: 10.1364/OE.383805 |
[25] | Lu XY, Shao YF, Zhao CL, Konijnenberg S, Zhu XL et al. Noniterative spatially partially coherent diffractive imaging using pinhole array mask. Adv Photonics 1, 016005 (2019). |
[26] | Chen YH, Ponomarenko SA, Cai YJ. Experimental generation of optical coherence lattices. Appl Phys Lett 109, 061107 (2016). doi: 10.1063/1.4960966 |
[27] | Huang ZF, Chen YH, Wang F, Ponomarenko SA, Cai YJ. Measuring complex degree of coherence of random light fields with generalized hanbury brown-twiss experiment. Phys Rev Appl 13, 044042 (2020). doi: 10.1103/PhysRevApplied.13.044042 |
[28] | Ma PJ, Kacerovská B, Khosravi R, Liang CH, Zeng J et al. Numerical approach for studying the evolution of the degrees of coherence of partially coherent beams propagation through an ABCD optical system. Appl Sci 9, 2084 (2019). doi: 10.3390/app9102084 |
[29] | Peng DM, Huang ZF, Liu YL, Chen YH, Wang F et al. Optical coherence encryption with structured random light. PhotoniX 2, 6 (2021). doi: 10.1186/s43074-021-00027-z |
[30] | Goodman JW. Statistical Optics (Wiley & Sons, New York, 2000). |
[31] | Miao JW, Charalambous P, Kirz J, Sayre D. Extending the methodology of X-ray crystallography to allow imaging of micrometre-sized non-crystalline specimens. Nature 400, 342–344 (1999). doi: 10.1038/22498 |
[32] | Shechtman Y, Eldar YC, Cohen O, Chapman HN, Miao JW et al. Phase retrieval with application to optical imaging: a contemporary overview. IEEE Sig Process Mag 32, 87–109 (2015). doi: 10.1109/MSP.2014.2352673 |
[33] | Soni NK, Vinu RV, Singh RK. Polarization modulation for imaging behind the scattering medium. Opt Lett 41, 906–909 (2016). doi: 10.1364/OL.41.000906 |
[34] | Zhang YB, Liu H, Cheng H, Tian JG, Chen SQ. Multidimensional manipulation of wave fields based on artificial microstructures. Opto-Electron Adv 3, 200002 (2020). doi: 10.29026/oea.2020.200002 |
[35] | Andrews LC, Phillips RL. Laser Beam Propagation Through Random Media 2nd ed (SPIE Press, Bellingham, 2005). |
[36] | Newman JA, Luo QE, Webb KJ. Imaging hidden objects with spatial speckle intensity correlations over object position. Phys Rev Lett 116, 073902 (2016). doi: 10.1103/PhysRevLett.116.073902 |
[37] | Bertolotti J, van Putten EG, Blum C, Lagendijk A, Vos WL et al. Non-invasive imaging through opaque scattering layers. Nature 491, 232–234 (2012). doi: 10.1038/nature11578 |
[38] | Katz O, Heidmann P, Fink M, Gigan S. Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations. Nat Photonics 8, 784–790 (2014). doi: 10.1038/nphoton.2014.189 |
[39] | Wan LP, Zhao DM. Controllable rotating Gaussian Schell-model beams. Opt Lett 44, 735–738 (2019). doi: 10.1364/OL.44.000735 |
[40] | Liang G, Zhang HC, Fang L, Shou Q, Hu W et al. Influence of transverse cross-phases on propagations of optical beams in linear and nonlinear regimes. Laser Photonics Rev 14, 2000141 (2020). doi: 10.1002/lpor.202000141 |
[41] | Liang G, Wang Q. Controllable conversion between Hermite Gaussian and Laguerre Gaussian modes due to cross phase. Opt Express 27, 10684–10691 (2019). doi: 10.1364/OE.27.010684 |
[42] | Liu X, Li ZQ, Monfared YE, Liang CH, Wang F et al. Flexible autofocusing properties of ring Pearcey beams by means of a cross phase. Opt Lett 46, 70–73 (2021). doi: 10.1364/OL.413380 |
[43] | Shen DH, Zhao DM. Measuring the topological charge of optical vortices with a twisting phase. Opt Lett 44, 2334–2337 (2019). doi: 10.1364/OL.44.002334 |
[44] | Ren Y, Wang C, Liu T, Wang ZK, Yin CZ et al. Polygonal shaping and multi-singularity manipulation of optical vortices via high-order cross-phase. Opt Express 28, 26257–26266 (2020). doi: 10.1364/OE.397345 |
[45] | Fienup JR. Reconstruction of an object from the modulus of its Fourier transform. Opt Lett 3, 27–29 (1978). doi: 10.1364/OL.3.000027 |
Supplementary Information for Robust far-field imaging by spatial coherence engineering |
![]() |
Variation of the modulus of DOC |μ| of a CGCSM beam with the propagation distance z after the focusing lens, with the CP strength factor (a1−a4) u = 0 mm−2, (b1−b4) u = 2 mm−2, (c1−c4) u = 10 mm−2, and (d1−d4) u = 70 mm−2. The parameters are set as λ = 532 nm, δ0 =0.5 mm and n=1.
Theoretical results of the modulus of the DOC |μ| at different propagation distances z after the lens with the CP strength factor u=−60 mm−2. The inserted letter “S” in (a) is adopted as the power spectral density P(v) function.
Schematic diagram of the experiment setup for generation of Schell-model beams with a controllable CP structure, measurement of the modulus of the DOC in the far field propagation in free space as well as in turbulent atmosphere. Laser, a Nd:YAG laser with wavelength 532nm; M, mirror; BE, beam expander; SLM1, SLM2, spatial light modulator; RGGD, rotating ground glass disk; L1, L2, L3, L4, L5, L6, thin lenses with the identical focal length f=250mm; GAF, Gaussian amplitude filter; BS, beam splitter; CA, circular aperture; SP, source plane; CCD, charge-coupled device; HP, hot plate; PC1, PC2, PC3, personal computers.
(a−d) Experimental results of the modulus of the DOC |μ| in the focal plane with different strength factors u. (e−h) The modulus of the DOC |μ| at different propagation distances z after the lens with the CP strength factor u=−60 mm−2.
Experimental results of the modulus of the DOC |μ| in the focal plane at different temperatures of the HP. The strength factor of the CP is u=−60 mm−2. T=0 °C stands for the free space case.
Experimental results of the dependence of the quality of the recovered image on the strength factor u in the focal plane in free space.
(a−c) Simulation results of the reconstructed image in turbulence of different strength and with different CP strength factor u. (d−f) Experimental results of the reconstructed image at different temperatures with u=−60 mm−2.
(a) A typical instantaneous intensity captured by the CCD. (b) Experimental results of the recovered image through the area surrounded by the yellow dashed square shown in subplot (a) covering 1440×1440 pixels. (c) The recovered image through the area surrounded by the red dashed square shown in subplot (a) covering 500×500 pixels.