Chen L, Cao KQ, Li YL, Liu JK, Zhang SA et al. Large-area straight, regular periodic surface structures produced on fused silica by the interference of two femtosecond laser beams through cylindrical lens. Opto-Electron Adv 4, 200036 (2021). doi: 10.29026/oea.2021.200036
Citation: Chen L, Cao KQ, Li YL, Liu JK, Zhang SA et al. Large-area straight, regular periodic surface structures produced on fused silica by the interference of two femtosecond laser beams through cylindrical lens. Opto-Electron Adv 4, 200036 (2021). doi: 10.29026/oea.2021.200036

Original Article Open Access

Large-area straight, regular periodic surface structures produced on fused silica by the interference of two femtosecond laser beams through cylindrical lens

More Information
  • Inhomogeneity and low efficiency are two important factors that limit the application of laser-induced periodic surface structures (LIPSSs), especially on glass surfaces. In this study, two-beam interference (TBI) of femtosecond lasers was used to produce large-area straight LIPSSs on fused silica using cylindrical lenses. Compared with those produced using a single circular or cylindrical lens, the LIPSSs produced by TBI are much straighter and more regular. Depending on the laser fluence and scanning velocity, LIPSSs with grating-like or spaced LIPSSs are produced on the fused silica surface. Their structural colors are blue, green, and red, and only green and red, respectively. Grating-like LIPSS patterns oriented in different directions are obtained and exhibit bright and vivid colors, indicating potential applications in surface coloring and anti-counterfeiting logos.
  • 加载中
  • [1] Livakas N, Skoulas E, Stratakis E. Omnidirectional iridescence via cylindrically-polarized femtosecond laser processing. Opto-Electron Adv 3, 190035 (2020). doi: 10.29026/oea.2020.190035

    CrossRef Google Scholar

    [2] Graus P, Möller TB, Leiderer P, Boneberg J, Polushkin NI. Direct laser interference patterning of nonvolatile magnetic nanostructures in Fe60Al40 alloy via disorder-induced ferromagnetism. Opto-Electron Adv 3, 190027 (2020). doi: 10.29026/oea.2020.190027

    CrossRef Google Scholar

    [3] Varlamova O, Hoefner K, Ratzke M, Reif J, Sarker D. Modification of surface properties of solids by femtosecond LIPSS writing: comparative studies on silicon and stainless steel. Appl Phys A 123, 725 (2017). doi: 10.1007/s00339-017-1362-y

    CrossRef Google Scholar

    [4] Huang M, Zhao FL, Cheng Y, Xu NS, Xu ZZ. Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser. ACS Nano 3, 4062–4070 (2009). doi: 10.1021/nn900654v

    CrossRef Google Scholar

    [5] Zhang D S, Sugioka K. Hierarchical microstructures with high spatial frequency laser induced periodic surface structures possessing different orientations created by femtosecond laser ablation of silicon in liquids. Opto-Electron Adv 2, 190002 (2019). doi: 10.29026/oea.2019.190002

    CrossRef Google Scholar

    [6] Shimotsuma Y, Sakakura M, Kazansky PG, Beresna M, Qiu JR et al. Ultrafast manipulation of self-assembled form birefringence in glass. Adv Mater 22, 4039–4043 (2010). doi: 10.1002/adma.201000921

    CrossRef Google Scholar

    [7] Höhm S, Rosenfeld A, Krüger J, Bonse J. Femtosecond laser-induced periodic surface structures on silica. J Appl Phys 112, 014901 (2012). doi: 10.1063/1.4730902

    CrossRef Google Scholar

    [8] Liu Y, Li SY, Niu SC, Cao XW, Han ZW et al. Bio-inspired micro-nano structured surface with structural color and anisotropic wettability on Cu substrate. Appl Surf Sci 379, 230–237 (2016). doi: 10.1016/j.apsusc.2016.03.234

    CrossRef Google Scholar

    [9] Wu H, Jiao YL, Zhang CC, Chen C, Yang L et al. Large area metal micro-/nano-groove arrays with both structural color and anisotropic wetting fabricated by one-step focused laser interference lithography. Nanoscale 11, 4803–4810 (2019). doi: 10.1039/C8NR09747J

    CrossRef Google Scholar

    [10] Dusser B, Sagan Z, Soder H, Faure N, Colombier JP et al. Controlled nanostructrures formation by ultra fast laser pulses for color marking. Opt Express 18, 2913–2924 (2010). doi: 10.1364/OE.18.002913

    CrossRef Google Scholar

    [11] Giannuzzi G, Gaudiuso C, Di Mundo R, Mirenghi L, Fraggelakis F et al. Short and long term surface chemistry and wetting behaviour of stainless steel with 1D and 2D periodic structures induced by bursts of femtosecond laser pulses. Appl Surf Sci 494, 1055–1065 (2019). doi: 10.1016/j.apsusc.2019.07.126

    CrossRef Google Scholar

    [12] Jalil SA, Akram M, Bhat JA, Hayes JJ, Singh SC et al. Creating superhydrophobic and antibacterial surfaces on gold by femtosecond laser pulses. Appl Surf Sci 506, 144952 (2020). doi: 10.1016/j.apsusc.2019.144952

    CrossRef Google Scholar

    [13] Cerkauskaite A, Drevinskas R, Solodar A, Abdulhalim I, Kazansky PG. Form-birefringence in ITO thin films engineered by ultrafast laser nanostructuring. ACS Photonics 4, 2944–2951 (2017). doi: 10.1021/acsphotonics.7b01082

    CrossRef Google Scholar

    [14] Drevinskas R, Gecevičius M, Beresna M, Bellouard Y, Kazansky PG. Tailored surface birefringence by femtosecond laser assisted wet etching. Opt Express 23, 1428–1437 (2015). doi: 10.1364/OE.23.001428

    CrossRef Google Scholar

    [15] Drevinskas R, Beresna M, Gecevičius M, Khenkin M, Kazanskii A G et al. Giant birefringence and dichroism induced by ultrafast laser pulses in hydrogenated amorphous silicon. Appl Phys Lett 106, 171106 (2015). doi: 10.1063/1.4919538

    CrossRef Google Scholar

    [16] Jiang L, Shi XS, Li X, Yuan YP, Wang C et al. Subwavelength ripples adjustment based on electron dynamics control by using shaped ultrafast laser pulse trains. Opt Express 20, 21505–21511 (2012). doi: 10.1364/OE.20.021505

    CrossRef Google Scholar

    [17] Xu SZ, Yao CZ, Liao W, Yuan XD, Wang T et al. Experimental study on 800 nm femtosecond laser ablation of fused silica in air and vacuum. Nucl Instrum Meth B 385, 46–50 (2016). doi: 10.1016/j.nimb.2016.06.016

    CrossRef Google Scholar

    [18] Liang F, Vallée R, Chin SL. Mechanism of nanograting formation on the surface of fused silica. Opt Express 20, 4389–4396 (2012). doi: 10.1364/OE.20.004389

    CrossRef Google Scholar

    [19] Le Harzic R, Dörr D, Sauer D, Neumeier M, Epple M et al. Large-area, uniform, high-spatial-frequency ripples generated on silicon using a nanojoule-femtosecond laser at high repetition rate. Opt Lett 36, 229–231 (2011). doi: 10.1364/OL.36.000229

    CrossRef Google Scholar

    [20] Emmony DC, Howson RP, Willis LJ. Laser mirror damage in germanium at 10.6 μm. Appl Phys Lett 23, 598–600 (1973). doi: 10.1063/1.1654761

    CrossRef Google Scholar

    [21] Sipe JE, Young JF, Preston JS, Van Driel HM. Laser-induced periodic surface structure. I. Theory. Phys Rev B 27, 1141–1154 (1983). doi: 10.1103/PhysRevB.27.1141

    CrossRef Google Scholar

    [22] Bonse J, Munz M, Sturm H. Structure formation on the surface of indium phosphide irradiated by femtosecond laser pulses. J Appl Phys 97, 013538 (2005). doi: 10.1063/1.1827919

    CrossRef Google Scholar

    [23] Miyaji G, Miyazaki K. Origin of periodicity in nanostructuring on thin film surfaces ablated with femtosecond laser pulses. Opt Express 16, 16265–16271 (2008). doi: 10.1364/OE.16.016265

    CrossRef Google Scholar

    [24] Bonse J, Rosenfeld A, Krüger J. On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond-laser pulses. J Appl Phys 106, 104910 (2009). doi: 10.1063/1.3261734

    CrossRef Google Scholar

    [25] Du G, Yang Q, Chen F, Bian H, Meng X et al. Ultrafast electron dynamics manipulation of laser induced periodic ripples via a train of shaped pulses. Laser Phys Lett 10, 026003 (2013). doi: 10.1088/1612-2011/10/2/026003

    CrossRef Google Scholar

    [26] Borowiec A, Haugen HK. Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses. Appl Phys Lett 82, 4462–4464 (2003). doi: 10.1063/1.1586457

    CrossRef Google Scholar

    [27] Jia TQ, Chen HX, Huang M, Zhao FL, Qiu JR et al. Formation of nanogratings on the surface of a ZnSe crystal irradiated by femtosecond laser pulses. Phys Rev B 72, 125429 (2005). doi: 10.1103/PhysRevB.72.125429

    CrossRef Google Scholar

    [28] Shimotsuma Y, Kazansky PG, Qiu JR, Hirao K. Self-organized nanogratings in glass irradiated by ultrashort light pulses. Phys Rev Lett 91, 247405 (2003). doi: 10.1103/PhysRevLett.91.247405

    CrossRef Google Scholar

    [29] Reif J, Costache F, Henyk M, Pandelov SV. Ripples revisited: non-classical morphology at the bottom of femtosecond laser ablation craters in transparent dielectrics. Appl Surf Sci 197–198, 891–895 (2002).

    Google Scholar

    [30] Jalil SA, Yang JJ, ElKabbash M, Singh SC, Guo CL. Maskless formation of uniform subwavelength periodic surface structures by double temporally-delayed femtosecond laser beams. Appl Surf Sci 471, 516–520 (2019). doi: 10.1016/j.apsusc.2018.12.029

    CrossRef Google Scholar

    [31] Vass C, Osvay K, Hopp B. Fabrication of 150 nm period grating in fused silica by two-beam interferometric laser induced backside wet etching method. Opt Express 14, 8354–8359 (2006). doi: 10.1364/OE.14.008354

    CrossRef Google Scholar

    [32] Alamri S, Fraggelakis F, Kunze T, Krupop B, Mincuzzi G et al. On the interplay of DLIP and LIPSS upon ultra-short laser pulse irradiation. Materials 12, 1018 (2019). doi: 10.3390/ma12071018

    CrossRef Google Scholar

    [33] Hnatovsky C, Taylor RS, Simova E, Bhardwaj VR, Rayner DM et al. Polarization-selective etching in femtosecond laser-assisted microfluidic channel fabrication in fused silica. Opt Lett 30, 1867–1869 (2005). doi: 10.1364/OL.30.001867

    CrossRef Google Scholar

    [34] Lorenz P, Ehrhardt M, Zimmer K. Laser-induced front side etching of fused silica with femtosecond laser radiation using thin metal layers. Appl Surf Sci 278, 255–258 (2013). doi: 10.1016/j.apsusc.2012.11.047

    CrossRef Google Scholar

    [35] Liu XQ, Bai BF, Chen QD, Sun HB. Etching-assisted femtosecond laser modification of hard materials. Opto-Electron Adv 2, 190021 (2019). doi: 10.29026/oea.2019.190021

    CrossRef Google Scholar

    [36] Ardron M, Weston N, Hand D. A practical technique for the generation of highly uniform LIPSS. Appl Surf Sci 313, 123–131 (2014). doi: 10.1016/j.apsusc.2014.05.154

    CrossRef Google Scholar

    [37] Cao Q, Zheng SL, Wong CP, Liu S, Peng Q. Massively Engineering the wettability of titanium by tuning nanostructures and roughness via laser ablation. J Phys Chem C 123, 30382–30388 (2019). doi: 10.1021/acs.jpcc.9b08580

    CrossRef Google Scholar

    [38] Weber FR, Kunz C, Gräf S, Rettenmayr M, Müller FA. Wettability analysis of water on metal/semiconductor phases selectively structured with femtosecond laser-induced periodic surface structures. Langmuir 35, 14990–14998 (2019). doi: 10.1021/acs.langmuir.9b02406

    CrossRef Google Scholar

    [39] Jia TQ, Chen HX, Huang M, Zhao FL, Li XX et al. Ultraviolet-infrared femtosecond laser-induced damage in fused silica and CaF2 crystals. Phys Rev B 73, 054105 (2006). doi: 10.1103/PhysRevB.73.054105

    CrossRef Google Scholar

    [40] Jia TQ, Xu ZZ, Li XX, Li RX, Shuai B et al. Microscopic mechanisms of ablation and micromachining of dielectrics by using femtosecond lasers. Appl Phys Lett 82, 4382–4384 (2003). doi: 10.1063/1.1583857

    CrossRef Google Scholar

    [41] Chen L, Cao KQ, Liu JK, Jia TQ, Li YL et al. Surface birefringence of regular periodic surface structures produced on glass coated with an indium tin oxide film using a low-fluence femtosecond laser through a cylindrical lens. Opt Express 28, 30094–30106 (2020). doi: 10.1364/OE.402037

    CrossRef Google Scholar

    [42] Fang Z, Zhao YA, Shao JD. Femtosecond laser-induced periodic surface structure on fused silica surface. Optik 127, 1171–1175 (2016). doi: 10.1016/j.ijleo.2015.10.210

    CrossRef Google Scholar

    [43] Gurevich EL, Gurevich SV. Laser induced periodic surface structures induced by surface plasmons coupled via roughness. Appl Surf Sci 302, 118–123 (2014). doi: 10.1016/j.apsusc.2013.10.141

    CrossRef Google Scholar

    [44] Jia X, Jia TQ, Zhang Y, Xiong PX, Feng DH et al. Optical absorption of two dimensional periodic microstructures on ZnO crystal fabricated by the interference of two femtosecond laser beams. Opt Express 18, 14401–14408 (2010). doi: 10.1364/OE.18.014401

    CrossRef Google Scholar

    [45] Xia YJ, Zhao H, Zheng CJ, Zhang SA, Feng DH et al. Selective excitation on tip-enhanced Raman spectroscopy by pulse shaping femtosecond laser. Plasmonics 14, 523–531 (2019). doi: 10.1007/s11468-018-0830-3

    CrossRef Google Scholar

    [46] Kluczyk K, David C, Jacak J, Jacak W. On modeling of plasmon-induced enhancement of the efficiency of solar cells modified by metallic nano-particles. Nanomaterials 9, 3 (2019).

    Google Scholar

    [47] Xu SZ, Dou HQ, Sun K, Ye YY, Li ZX et al. Scan speed and fluence effects in femtosecond laser induced micro/nano-structures on the surface of fused silica. J Non-Cryst Solids 492, 56–62 (2018). doi: 10.1016/j.jnoncrysol.2018.04.018

    CrossRef Google Scholar

  • Supplementary information for Large-area straight, regular periodic surface structures produced on fused silica by the interference of two femtosecond laser beams through cylindrical lens
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(12)

Article Metrics

Article views(5493) PDF downloads(853) Cited by(0)

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint