Guan BO, Jin L, Ma J, Liang YZ, Bai X. Flexible fiber-laser ultrasound sensor for multiscale photoacoustic imaging. Opto-Electron Adv 4, 200081 (2021). doi: 10.29026/oea.2021.200081
Citation: Guan BO, Jin L, Ma J, Liang YZ, Bai X. Flexible fiber-laser ultrasound sensor for multiscale photoacoustic imaging. Opto-Electron Adv 4, 200081 (2021). doi: 10.29026/oea.2021.200081

Review Open Access

Flexible fiber-laser ultrasound sensor for multiscale photoacoustic imaging

More Information
  • Photoacoustic imaging (PAI) is a noninvasive biomedical imaging technology capable of multiscale imaging of biological samples from organs down to cells. Multiscale PAI requires different ultrasound transducers that are flat or focused because the current widely-used piezoelectric transducers are rigid and lack the flexibility to tune their spatial ultrasound responses. Inspired by the rapidly-developing flexible photonics, we exploited the inherent flexibility and low-loss features of optical fibers to develop a flexible fiber-laser ultrasound sensor (FUS) for multiscale PAI. By simply bending the fiber laser from straight to curved geometry, the spatial ultrasound response of the FUS can be tuned for both wide-view optical-resolution photoacoustic microscopy at optical diffraction-limited depth (~1 mm) and photoacoustic computed tomography at optical dissipation-limited depth of several centimeters. A radio-frequency demodulation was employed to get the readout of the beat frequency variation of two orthogonal polarization modes in the FUS output, which ensures low-noise and stable ultrasound detection. Compared to traditional piezoelectrical transducers with fixed ultrasound responses once manufactured, the flexible FUS provides the freedom to design multiscale PAI modalities including wearable microscope, intravascular endoscopy, and portable tomography system, which is attractive to fundamental biological/medical studies and clinical applications.
  • 加载中
  • [1] Niendorf T, Frydman L, Neeman M, Seeliger E. Google maps for tissues: multiscale imaging of biological systems and disease. Acta Physiol 228, e13392 (2020).

    Google Scholar

    [2] Wang LV. Multiscale photoacoustic microscopy and computed tomography. Nat Photonics 3, 503–509 (2009). doi: 10.1038/nphoton.2009.157

    CrossRef Google Scholar

    [3] Yao YJ, Kaberniuk AA, Li L, Shcherbakova DM, Zhang RY et al. Multiscale photoacoustic tomography using reversibly switchable bacterial phytochrome as a near-infrared photochromic probe. Nat Methods 13, 67–73 (2016). doi: 10.1038/nmeth.3656

    CrossRef Google Scholar

    [4] Taruttis A, Ntziachristos V. Advances in real-time multispectral optoacoustic imaging and its applications. Nat Photonics 9, 219–227 (2015). doi: 10.1038/nphoton.2015.29

    CrossRef Google Scholar

    [5] Yao JJ, Wang LV. Photoacoustic microscopy. Laser Photonics Rev 7, 758–778 (2013). doi: 10.1002/lpor.201200060

    CrossRef Google Scholar

    [6] Li L, Zhu LR, Ma C, Lin L, Yao JJ et al. Single-impulse panoramic photoacoustic computed tomography of small-animal whole-body dynamics at high spatiotemporal resolution. Nat Biomed Eng 1, 0071 (2017). doi: 10.1038/s41551-017-0071

    CrossRef Google Scholar

    [7] Maswadi SM, Ibey BL, Roth CC, Tsyboulski DA, Beier HT et al. All-optical optoacoustic microscopy based on probe beam deflection technique. Photoacoustics 4, 91–101 (2016). doi: 10.1016/j.pacs.2016.02.001

    CrossRef Google Scholar

    [8] Leiss-Holzinger E, Bauer-Marschallinger J, Hochreiner A, Hollinger P, Berer T. Dual modality noncontact photoacoustic and spectral domain OCT imaging. Ultrason Imaging 38, 19–31 (2016). doi: 10.1177/0161734615582003

    CrossRef Google Scholar

    [9] Hajireza P, Shi W, Bell K, Paproski RJ, Zemp RJ. Non-interferometric photoacoustic remote sensing microscopy. Light Sci Appl 6, e16278 (2017). doi: 10.1038/lsa.2016.278

    CrossRef Google Scholar

    [10] Li HH, Cao F, Zhou YY, Yu ZP, Lai PX. Interferometry-free noncontact photoacoustic detection method based on speckle correlation change. Opt Lett 44, 5481–5484 (2019). doi: 10.1364/OL.44.005481

    CrossRef Google Scholar

    [11] Wang TX, Cao R, Ning B, Dixon AJ, Hossack JA et al. All-optical photoacoustic microscopy based on plasmonic detection of broadband ultrasound. Appl Phys Lett 107, 153702 (2015). doi: 10.1063/1.4933333

    CrossRef Google Scholar

    [12] Zhu XJ, Huang ZY, Wang GH, Li WZ, Zou D et al. Ultrasonic detection based on polarization-dependent optical reflection. Opt Lett 42, 439–441 (2017). doi: 10.1364/OL.42.000439

    CrossRef Google Scholar

    [13] Yang F, Song W, Zhang CL, Min CJ, Fang H et al. Broadband graphene-based photoacoustic microscopy with high sensitivity. Nanoscale 10, 8606–8614 (2018). doi: 10.1039/C7NR09319E

    CrossRef Google Scholar

    [14] Guggenheim JA, Li J, Allen TJ, Colchester RJ, Noimark S et al. Ultrasensitive Plano-concave optical microresonators for ultrasound sensing. Nat Photonics 11, 714–719 (2017). doi: 10.1038/s41566-017-0027-x

    CrossRef Google Scholar

    [15] Rosenthal A, Kellnberger S, Bozhko D, Chekkoury A, Omar M et al. Sensitive interferometric detection of ultrasound for minimally invasive clinical imaging applications. Laser Photonics Rev 8, 450–457 (2014). doi: 10.1002/lpor.201300204

    CrossRef Google Scholar

    [16] Li H, Dong BQ, Zhang Z, Zhang HF, Sun C. A transparent broadband ultrasonic detector based on an optical micro-ring resonator for photoacoustic microscopy. Sci Rep 4, 4496 (2014).

    Google Scholar

    [17] Zhang C, Chen SL, Ling T, Guo LJ. Imprinted polymer microrings as high-performance ultrasound detectors in photoacoustic imaging. J Lightwave Technol 33, 4318–4328 (2015). doi: 10.1109/JLT.2015.2466661

    CrossRef Google Scholar

    [18] Jathoul AP, Laufer J, Ogunlade O, Treeby B, Cox B et al. Deep in vivo photoacoustic imaging of mammalian tissues using a tyrosinase-based genetic reporter. Nat Photonics 9, 239–246 (2015). doi: 10.1038/nphoton.2015.22

    CrossRef Google Scholar

    [19] Shnaiderman R, Wissmeyer G, Ülgen O, Mustafa Q, Chmyrov A et al. A submicrometre silicon-on-insulator resonator for ultrasound detection. Nature 585, 372–378 (2020). doi: 10.1038/s41586-020-2685-y

    CrossRef Google Scholar

    [20] Nash P. Review of interferometric optical fibre hydrophone technology. IEE Proc - Radar, Sonar Navigat 143, 204–209 (1996). doi: 10.1049/ip-rsn:19960491

    CrossRef Google Scholar

    [21] Cranch GA, Nash PJ, Kirkendall CK. Large-scale remotely interrogated arrays of fiber-optic interferometric sensors for underwater acoustic applications. IEEE Sens J 3, 19–30 (2003). doi: 10.1109/JSEN.2003.810102

    CrossRef Google Scholar

    [22] DePaula R, Flax L, Cole J, Bucaro J. Single-mode fiber ultrasonic sensor. IEEE J Quantum Electron 18, 680–683 (1982). doi: 10.1109/JQE.1982.1071602

    CrossRef Google Scholar

    [23] Flax L, Cole JH, De Paula RP, Bucaro JA. Acoustically induced birefringence in optical fibers. J Opt Soc Am 72, 1159–1162 (1982). doi: 10.1364/JOSA.72.001159

    CrossRef Google Scholar

    [24] Foster S, Tikhomirov A, Milnes M, van Velzen J, Hardy G. A fiber laser hydrophone. Proc SPIE 5855, 627–630 (2005). doi: 10.1117/12.623273

    CrossRef Google Scholar

    [25] Guan BO, Jin L, Zhang Y, Tam HY. Polarimetric heterodyning fiber grating laser sensors. J Lightwave Technol 30, 1097–1112 (2012). doi: 10.1109/JLT.2011.2171916

    CrossRef Google Scholar

    [26] Guan BO, Jin L, Cheng LH, Liang YZ. Acoustic and ultrasonic detection with radio-frequency encoded fiber laser sensors. IEEE J Sel Top Quantum Electron 23, 5601712 (2017).

    Google Scholar

    [27] Berer T, Veres IA, Grün H, Bauer-Marschallinger J, Felbermayer K et al. Characterization of broadband fiber optic line detectors for photoacoustic tomography. J Biophotonics 5, 518–528 (2012). doi: 10.1002/jbio.201100110

    CrossRef Google Scholar

    [28] Bai X, Liang YZ, Sun HJ, Jin L, Ma J et al. Sensitivity characteristics of broadband fiber-laser-based ultrasound sensors for photoacoustic microscopy. Opt Express 25, 17616–17626 (2017). doi: 10.1364/OE.25.017616

    CrossRef Google Scholar

    [29] Bai X, Qi YM, Liang YZ, Ma J, Jin L et al. Photoacoustic computed tomography with lens-free focused fiber-laser ultrasound sensor. Biomed Opt Express 10, 2504–2512 (2019). doi: 10.1364/BOE.10.002504

    CrossRef Google Scholar

    [30] Liang YZ, Jin L, Wang LD, Bai X, Cheng LH et al. Fiber-laser-based ultrasound sensor for photoacoustic imaging. Sci Rep 7, 40849 (2017). doi: 10.1038/srep40849

    CrossRef Google Scholar

    [31] Liang YZ, Liu JW, Jin L, Guan BO, Wang LD. Fast-scanning photoacoustic microscopy with a side-looking fiber optic ultrasound sensor. Biomed Opt Express 9, 5809–5816 (2018). doi: 10.1364/BOE.9.005809

    CrossRef Google Scholar

    [32] Schubert M, Woolfson L, Barnard IRM, Dorward AM, Casement B et al. Monitoring contractility in cardiac tissue with cellular resolution using biointegrated microlasers. Nat Photonics 14, 452–458 (2020). doi: 10.1038/s41566-020-0631-z

    CrossRef Google Scholar

    [33] Liang YZ, Jin L, Guan BO, Wang LD. 2 MHz multi-wavelength pulsed laser for functional photoacoustic microscopy. Opt Lett 42, 1452–1455 (2017). doi: 10.1364/OL.42.001452

    CrossRef Google Scholar

    [34] Zhou YY, Liang SY, Li MS, Liu CB, Lai PX et al. Optical-resolution photoacoustic microscopy with ultrafast dual-wavelength excitation. J Biophotonics 13, e201960229 (2020).

    Google Scholar

    [35] Liang YZ, Liu JW, Wang LD, Jin L, Guan BO. Noise-reduced optical ultrasound sensor via signal duplication for photoacoustic microscopy. Opt Lett 44, 2665–2668 (2019). doi: 10.1364/OL.44.002665

    CrossRef Google Scholar

    [36] Bai X, Ma J, Li X, Jin L, Guan BO. Focus-tunable fiber-laser ultrasound sensor for high-resolution linear-scanning photoacoustic computed tomography. Appl Phys Lett 116, 153701 (2020). doi: 10.1063/5.0006248

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)

Tables(1)

Article Metrics

Article views(7809) PDF downloads(1542) Cited by(0)

Access History

Other Articles By Authors

Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint