Zhou H L, Ye Q, Liu W Q. Lightweight remote sensing military aircraft target detection in complex backgrounds[J]. Opto-Electron Eng, 2025, 52(2): 240270. doi: 10.12086/oee.2025.240270
Citation: Zhou H L, Ye Q, Liu W Q. Lightweight remote sensing military aircraft target detection in complex backgrounds[J]. Opto-Electron Eng, 2025, 52(2): 240270. doi: 10.12086/oee.2025.240270

Lightweight remote sensing military aircraft target detection in complex backgrounds

    Fund Project: National Natural Science Foundation of China (62006028), Hubei Provincial Natural Science Foundation of China (2023AFB909)
More Information
  • Aiming at the issues of low recognition accuracy, high computational cost, and large model size caused by the complex background and small target scale in remote sensing images of military aircraft, a lightweight military aircraft target detection algorithm, namely YOLOv8-MA, integrating reparameterization and detail enhancement is proposed. Firstly, a multi-branch gradient flow feature extraction module is designed through reparameterization to enhance the model's inference speed. Secondly, in combination with efficient RepGFPN, redundant model structures are discarded and the P2 layer is incorporated to construct a multi-scale feature fusion network, mitigating the problem of small target information loss due to excessive downsampling. On this basis, a lightweight detection head is proposed by integrating GN convolution and detail enhancement to reduce the number of model parameters and the amount of computation. Finally, a focus coefficient is introduced into the Shape-IoU to form a new loss function, thereby improving the detection performance of the model. On the public military aircraft dataset MAR20, the mAP50 of this algorithm is as high as 97.9%, and the model size is as low as 2.1 MB. Compared with YOLOv8n, the number of parameters decreases by 74.7%, the amount of computation reduces by 40.7%, and the FPS increases by 14 f/s, demonstrating that it can effectively enhance the detection effect of military aircraft in remote sensing images.
  • 加载中
  • [1] 禹文奇, 程塨, 王美君, 等. MAR20: 遥感图像军用飞机目标识别数据集[J]. 遥感学报, 2023, 27(12): 2688−2696. doi: 10.11834/jrs.20222139

    CrossRef Google Scholar

    Yu W Q, Cheng G, Wang M J, et al. MAR20: a benchmark for military aircraft recognition in remote sensing images[J]. Nat Remote Sens Bull, 2023, 27(12): 2688−2696. doi: 10.11834/jrs.20222139

    CrossRef Google Scholar

    [2] 梁礼明, 陈康泉, 王成斌, 等. 融合视觉中心机制和并行补丁感知的遥感图像检测算法[J]. 光电工程, 2024, 51(7): 240099. doi: 10.12086/oee.2024.240099

    CrossRef Google Scholar

    Liang L M, Chen K Q, Wang C B, et al. Remote sensing image detection algorithm integrating visual center mechanism and parallel patch perception[J]. Opto-Electron Eng, 2024, 51(7): 240099. doi: 10.12086/oee.2024.240099

    CrossRef Google Scholar

    [3] 肖振久, 张杰浩, 林渤翰. 特征协同与细粒度感知的遥感图像小目标检测[J]. 光电工程, 2024, 51(6): 240066. doi: 10.12086/oee.2024.240066

    CrossRef Google Scholar

    Xiao Z J, Zhang J H, Lin B H. Feature coordination and fine-grained perception of small targets in remote sensing images[J]. Opto-Electron Eng, 2024, 51(6): 240066. doi: 10.12086/oee.2024.240066

    CrossRef Google Scholar

    [4] 党玉龙, 叶成绪. 基于Faster R-CNN的轻量化遥感图像军用飞机检测模型[J]. 激光杂志, 2024, 45(7): 111−117. doi: 10.14016/j.cnki.jgzz.2024.07.111

    CrossRef Google Scholar

    Dang Y L, Ye C X. A lightweight remote sensing image military aircraft detection model based on Faster R-CNN[J]. Laser J, 2024, 45(7): 111−117. doi: 10.14016/j.cnki.jgzz.2024.07.111

    CrossRef Google Scholar

    [5] Ren S, He K, Girshick R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Trans Pattern Anal Mach Intell, 2017, 39(6): 1137−1149. doi: 10.1109/TPAMI.2016.2577031

    CrossRef Google Scholar

    [6] 沙苗苗, 李宇, 李安. 改进Faster R-CNN的遥感图像多尺度飞机目标检测[J]. 遥感学报, 2022, 26(8): 1624−1635. doi: 10.11834/jrs.20219365

    CrossRef Google Scholar

    Sha M M, Li Y, Li A. Multiscale aircraft detection in optical remote sensing imagery based on advanced Faster R-CNN[J]. Nat Remote Sens Bull, 2022, 26(8): 1624−1635. doi: 10.11834/jrs.20219365

    CrossRef Google Scholar

    [7] 刘裕芸, 刘春阳, 周绍鸿, 等. 基于优化Faster-RCNN遥感影像飞机目标检测算法[J/OL]. 机电工程技术, 2024.

    Google Scholar

    Liu Y Y, Liu C Y, Zhou S H, et al. Aircraft target detection algorithm based on optimized faster RCNN remote sensing images[J/OL]. Mech Electr Eng Technol, 2024. https://doi.org/10.3969/j.issn.1009-9492.2024.00127.

    Google Scholar

    [8] Carion N, Massa F, Synnaeve G, et al. End-to-end object detection with transformers[C]//Proceedings of the 16th European Conference on Computer Vision, Glasgow, 2020: 213–229. https://doi.org/10.1007/978-3-030-58452-8_13.

    Google Scholar

    [9] 党思航, 李晓哲, 夏召强, 等. 采用自适应预筛选的遥感图像目标开集检测研究[J]. 电子与信息学报, 2024, 46(10): 3908−3917. doi: 10.11999/JEIT231426

    CrossRef Google Scholar

    Dang S H, Li X Z, Xia Z Q, et al. Research on open-set object detection in remote sensing images based on adaptive pre-screening[J]. J Electron Inf Technol, 2024, 46(10): 3908−3917. doi: 10.11999/JEIT231426

    CrossRef Google Scholar

    [10] Zhou X Y, Wang D Q, Krähenbühl P. Objects as points[Z]. arXiv: 1904.07850, 2019. https://arxiv.org/abs/1904.07850.

    Google Scholar

    [11] 李婕, 周顺, 朱鑫潮, 等. 结合多通道注意力的遥感图像飞机目标检测[J]. 计算机工程与应用, 2022, 58(1): 209−217. doi: 10.3778/j.issn.1002-8331.2107-0379

    CrossRef Google Scholar

    Li J, Zhou S, Zhu X C, et al. Remote sensing image aircraft target detection combined with multiple channel attention[J]. Comput Eng Appl, 2022, 58(1): 209−217. doi: 10.3778/j.issn.1002-8331.2107-0379

    CrossRef Google Scholar

    [12] 黄子恒, 芮杰, 林雨准, 等. 基于改进的YOLOv5遥感影像飞机目标检测[J]. 测绘通报, 2024, (8): 73−78,89. doi: 10.13474/j.cnki.11-2246.2024.0813

    CrossRef Google Scholar

    Huang Z H, Rui J, Lin Y Z, et al. Aircraft target detection based on improved YOLOv5 in remote sensing imagery[J]. Bull Surv Mapp, 2024, (8): 73−78,89. doi: 10.13474/j.cnki.11-2246.2024.0813

    CrossRef Google Scholar

    [13] Woo S, Park J, Lee J Y, et al. CBAM: convolutional block attention module[C]//Proceedings of the15th European Conference on Computer Vision, Munich, 2018: 3–19. https://doi.org/10.1007/978-3-030-01234-2_1.

    Google Scholar

    [14] 王杰, 张上, 张岳, 等. 改进YOLOv5的军事飞机检测算法[J]. 无线电工程, 2024, 54(3): 589−596. doi: 10.3969/j.issn.1003-3106.2024.03.010

    CrossRef Google Scholar

    Wang J, Zhang S, Zhang Y, et al. Improved YOLOv5's military aircraft detection algorithm[J]. Radio Eng, 2024, 54(3): 589−596. doi: 10.3969/j.issn.1003-3106.2024.03.010

    CrossRef Google Scholar

    [15] 刘丽, 张硕, 白宇昂, 等. 改进YOLOv8的轻量级军事飞机检测算法[J]. 计算机工程与应用, 2024, 60(18): 114−125. doi: 10.3778/j.issn.1002-8331.2404-0058

    CrossRef Google Scholar

    Liu L, Zhang S, Bai Y A, et al. Improved lightweight military aircraft detection algorithm of YOLOv8[J]. Comput Eng Appl, 2024, 60(18): 114−125. doi: 10.3778/j.issn.1002-8331.2404-0058

    CrossRef Google Scholar

    [16] Xu X Z, Jiang Y Q, Chen W H, et al. Damo-YOLO: a report on real-time object detection design[Z]. arXiv: 2211.15444, 2022. https://arxiv.org/abs/2211.15444.

    Google Scholar

    [17] Wang C Y, Bochkovskiy A, Liao H Y M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]//Proceedings of 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, 2023: 7464–7475. https://doi.org/10.1109/CVPR52729.2023.00721.

    Google Scholar

    [18] He K M, Zhang X Y, Ren S Q, et al. Deep residual learning for image recognition[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vega, 2015: 770–778. https://doi.org/10.1109/CVPR.2016.90.

    Google Scholar

    [19] Ding X H, Zhang X Y, Ma N N, et al. RepVGG: making VGG-style ConvNets great again[C]//Proceedings of 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, 2021: 13728–13737. https://doi.org/10.1109/CVPR46437.2021.01352.

    Google Scholar

    [20] Han K, Wang Y H, Tian Q, et al. GhostNet: more features from cheap operations[C]//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, 2020: 1577–1586. https://doi.org/10.1109/CVPR42600.2020.00165.

    Google Scholar

    [21] Tian Z, Shen C H, Chen H, et al. FCOS: fully convolutional one-stage object detection[C]//Proceedings of 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, 2019: 9626–9635. https://doi.org/10.1109/ICCV.2019.00972.

    Google Scholar

    [22] Chen Z X, He Z W, Lu Z M. DEA-Net: single image dehazing based on detail-enhanced convolution and content-guided attention[J]. IEEE Trans Image Process, 2024, 33: 1002−1015. doi: 10.1109/TIP.2024.3354108

    CrossRef Google Scholar

    [23] Zheng Z H, Wang P, Liu W, et al. Distance-IoU loss: faster and better learning for bounding box regression[C]//Proceedings of the Thirty-Fourth AAAI Conference on Artificial Intelligence, New York, 2020: 12993–13000. https://doi.org/10.1609/aaai.v34i07.6999.

    Google Scholar

    [24] Zhang H, Zhang S J. Shape-IoU: more accurate metric considering bounding box shape and scale[Z]. arXiv: 2312.17663, 2023. https://arxiv.org/abs/2312.17663.

    Google Scholar

    [25] Tong Z J, Chen Y H, Xu Z W, et al. Wise-IoU: bounding box regression loss with dynamic focusing mechanism[Z]. arXiv: 2301.10051, 2023. https://arxiv.org/abs/2301.10051.

    Google Scholar

    [26] Wang C Y, Yeh I H, Liao H Y M. YOLOv9: learning what you want to learn using programmable gradient information[C]//Proceedings of the18th European Conference on Computer Vision, Milan, 2024: 1–21. https://doi.org/10.1007/978-3-031-72751-1_1.

    Google Scholar

    [27] Gevorgyan Z. SIoU loss: more powerful learning for bounding box regression[Z]. arXiv: 2205.12740, 2022. https://arxiv.org/abs/2205.12740.

    Google Scholar

    [28] Wang A, Chen H, Liu L H, et al. YOLOv10: real-time end-to-end object detection[Z]. arXiv: 2405.14458, 2024. https://arxiv.org/abs/2405.14458.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(11)

Tables(7)

Article Metrics

Article views() PDF downloads() Cited by()

Access History

Other Articles By Authors

Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint