Citation: | Zhou H L, Ye Q, Liu W Q. Lightweight remote sensing military aircraft target detection in complex backgrounds[J]. Opto-Electron Eng, 2025, 52(2): 240270. doi: 10.12086/oee.2025.240270 |
[1] | 禹文奇, 程塨, 王美君, 等. MAR20: 遥感图像军用飞机目标识别数据集[J]. 遥感学报, 2023, 27(12): 2688−2696. doi: 10.11834/jrs.20222139 Yu W Q, Cheng G, Wang M J, et al. MAR20: a benchmark for military aircraft recognition in remote sensing images[J]. Nat Remote Sens Bull, 2023, 27(12): 2688−2696. doi: 10.11834/jrs.20222139 |
[2] | 梁礼明, 陈康泉, 王成斌, 等. 融合视觉中心机制和并行补丁感知的遥感图像检测算法[J]. 光电工程, 2024, 51(7): 240099. doi: 10.12086/oee.2024.240099 Liang L M, Chen K Q, Wang C B, et al. Remote sensing image detection algorithm integrating visual center mechanism and parallel patch perception[J]. Opto-Electron Eng, 2024, 51(7): 240099. doi: 10.12086/oee.2024.240099 |
[3] | 肖振久, 张杰浩, 林渤翰. 特征协同与细粒度感知的遥感图像小目标检测[J]. 光电工程, 2024, 51(6): 240066. doi: 10.12086/oee.2024.240066 Xiao Z J, Zhang J H, Lin B H. Feature coordination and fine-grained perception of small targets in remote sensing images[J]. Opto-Electron Eng, 2024, 51(6): 240066. doi: 10.12086/oee.2024.240066 |
[4] | 党玉龙, 叶成绪. 基于Faster R-CNN的轻量化遥感图像军用飞机检测模型[J]. 激光杂志, 2024, 45(7): 111−117. doi: 10.14016/j.cnki.jgzz.2024.07.111 Dang Y L, Ye C X. A lightweight remote sensing image military aircraft detection model based on Faster R-CNN[J]. Laser J, 2024, 45(7): 111−117. doi: 10.14016/j.cnki.jgzz.2024.07.111 |
[5] | Ren S, He K, Girshick R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Trans Pattern Anal Mach Intell, 2017, 39(6): 1137−1149. doi: 10.1109/TPAMI.2016.2577031 |
[6] | 沙苗苗, 李宇, 李安. 改进Faster R-CNN的遥感图像多尺度飞机目标检测[J]. 遥感学报, 2022, 26(8): 1624−1635. doi: 10.11834/jrs.20219365 Sha M M, Li Y, Li A. Multiscale aircraft detection in optical remote sensing imagery based on advanced Faster R-CNN[J]. Nat Remote Sens Bull, 2022, 26(8): 1624−1635. doi: 10.11834/jrs.20219365 |
[7] | 刘裕芸, 刘春阳, 周绍鸿, 等. 基于优化Faster-RCNN遥感影像飞机目标检测算法[J/OL]. 机电工程技术, 2024. Liu Y Y, Liu C Y, Zhou S H, et al. Aircraft target detection algorithm based on optimized faster RCNN remote sensing images[J/OL]. Mech Electr Eng Technol, 2024. https://doi.org/10.3969/j.issn.1009-9492.2024.00127. |
[8] | Carion N, Massa F, Synnaeve G, et al. End-to-end object detection with transformers[C]//Proceedings of the 16th European Conference on Computer Vision, Glasgow, 2020: 213–229. https://doi.org/10.1007/978-3-030-58452-8_13. |
[9] | 党思航, 李晓哲, 夏召强, 等. 采用自适应预筛选的遥感图像目标开集检测研究[J]. 电子与信息学报, 2024, 46(10): 3908−3917. doi: 10.11999/JEIT231426 Dang S H, Li X Z, Xia Z Q, et al. Research on open-set object detection in remote sensing images based on adaptive pre-screening[J]. J Electron Inf Technol, 2024, 46(10): 3908−3917. doi: 10.11999/JEIT231426 |
[10] | Zhou X Y, Wang D Q, Krähenbühl P. Objects as points[Z]. arXiv: 1904.07850, 2019. https://arxiv.org/abs/1904.07850. |
[11] | 李婕, 周顺, 朱鑫潮, 等. 结合多通道注意力的遥感图像飞机目标检测[J]. 计算机工程与应用, 2022, 58(1): 209−217. doi: 10.3778/j.issn.1002-8331.2107-0379 Li J, Zhou S, Zhu X C, et al. Remote sensing image aircraft target detection combined with multiple channel attention[J]. Comput Eng Appl, 2022, 58(1): 209−217. doi: 10.3778/j.issn.1002-8331.2107-0379 |
[12] | 黄子恒, 芮杰, 林雨准, 等. 基于改进的YOLOv5遥感影像飞机目标检测[J]. 测绘通报, 2024, (8): 73−78,89. doi: 10.13474/j.cnki.11-2246.2024.0813 Huang Z H, Rui J, Lin Y Z, et al. Aircraft target detection based on improved YOLOv5 in remote sensing imagery[J]. Bull Surv Mapp, 2024, (8): 73−78,89. doi: 10.13474/j.cnki.11-2246.2024.0813 |
[13] | Woo S, Park J, Lee J Y, et al. CBAM: convolutional block attention module[C]//Proceedings of the15th European Conference on Computer Vision, Munich, 2018: 3–19. https://doi.org/10.1007/978-3-030-01234-2_1. |
[14] | 王杰, 张上, 张岳, 等. 改进YOLOv5的军事飞机检测算法[J]. 无线电工程, 2024, 54(3): 589−596. doi: 10.3969/j.issn.1003-3106.2024.03.010 Wang J, Zhang S, Zhang Y, et al. Improved YOLOv5's military aircraft detection algorithm[J]. Radio Eng, 2024, 54(3): 589−596. doi: 10.3969/j.issn.1003-3106.2024.03.010 |
[15] | 刘丽, 张硕, 白宇昂, 等. 改进YOLOv8的轻量级军事飞机检测算法[J]. 计算机工程与应用, 2024, 60(18): 114−125. doi: 10.3778/j.issn.1002-8331.2404-0058 Liu L, Zhang S, Bai Y A, et al. Improved lightweight military aircraft detection algorithm of YOLOv8[J]. Comput Eng Appl, 2024, 60(18): 114−125. doi: 10.3778/j.issn.1002-8331.2404-0058 |
[16] | Xu X Z, Jiang Y Q, Chen W H, et al. Damo-YOLO: a report on real-time object detection design[Z]. arXiv: 2211.15444, 2022. https://arxiv.org/abs/2211.15444. |
[17] | Wang C Y, Bochkovskiy A, Liao H Y M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]//Proceedings of 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, 2023: 7464–7475. https://doi.org/10.1109/CVPR52729.2023.00721. |
[18] | He K M, Zhang X Y, Ren S Q, et al. Deep residual learning for image recognition[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vega, 2015: 770–778. https://doi.org/10.1109/CVPR.2016.90. |
[19] | Ding X H, Zhang X Y, Ma N N, et al. RepVGG: making VGG-style ConvNets great again[C]//Proceedings of 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, 2021: 13728–13737. https://doi.org/10.1109/CVPR46437.2021.01352. |
[20] | Han K, Wang Y H, Tian Q, et al. GhostNet: more features from cheap operations[C]//Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, 2020: 1577–1586. https://doi.org/10.1109/CVPR42600.2020.00165. |
[21] | Tian Z, Shen C H, Chen H, et al. FCOS: fully convolutional one-stage object detection[C]//Proceedings of 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, 2019: 9626–9635. https://doi.org/10.1109/ICCV.2019.00972. |
[22] | Chen Z X, He Z W, Lu Z M. DEA-Net: single image dehazing based on detail-enhanced convolution and content-guided attention[J]. IEEE Trans Image Process, 2024, 33: 1002−1015. doi: 10.1109/TIP.2024.3354108 |
[23] | Zheng Z H, Wang P, Liu W, et al. Distance-IoU loss: faster and better learning for bounding box regression[C]//Proceedings of the Thirty-Fourth AAAI Conference on Artificial Intelligence, New York, 2020: 12993–13000. https://doi.org/10.1609/aaai.v34i07.6999. |
[24] | Zhang H, Zhang S J. Shape-IoU: more accurate metric considering bounding box shape and scale[Z]. arXiv: 2312.17663, 2023. https://arxiv.org/abs/2312.17663. |
[25] | Tong Z J, Chen Y H, Xu Z W, et al. Wise-IoU: bounding box regression loss with dynamic focusing mechanism[Z]. arXiv: 2301.10051, 2023. https://arxiv.org/abs/2301.10051. |
[26] | Wang C Y, Yeh I H, Liao H Y M. YOLOv9: learning what you want to learn using programmable gradient information[C]//Proceedings of the18th European Conference on Computer Vision, Milan, 2024: 1–21. https://doi.org/10.1007/978-3-031-72751-1_1. |
[27] | Gevorgyan Z. SIoU loss: more powerful learning for bounding box regression[Z]. arXiv: 2205.12740, 2022. https://arxiv.org/abs/2205.12740. |
[28] | Wang A, Chen H, Liu L H, et al. YOLOv10: real-time end-to-end object detection[Z]. arXiv: 2405.14458, 2024. https://arxiv.org/abs/2405.14458. |
Overall structure of YOLOv8-MA
Structure of C2f and RGCE. (a) C2f; (b) RGCE
Reparameterization process
Overall structure of Efficient RepGFPN
Structure of CSPStage
Structure of LSDEHead
Calculation process of the DEConv
Loss function Box_loss comparison
Dataset relevance
Experimental results of different models
Visualization of comparison results