Citation: | Peng Z R, Wang S Y, Xiao S P. A solar cell defect detection model optimized and improved based on YOLOv8[J]. Opto-Electron Eng, 2024, 51(11): 240220. doi: 10.12086/oee.2024.240220 |
[1] | 彭自然, 许怀顺, 肖伸平. 一种基于CatBoost优化的光伏阵列故障诊断模型[J]. 电子学报, 2024, 52(7): 2418−2428. doi: 10.12263/DZXB.20240236 Peng Z R, Xu H S, Xiao S P. A CatBoost optimization-based fault diagnosis model for photovoltaic arrays[J]. Acta Electron Sin, 2024, 52(7): 2418−2428. doi: 10.12263/DZXB.20240236 |
[2] | 时亚涛, 戴芳, 杨畅民. 太阳能光伏电池缺陷检测[J]. 电子测量与仪器学报, 2020, 34(4): 157−164. doi: 10.13382/j.jemi.B1902656 Shi Y T, Dai F, Yang C M. Defect detection of solar photovoltaic cell[J]. J Electron Meas Instrum, 2020, 34(4): 157−164. doi: 10.13382/j.jemi.B1902656 |
[3] | Bedrich K, Bokalič M, Bliss M, et al. Electroluminescence imaging of PV devices: advanced vignetting calibration[J]. IEEE J Photovoltaics, 2018, 8(5): 1297−1304. doi: 10.1109/JPHOTOV.2018.2848722 |
[4] | Chen X, Karin T, Jain A. Automated defect identification in electroluminescence images of solar modules[J]. Solar Energy, 2022, 242: 20−29. doi: 10.1016/j.solener.2022.06.031 |
[5] | 彭自然, 张颖清, 肖伸平. 基于YOLOv5的太阳电池表面缺陷检测[J]. 太阳能学报, 2024, 45(6): 368−375. doi: 10.19912/j.0254-0096.tynxb.2023-0335 Peng Z R, Zhang Y Q, Xiao S P. Research on surface defect detection of solar cell with improved YOLOv5 algorithm[J]. Acta Energ Sol Sin, 2024, 45(6): 368−375. doi: 10.19912/j.0254-0096.tynxb.2023-0335 |
[6] | Ren S Q, He K M, Girshick R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Trans Pattern Anal Mach Intell, 2017, 39(6): 1137−1149. doi: 10.1109/TPAMI.2016.2577031 |
[7] | 裴少通, 张行远, 胡晨龙, 等. 基于ER-YOLO算法的跨环境输电线路缺陷识别方法[J]. 电工技术学报, 2024, 39(9): 2825−2840. doi: 10.19595/j.cnki.1000-6753.tces.232073 Pei S T, Zhang H Y, Hu C L, et al. The defect detection method for cross-environment power transmission line based on ER-YOLO algorithm[J]. Trans China Electrotech Soc, 2024, 39(9): 2825−2840. doi: 10.19595/j.cnki.1000-6753.tces.232073 |
[8] | 钱晓亮, 张鹤庆, 张焕龙, 等. 基于视觉显著性的太阳能电池片表面缺陷检测[J]. 仪器仪表学报, 2017, 38(7): 1570−1578. doi: 10.3969/j.issn.0254-3087.2017.07.002 Qian X L, Zhang H Q, Zhang H L, et al. Solar cell surface defect detection based on visual saliency[J]. Chin J Sci Instrum, 2017, 38(7): 1570−1578. doi: 10.3969/j.issn.0254-3087.2017.07.002 |
[9] | Tsai D M, Wu S C, Li W C. Defect detection of solar cells in electroluminescence images using Fourier image reconstruction[J]. Solar Energy Mater Solar Cells, 2012, 99: 250−262. doi: 10.1016/j.solmat.2011.12.007 |
[10] | 刘磊, 王冲, 赵树旺, 等. 基于机器视觉的太阳能电池片缺陷检测技术的研究[J]. 电子测量与仪器学报, 2018, 32(10): 47−52. doi: 10.13382/j.jemi.2018.10.007 Liu L, Wang C, Zhao S W, et al. Research on solar cells defect detection technology based on machine vision[J]. J Electron Meas Instrum, 2018, 32(10): 47−52. doi: 10.13382/j.jemi.2018.10.007 |
[11] | Wei S Q, Li X X, Ding S H, et al. Hotspots infrared detection of photovoltaic modules based on Hough line transformation and Faster-RCNN approach[C]//Proceedings of the 2019 6th international conference on control, decision and information technologies, Paris, 2019: 1266–1271. https://doi.org/10.1109/CoDIT.2019.8820333. |
[12] | 张文彪, 马永华, 白晓静, 等. 基于改进Faster R-CNN的太阳能电池板缺陷识别[J]. 电网技术, 2022, 46(7): 2593−2600. doi: 10.13335/j.1000-3673.pst.2021.2373 Zhang W B, Ma Y H, Bai X J, et al. Defect identification of solar panels using improved Faster R-CNN[J]. Power Syst Technol, 2022, 46(7): 2593−2600. doi: 10.13335/j.1000-3673.pst.2021.2373 |
[13] | Lu S, Wu K X, Chen J X. Solar cell surface defect detection based on optimized YOLOv5[J]. IEEE Access, 2023, 11: 71026−71036. doi: 10.1109/ACCESS.2023.3294344 |
[14] | 周启宸, 王伯超. 基于改进YOLOv7的太阳能电池片表面缺陷检测[J]. 计算机应用, 2023, 43(S2): 223−228 doi: 10.11772/j.issn.1001-9081.2023020258 Zhou Q C, Wang B C. Solar cell surface defect detection based on improved YOLOv7[J]. J Comput Appl, 2023, 43(S2): 223−228 doi: 10.11772/j.issn.1001-9081.2023020258 |
[15] | Fu H, Cheng G Q. Convolutional neural network based efficient detector for multicrystalline photovoltaic cells defect detection[J]. Energy Sources Part A Recovery Util Environ Eff, 2023, 45(3): 8686−8702. doi: 10.1080/15567036.2023.2230935 |
[16] | 张烨, 李博涛, 尚景浩, 等. 基于多尺度卷积注意力机制的输电线路防振锤缺陷检测[J]. 电工技术学报, 2024, 39(11): 3522−3537. doi: 10.19595/j.cnki.1000-6753.tces.231155 Zhang Y, Li B T, Shang J H, et al. Defect detection of transmission line damper based on multi-scale convolutional attention mechanism[J]. Trans China Electrotech Soc, 2024, 39(11): 3522−3537. doi: 10.19595/j.cnki.1000-6753.tces.231155 |
[17] | Wang Z, Hua Z X, Wen Y C, et al. E-YOLO: recognition of estrus cow based on improved YOLOv8n model[J]. Expert Syst Appl, 2024, 238: 122212. doi: 10.1016/j.eswa.2023.122212 |
[18] | Ma L, Ma T Y, Liu R S, et al. Toward fast, flexible, and robust low-light image enhancement[C]//Proceedings of 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, 2022: 5627–5636. https://doi.org/10.1109/CVPR52688.2022.00555. |
[19] | 刘皓皎, 刘力双, 张明淳. 基于YOLOv5改进的红外目标检测算法[J]. 激光技术, 2024, 48(4): 534−541. doi: 10.7510/jgjs.issn.1001-3806.2024.04.011 Liu H J, Liu L S, Zhang M C. An improved infrared object detection algorithm based on YOLOv5[J]. Laser Technol, 2024, 48(4): 534−541. doi: 10.7510/jgjs.issn.1001-3806.2024.04.011 |
[20] | 张润梅, 肖钰霏, 贾振楠, 等. 改进YOLOv7的无人机视角下复杂环境目标检测算法[J]. 光电工程, 2024, 51(5): 240051. doi: 10.12086/oee.2024.240051 Zhang R M, Xiao Y F, Jia Z N, et al. Improved YOLOv7 algorithm for target detection in complex environments from UAV perspective[J]. Opto-Electron Eng, 2024, 51(5): 240051. doi: 10.12086/oee.2024.240051 |
[21] | 王鹏峰, 李运堂, 黄永勇, 等. 基于改进YOLOv5s网络的斜拉桥拉索表面缺陷检测[J]. 光电工程, 2024, 51(5): 240028. doi: 10.12086/oee.2024.240028 Wang P F, Li Y T, Huang Y Y, et al. Defects detection for cable surface of cable-stayed bridge based on improved YOLOv5s network[J]. Opto-Electron Eng, 2024, 51(5): 240028. doi: 10.12086/oee.2024.240028 |
[22] | Zhao Y A, Lv W Y, Xu S L, et al. DETRs beat YOLOs on real-time object detection[C]//Proceedings of 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, 2024: 16965–16974. https://doi.org/10.1109/CVPR52733.2024.01605. |
[23] | Wang A, Chen H, Liu L H, et al YOLOv10: real-time end-to-end object detection[Z]. arXiv: 2405.14458, 2024. https://doi.org/10.48550/arXiv.2405.14458. |
[24] | Wang C C, He W, Nie Y, et al. Gold-YOLO: efficient object detector via gather-and-distribute mechanism[C]//Proceedings of the 37th Conference on Neural Information Processing Systems, New Orleans, 2023: 36. |
As the global demand for renewable energy grows, solar power has become an essential source of clean energy. However, solar cells often develop defects, such as microcracks, hotspots, and black spots, during production, which significantly impact their conversion efficiency and lifespan. Traditional manual inspection methods are inefficient and limited by lighting conditions, resulting in low detection accuracy with high false-positive and false-negative rates. To meet the need for efficient and precise automated inspection in industrial production, this study aims to develop a high-accuracy, real-time solar cell defect detection model suitable for practical industrial environments. In response, this paper proposes an optimized solar cell electroluminescent (EL) defect detection model based on the YOLOv8 deep learning framework. First, a self-calibrated illumination (SCI) method is applied to preprocess low-light images, enhancing the effective feature information for detecting solar cell defects. Next, a space-to-depth (SPD) attention module is introduced, replacing the second stride convolution layer in the backbone network to prevent information loss caused by stride convolution, expand the receptive field, and reduce computational load, ensuring more comprehensive feature retention. Additionally, a spatial-BiFPN (S-BFPN) network is constructed to perform multi-scale feature fusion, stabilizing recognition rates even when defect shapes vary. Finally, the loss function is improved with the adoption of MPDIoU, addressing the inadequate penalty issues in the original CIoU loss function. Experimental results show that the improved YOLOv8 model achieves an mAP of 96.9%, marking a 2.2% increase over the original YOLOv8, while reducing computational load by 0.2 GFlops. The detection speed reaches a maximum of 155 FPS, demonstrating high accuracy and real-time performance, making it more suitable for industrial applications.
YOLOv8n network structure
Structure of SCI
Specific algorithm implementation flow
Schematic diagram of SPD with scale=2
Conv modules in different positions of the Backbone part
Schematic diagram of four features of fusion structure
Calculation of MPDIOU loss function
Improved EL-YOLO model
Diagram of three major defect types
Visual comparison of different enhancement methods
Comparison of detection effect between the proposed algorithm and YOLOv8n
Comparison of P, R, and PR curves between the algorithm in this paper and YOLOv8n
Comparison of loss functions
Comparison of thermal map effects