Peng Z R, Wang S Y, Xiao S P. A solar cell defect detection model optimized and improved based on YOLOv8[J]. Opto-Electron Eng, 2024, 51(11): 240220. doi: 10.12086/oee.2024.240220
Citation: Peng Z R, Wang S Y, Xiao S P. A solar cell defect detection model optimized and improved based on YOLOv8[J]. Opto-Electron Eng, 2024, 51(11): 240220. doi: 10.12086/oee.2024.240220

A solar cell defect detection model optimized and improved based on YOLOv8

    Fund Project: Project supported by National Key Research and Development Program of China (2019YFE0122600), Key Scientific Research Project of the Hunan Provincial Department of Education (22A0423), and Hunan Provincial Natural Science Foundation of China (2023JJ60267, 2022JJ50073)
More Information
  • To address issues of low detection accuracy and high false-positive and false-negative rates in solar cell defect detection, this paper proposes an optimized solar cell electroluminescent (EL) defect detection model based on the YOLOv8 deep learning framework. First, a self-calibrated illumination (SCI) method is applied to preprocess low-light images, enhancing effective feature information for solar cell defects. Then, a space-to-depth (SPD) attention module is introduced, replacing the second stride convolution layer in the backbone network. This substitution avoids information loss caused by stride convolution, expands the receptive field, and reduces computational load, preserving more feature information during extraction. Next, a spatial-BiFPN (S-BFPN) network is constructed to perform multi-scale feature fusion, stabilizing defect recognition rates by addressing the shape variability of solar cell defects. Lastly, the loss function is improved by adopting MPDIoU, which resolves the issue of ineffective penalties in the original CIoU loss function. The experimental results show that the improved YOLOv8 model achieved an mAP of 96.9%, a 2.2% increase compared to the original YOLOv8. The computational load was reduced by 0.2 GFlops, and the detection speed reached a maximum of 155 f/s, demonstrating high accuracy and real-time performance, making it more suitable for industrial deployment.
  • 加载中
  • [1] 彭自然, 许怀顺, 肖伸平. 一种基于CatBoost优化的光伏阵列故障诊断模型[J]. 电子学报, 2024, 52(7): 2418−2428. doi: 10.12263/DZXB.20240236

    CrossRef Google Scholar

    Peng Z R, Xu H S, Xiao S P. A CatBoost optimization-based fault diagnosis model for photovoltaic arrays[J]. Acta Electron Sin, 2024, 52(7): 2418−2428. doi: 10.12263/DZXB.20240236

    CrossRef Google Scholar

    [2] 时亚涛, 戴芳, 杨畅民. 太阳能光伏电池缺陷检测[J]. 电子测量与仪器学报, 2020, 34(4): 157−164. doi: 10.13382/j.jemi.B1902656

    CrossRef Google Scholar

    Shi Y T, Dai F, Yang C M. Defect detection of solar photovoltaic cell[J]. J Electron Meas Instrum, 2020, 34(4): 157−164. doi: 10.13382/j.jemi.B1902656

    CrossRef Google Scholar

    [3] Bedrich K, Bokalič M, Bliss M, et al. Electroluminescence imaging of PV devices: advanced vignetting calibration[J]. IEEE J Photovoltaics, 2018, 8(5): 1297−1304. doi: 10.1109/JPHOTOV.2018.2848722

    CrossRef Google Scholar

    [4] Chen X, Karin T, Jain A. Automated defect identification in electroluminescence images of solar modules[J]. Solar Energy, 2022, 242: 20−29. doi: 10.1016/j.solener.2022.06.031

    CrossRef Google Scholar

    [5] 彭自然, 张颖清, 肖伸平. 基于YOLOv5的太阳电池表面缺陷检测[J]. 太阳能学报, 2024, 45(6): 368−375. doi: 10.19912/j.0254-0096.tynxb.2023-0335

    CrossRef Google Scholar

    Peng Z R, Zhang Y Q, Xiao S P. Research on surface defect detection of solar cell with improved YOLOv5 algorithm[J]. Acta Energ Sol Sin, 2024, 45(6): 368−375. doi: 10.19912/j.0254-0096.tynxb.2023-0335

    CrossRef Google Scholar

    [6] Ren S Q, He K M, Girshick R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Trans Pattern Anal Mach Intell, 2017, 39(6): 1137−1149. doi: 10.1109/TPAMI.2016.2577031

    CrossRef Google Scholar

    [7] 裴少通, 张行远, 胡晨龙, 等. 基于ER-YOLO算法的跨环境输电线路缺陷识别方法[J]. 电工技术学报, 2024, 39(9): 2825−2840. doi: 10.19595/j.cnki.1000-6753.tces.232073

    CrossRef Google Scholar

    Pei S T, Zhang H Y, Hu C L, et al. The defect detection method for cross-environment power transmission line based on ER-YOLO algorithm[J]. Trans China Electrotech Soc, 2024, 39(9): 2825−2840. doi: 10.19595/j.cnki.1000-6753.tces.232073

    CrossRef Google Scholar

    [8] 钱晓亮, 张鹤庆, 张焕龙, 等. 基于视觉显著性的太阳能电池片表面缺陷检测[J]. 仪器仪表学报, 2017, 38(7): 1570−1578. doi: 10.3969/j.issn.0254-3087.2017.07.002

    CrossRef Google Scholar

    Qian X L, Zhang H Q, Zhang H L, et al. Solar cell surface defect detection based on visual saliency[J]. Chin J Sci Instrum, 2017, 38(7): 1570−1578. doi: 10.3969/j.issn.0254-3087.2017.07.002

    CrossRef Google Scholar

    [9] Tsai D M, Wu S C, Li W C. Defect detection of solar cells in electroluminescence images using Fourier image reconstruction[J]. Solar Energy Mater Solar Cells, 2012, 99: 250−262. doi: 10.1016/j.solmat.2011.12.007

    CrossRef Google Scholar

    [10] 刘磊, 王冲, 赵树旺, 等. 基于机器视觉的太阳能电池片缺陷检测技术的研究[J]. 电子测量与仪器学报, 2018, 32(10): 47−52. doi: 10.13382/j.jemi.2018.10.007

    CrossRef Google Scholar

    Liu L, Wang C, Zhao S W, et al. Research on solar cells defect detection technology based on machine vision[J]. J Electron Meas Instrum, 2018, 32(10): 47−52. doi: 10.13382/j.jemi.2018.10.007

    CrossRef Google Scholar

    [11] Wei S Q, Li X X, Ding S H, et al. Hotspots infrared detection of photovoltaic modules based on Hough line transformation and Faster-RCNN approach[C]//Proceedings of the 2019 6th international conference on control, decision and information technologies, Paris, 2019: 1266–1271. https://doi.org/10.1109/CoDIT.2019.8820333.

    Google Scholar

    [12] 张文彪, 马永华, 白晓静, 等. 基于改进Faster R-CNN的太阳能电池板缺陷识别[J]. 电网技术, 2022, 46(7): 2593−2600. doi: 10.13335/j.1000-3673.pst.2021.2373

    CrossRef Google Scholar

    Zhang W B, Ma Y H, Bai X J, et al. Defect identification of solar panels using improved Faster R-CNN[J]. Power Syst Technol, 2022, 46(7): 2593−2600. doi: 10.13335/j.1000-3673.pst.2021.2373

    CrossRef Google Scholar

    [13] Lu S, Wu K X, Chen J X. Solar cell surface defect detection based on optimized YOLOv5[J]. IEEE Access, 2023, 11: 71026−71036. doi: 10.1109/ACCESS.2023.3294344

    CrossRef Google Scholar

    [14] 周启宸, 王伯超. 基于改进YOLOv7的太阳能电池片表面缺陷检测[J]. 计算机应用, 2023, 43(S2): 223−228 doi: 10.11772/j.issn.1001-9081.2023020258

    CrossRef Google Scholar

    Zhou Q C, Wang B C. Solar cell surface defect detection based on improved YOLOv7[J]. J Comput Appl, 2023, 43(S2): 223−228 doi: 10.11772/j.issn.1001-9081.2023020258

    CrossRef Google Scholar

    [15] Fu H, Cheng G Q. Convolutional neural network based efficient detector for multicrystalline photovoltaic cells defect detection[J]. Energy Sources Part A Recovery Util Environ Eff, 2023, 45(3): 8686−8702. doi: 10.1080/15567036.2023.2230935

    CrossRef Google Scholar

    [16] 张烨, 李博涛, 尚景浩, 等. 基于多尺度卷积注意力机制的输电线路防振锤缺陷检测[J]. 电工技术学报, 2024, 39(11): 3522−3537. doi: 10.19595/j.cnki.1000-6753.tces.231155

    CrossRef Google Scholar

    Zhang Y, Li B T, Shang J H, et al. Defect detection of transmission line damper based on multi-scale convolutional attention mechanism[J]. Trans China Electrotech Soc, 2024, 39(11): 3522−3537. doi: 10.19595/j.cnki.1000-6753.tces.231155

    CrossRef Google Scholar

    [17] Wang Z, Hua Z X, Wen Y C, et al. E-YOLO: recognition of estrus cow based on improved YOLOv8n model[J]. Expert Syst Appl, 2024, 238: 122212. doi: 10.1016/j.eswa.2023.122212

    CrossRef Google Scholar

    [18] Ma L, Ma T Y, Liu R S, et al. Toward fast, flexible, and robust low-light image enhancement[C]//Proceedings of 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, 2022: 5627–5636. https://doi.org/10.1109/CVPR52688.2022.00555.

    Google Scholar

    [19] 刘皓皎, 刘力双, 张明淳. 基于YOLOv5改进的红外目标检测算法[J]. 激光技术, 2024, 48(4): 534−541. doi: 10.7510/jgjs.issn.1001-3806.2024.04.011

    CrossRef Google Scholar

    Liu H J, Liu L S, Zhang M C. An improved infrared object detection algorithm based on YOLOv5[J]. Laser Technol, 2024, 48(4): 534−541. doi: 10.7510/jgjs.issn.1001-3806.2024.04.011

    CrossRef Google Scholar

    [20] 张润梅, 肖钰霏, 贾振楠, 等. 改进YOLOv7的无人机视角下复杂环境目标检测算法[J]. 光电工程, 2024, 51(5): 240051. doi: 10.12086/oee.2024.240051

    CrossRef Google Scholar

    Zhang R M, Xiao Y F, Jia Z N, et al. Improved YOLOv7 algorithm for target detection in complex environments from UAV perspective[J]. Opto-Electron Eng, 2024, 51(5): 240051. doi: 10.12086/oee.2024.240051

    CrossRef Google Scholar

    [21] 王鹏峰, 李运堂, 黄永勇, 等. 基于改进YOLOv5s网络的斜拉桥拉索表面缺陷检测[J]. 光电工程, 2024, 51(5): 240028. doi: 10.12086/oee.2024.240028

    CrossRef Google Scholar

    Wang P F, Li Y T, Huang Y Y, et al. Defects detection for cable surface of cable-stayed bridge based on improved YOLOv5s network[J]. Opto-Electron Eng, 2024, 51(5): 240028. doi: 10.12086/oee.2024.240028

    CrossRef Google Scholar

    [22] Zhao Y A, Lv W Y, Xu S L, et al. DETRs beat YOLOs on real-time object detection[C]//Proceedings of 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, 2024: 16965–16974. https://doi.org/10.1109/CVPR52733.2024.01605.

    Google Scholar

    [23] Wang A, Chen H, Liu L H, et al YOLOv10: real-time end-to-end object detection[Z]. arXiv: 2405.14458, 2024. https://doi.org/10.48550/arXiv.2405.14458.

    Google Scholar

    [24] Wang C C, He W, Nie Y, et al. Gold-YOLO: efficient object detector via gather-and-distribute mechanism[C]//Proceedings of the 37th Conference on Neural Information Processing Systems, New Orleans, 2023: 36.

    Google Scholar

  • As the global demand for renewable energy grows, solar power has become an essential source of clean energy. However, solar cells often develop defects, such as microcracks, hotspots, and black spots, during production, which significantly impact their conversion efficiency and lifespan. Traditional manual inspection methods are inefficient and limited by lighting conditions, resulting in low detection accuracy with high false-positive and false-negative rates. To meet the need for efficient and precise automated inspection in industrial production, this study aims to develop a high-accuracy, real-time solar cell defect detection model suitable for practical industrial environments. In response, this paper proposes an optimized solar cell electroluminescent (EL) defect detection model based on the YOLOv8 deep learning framework. First, a self-calibrated illumination (SCI) method is applied to preprocess low-light images, enhancing the effective feature information for detecting solar cell defects. Next, a space-to-depth (SPD) attention module is introduced, replacing the second stride convolution layer in the backbone network to prevent information loss caused by stride convolution, expand the receptive field, and reduce computational load, ensuring more comprehensive feature retention. Additionally, a spatial-BiFPN (S-BFPN) network is constructed to perform multi-scale feature fusion, stabilizing recognition rates even when defect shapes vary. Finally, the loss function is improved with the adoption of MPDIoU, addressing the inadequate penalty issues in the original CIoU loss function. Experimental results show that the improved YOLOv8 model achieves an mAP of 96.9%, marking a 2.2% increase over the original YOLOv8, while reducing computational load by 0.2 GFlops. The detection speed reaches a maximum of 155 FPS, demonstrating high accuracy and real-time performance, making it more suitable for industrial applications.

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(15)

Tables(4)

Article Metrics

Article views() PDF downloads() Cited by()

Access History

Other Articles By Authors

Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint