Liang J Y, Li X W, Ke C H, et al. Surface characterization using Zernike polynomials[J]. Opto-Electron Eng, 2024, 51(11): 240163. doi: 10.12086/oee.2024.240163
Citation: Liang J Y, Li X W, Ke C H, et al. Surface characterization using Zernike polynomials[J]. Opto-Electron Eng, 2024, 51(11): 240163. doi: 10.12086/oee.2024.240163

Surface characterization using Zernike polynomials

    Fund Project: Project supported by Key Industrial Innovation Project of Shaanxi Province (2017ZDCXL-GY-06-01), and National Natural Science Foundation of China (61377080)
More Information
  • Zernike polynomials, due to their orthogonality and rotational invariance, are widely used in the characterization and optimization of optical surfaces. They can effectively reduce fitting errors and provide high-precision descriptions of complex surfaces with only a few coefficients, contributing to improved imaging quality and simplified performance analysis in optical systems. This paper provides an overview of freeform surface description methods, including both global and local approaches. It discusses the research progress on Zernike polynomials in surface characterization, both domestically and internationally, explores their practical applications in this field, and finally anticipates the future prospects of Zernike polynomials in surface characterization.
  • 加载中
  • [1] 杨通, 段璎哲, 程德文, 等. 自由曲面成像光学系统设计: 理论、发展与应用[J]. 光学学报, 2021, 41(1): 0108001. doi: 10.3788/AOS202141.0108001

    CrossRef Google Scholar

    Yang T, Duan Y Z, Cheng D W, et al. Freeform imaging optical system design: theories, development, and applications[J]. Acta Opt Sin, 2021, 41(1): 0108001. doi: 10.3788/AOS202141.0108001

    CrossRef Google Scholar

    [2] 程德文, 陈海龙, 王涌天, 等. 复杂光学曲面数理描述和设计方法研究[J]. 光学学报, 2023, 43(8): 0822008. doi: 10.3788/AOS221980

    CrossRef Google Scholar

    Cheng D W, Chen H L, Wang Y T, et al. Mathematical description and design methods of complex optical surfaces[J]. Acta Opt Sin, 2023, 43(8): 0822008. doi: 10.3788/AOS221980

    CrossRef Google Scholar

    [3] Niu K, Tian C. Zernike polynomials and their applications[J]. J Opt, 2022, 24(12): 123001. doi: 10.1088/2040-8986/ac9e08

    CrossRef Google Scholar

    [4] 杨华峰, 姜宗福. 对Zernike模式法重构19单元哈特曼测量波前的研究[J]. 激光技术, 2005, 29 (5): 484–487.

    Google Scholar

    Yang H F, Jiang Z F. Research of Zernike modal wavefront reconstruction of 19-element Hartmann-Shack wavefront sensor[J]. Laser Technol 2005, 29 (5): 484–487.

    Google Scholar

    [5] 王超. 自由曲面表征函数及其应用研究[D]. 长春: 中国科学院研究生院(长春光学精密机械与物理研究所), 2014.

    Google Scholar

    Wang C. Research on characterization function and application of free-form surface[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2014.

    Google Scholar

    [6] 叶井飞, 高志山, 刘晓莉, 等. 基于Zernike多项式和径向基函数的自由曲面重构方法[J]. 光学学报, 2014, 34(8): 0822003. doi: 10.3788/AOS201434.0822003

    CrossRef Google Scholar

    Ye J F, Gao Z S, Liu X L, et al. Freeform surfaces reconstruction based on Zernike polynomials and radial basis function[J]. Acta Opt Sin, 2014, 34(8): 0822003. doi: 10.3788/AOS201434.0822003

    CrossRef Google Scholar

    [7] 杨通, 王永东, 吕鑫, 等. 融合自由曲面光学与全息光学元件的成像与显示系统设计[J]. 光学学报, 2024, 44(9): 0900001. doi: 10.3788/AOS231830

    CrossRef Google Scholar

    Yang T, Wang Y D, Lü X, et al. Design of Imaging and display systems combining freeform optics and holographic optical elements[J]. Acta Opt Sin, 2024, 44(9): 0900001. doi: 10.3788/AOS231830

    CrossRef Google Scholar

    [8] 郎常富. Q-Type自由曲面优化设计与制造的约束条件研究[D]. 长春: 长春理工大学, 2022.

    Google Scholar

    Lang C F. Studies on constraints of optimal design and manufacturing of Q-Type freeform surface[D]. Changchun: Changchun University of Science and Technology, 2022.

    Google Scholar

    [9] Forbes G W. Robust and fast computation for the polynomials of optics[J]. Opt Express, 2010, 18(13): 13851−13862. doi: 10.1364/OE.18.013851

    CrossRef Google Scholar

    [10] 叶井飞. 光学自由曲面的表征方法与技术研究[D]. 南京: 南京理工大学, 2016.

    Google Scholar

    Ye J F. Research on the method and technique for characterizing freeform optical surface[D]. Nanjing: Nanjing University of Science & Technology, 2016.

    Google Scholar

    [11] Mahajan V N, Aftab M. Systematic comparison of the use of annular and Zernike circle polynomials for annular wavefronts[J]. Appl Opt, 2010, 49(33): 6489−6501. doi: 10.1364/AO.49.006489

    CrossRef Google Scholar

    [12] Kaya I, Thompson K P, Rolland J P. Edge clustered fitting grids for φ-polynomial characterization of freeform optical surfaces[J]. Opt Express, 2011, 19(27): 26962−26974. doi: 10.1364/OE.19.026962

    CrossRef Google Scholar

    [13] Svechnikov M V, Chkhalo N I, Toropov M N, et al. Resolving capacity of the circular Zernike polynomials[J]. Opt Express, 2015, 23(11): 14677−14694. doi: 10.1364/OE.23.014677

    CrossRef Google Scholar

    [14] Mahajan V N. Zernike annular polynomials and optical aberrations of systems with annular pupils[J]. Appl Opt, 1994, 33(34): 8125−8127. doi: 10.1364/AO.33.008125

    CrossRef Google Scholar

    [15] Mahajan V N, Dai G M. Orthonormal polynomials for hexagonal pupils[J]. Opt Lett, 2006, 31(16): 2462−2464. doi: 10.1364/OL.31.002462

    CrossRef Google Scholar

    [16] Mahajan V N, Dai G M. Orthonormal polynomials in wavefront analysis: analytical solution[J]. J Opt Soc Am A, 2007, 24(9): 2994−3016. doi: 10.1364/JOSAA.24.002994

    CrossRef Google Scholar

    [17] Dai G M, Mahajan V N. Orthonormal polynomials in wavefront analysis: error analysis[J]. Appl Opt, 2008, 47(19): 3433−3445. doi: 10.1364/AO.47.003433

    CrossRef Google Scholar

    [18] Ferreira C, López J L, Navarro R, et al. Orthogonal basis with a conicoid first mode for shape specification of optical surfaces[J]. Opt Express, 2016, 24(5): 5448−5462. doi: 10.1364/OE.24.005448

    CrossRef Google Scholar

    [19] Broemel A, Lippmann U, Gross H. Freeform surface descriptions. Part I: mathematical representations[I]. Adv Opt Technol, 2017, 6 (5): 327–336. https://doi.org/10.1515/aot-2017-0030.

    Google Scholar

    [20] Area I, Dimitrov D K, Godoy E. Recursive computation of generalised Zernike polynomials[J]. J Comput Appl Math, 2017, 312: 58−64. doi: 10.1016/j.cam.2015.11.017

    CrossRef Google Scholar

    [21] Ares M, Royo S. Comparison of cubic B-spline and Zernike-fitting techniques in complex wavefront reconstruction[J]. Appl Opt, 2006, 45(27): 6954−6964. doi: 10.1364/AO.45.006954

    CrossRef Google Scholar

    [22] Kaya I, Thompson K P, Rolland J P. Comparative assessment of freeform polynomials as optical surface descriptions[J]. Opt Express, 2012, 20(20): 22683−22691. doi: 10.1364/OE.20.022683

    CrossRef Google Scholar

    [23] Rahbar K, Faez K, Kakhki E A. Phase wavefront aberration modeling using Zernike and pseudo-Zernike polynomials[J]. J Opt Soc Am A, 2013, 30(10): 1988−1993. doi: 10.1364/JOSAA.30.001988

    CrossRef Google Scholar

    [24] Trevino J P, Gómez‐Correa J E, Iskander D R, et al. Zernike vs. Bessel circular functions in visual optics[J]. Ophthalmic Physiol Opt, 2013, 33(4): 394−402. doi: 10.1111/opo.12065

    CrossRef Google Scholar

    [25] Badar I, Hellmann C, Wyrowski F. Wavefront phase representation by Zernike and spline models: a comparison[J]. J Opt Soc Am A, 2021, 38(8): 1178−1186. doi: 10.1364/JOSAA.427519

    CrossRef Google Scholar

    [26] Raasch T W, Su L J, Yi A. Whole-surface characterization of progressive addition lenses[J]. Optom Vis Sci, 2011, 88(2): E217−E226. doi: 10.1097/OPX.0b013e3182084807

    CrossRef Google Scholar

    [27] Ivanova T V, Zavgorodniĭ D S. Zernike-polynomial description of the deformation of a known surface profile with a noncircularly symmetric shape[J]. J Opt Technol, 2021, 88(1): 8−13. doi: 10.1364/JOT.88.000008

    CrossRef Google Scholar

    [28] Omidi P, Cayless A, Langenbucher A. Evaluation of optimal Zernike radial degree for representing corneal surfaces[J]. PLoS One, 2022, 17(5): e0269119. doi: 10.1371/journal.pone.0269119

    CrossRef Google Scholar

    [29] Puentes G, Minotti F. Spectral characterization of optical aberrations in fluidic lenses[J]. Front Phys, 2024, 11: 1299393. doi: 10.3389/FPHY.2023.1299393

    CrossRef Google Scholar

    [30] Li X Y, Jiang W H. Modal description of wavefront aberration in non-circle apertures[J]. Chin J Lasers, 2002, B11(4): 259−266.

    Google Scholar

    [31] 王庆丰, 程德文, 王涌天. 双变量正交多项式描述光学自由曲面[J]. 光学学报, 2012, 32(9): 0922002. doi: 10.3788/AOS201232.0922002

    CrossRef Google Scholar

    Wang Q F, Cheng D W, Wang Y T. Description of free-form optical curved surface using two-variable orthogonal polynomials[J]. Acta Opt Sin, 2012, 32(9): 0922002. doi: 10.3788/AOS201232.0922002

    CrossRef Google Scholar

    [32] 李萌阳, 李大海, 王琼华, 等. 用方形区域内的标准正交多项式重构波前[J]. 中国激光, 2012, 39(11): 1108011. doi: 10.3788/CJL201239.1108011

    CrossRef Google Scholar

    Li M Y, Li D H, Wang Q H, et al. Wavefront reconstruction with orthonormal polynomials in a Square Area[J]. Chin J Lasers, 2012, 39(11): 1108011. doi: 10.3788/CJL201239.1108011

    CrossRef Google Scholar

    [33] 赵齐, 王允, 王平, 等. 波面重构中非圆域Zernike正交基底构造方法[J]. 光学技术, 2017, 43(3): 228−233. doi: 10.13741/j.cnki.11-1879/o4.2017.03.008

    CrossRef Google Scholar

    Zhao Q, Wang Y, Wang P, et al. Construction method of non-circular pupil Zernike orthogonal basis in wavefront reconstruction[J]. Opt Tech, 2017, 43(3): 228−233. doi: 10.13741/j.cnki.11-1879/o4.2017.03.008

    CrossRef Google Scholar

    [34] 鄢静舟, 雷凡, 周必方, 等. 用Zernike多项式进行波面拟合的几种算法[J]. 光学 精密工程, 1999, 7(5): 119−128. doi: 10.3321/j.issn:1004-924X.1999.05.020

    CrossRef Google Scholar

    Yan J Z, Lei F, Zhou B F, et al. Algorithms for wavefront fitting using Zernike polynomial[J]. Opt Precis Eng, 1999, 7(5): 119−128. doi: 10.3321/j.issn:1004-924X.1999.05.020

    CrossRef Google Scholar

    [35] 莫卫东. Zernike多项式拟合干涉面方法研究[J]. 高速摄影与光子学, 1991, 20(4): 389−396.

    Google Scholar

    Mo W D. The reseach into the method to fit interferogram with Zernike polynomials[J]. High Speed Photog Photonics, 1991, 20(4): 389−396.

    Google Scholar

    [36] 莫卫东. Zernike多项式拟合干涉波面的基本原则[J]. 空军工程大学学报(自然科学版), 2002, 3(3): 35−38. doi: 10.3969/j.issn.1009-3516.2002.03.010

    CrossRef Google Scholar

    Mo W D. The principle of fitting Interferogram with Zernike polynomials[J]. J Air Force Eng Univ (Nat Sci Ed), 2002, 3(3): 35−38. doi: 10.3969/j.issn.1009-3516.2002.03.010

    CrossRef Google Scholar

    [37] 张伟, 刘剑峰, 龙夫年, 等. 基于Zernike多项式进行波面拟合研究[J]. 光学技术, 2005, 31(5): 675−678. doi: 10.3321/j.issn:1002-1582.2005.05.006

    CrossRef Google Scholar

    Zhang W, Liu J F, Long F N, et al. Study on wavefront fitting using Zernike polynomials[J]. Opt Tech, 2005, 31(5): 675−678. doi: 10.3321/j.issn:1002-1582.2005.05.006

    CrossRef Google Scholar

    [38] 孙学真, 苏显渝, 荆海龙. 抽样点对基于Zernike多项式曲面拟合精度的影响[J]. 光学仪器, 2008, 30(4): 6−10. doi: 10.3969/j.issn.1005-5630.2008.04.002

    CrossRef Google Scholar

    Sun X Z, Su X Y, Jing H L. The influence of sampling points on the precision of curved surface fitting based on Zernike polynomials[J]. Opt Instrum, 2008, 30(4): 6−10. doi: 10.3969/j.issn.1005-5630.2008.04.002

    CrossRef Google Scholar

    [39] 谢苏隆. Zernike多项式拟合曲面中拟合精度与采样点数目研究[J]. 应用光学, 2010, 31(6): 943−949. doi: 10.3969/j.issn.1002-2082.2010.06.015

    CrossRef Google Scholar

    Xie S L. Sampling point number in curved surface fitting with Zernike polynomials[J]. J Appl Opt, 2010, 31(6): 943−949. doi: 10.3969/j.issn.1002-2082.2010.06.015

    CrossRef Google Scholar

    [40] 冯婕, 白瑜, 邢廷文. Zernike多项式波面拟合精度研究[J]. 光电技术应用, 2011, 26(2): 31−34. doi: 10.3969/j.issn.1673-1255.2011.02.009

    CrossRef Google Scholar

    Feng J, Bai Y, Xing T W. Fitting accuracy of wavefront using Zernike polynomials[J]. Electro-Opt Technol Appl, 2011, 26(2): 31−34. doi: 10.3969/j.issn.1673-1255.2011.02.009

    CrossRef Google Scholar

    [41] 郭良贤, 卫俊杰, 唐培. Zernike圆域多项式镜面拟合仿真与精度研究[J]. 光学与光电技术, 2018, 16(6): 56−62. doi: 10.19519/j.cnki.1672-3392.2018.06.010

    CrossRef Google Scholar

    Guo L X, Wei J J, Tang P. Fitting simulation and precision of mirror surface with Zernike circular polynomial[J]. Opt Optoelectron Technol, 2018, 16(6): 56−62. doi: 10.19519/j.cnki.1672-3392.2018.06.010

    CrossRef Google Scholar

    [42] 韩路, 田爱玲, 聂凤明, 等. Zernike多项式的条纹反射三维面形重建算法研究[J]. 西安工业大学学报, 2019, 39(2): 137−144. doi: 10.16185/j.jxatu.edu.cn.2019.02.003

    CrossRef Google Scholar

    Han L, Tian A L, Nie F M, et al. Algorithm for three-dimensional surface reconstruction of fringe reflection using Zernike polynomial[J]. J Xi'an Technol Univ, 2019, 39(2): 137−144. doi: 10.16185/j.jxatu.edu.cn.2019.02.003

    CrossRef Google Scholar

    [43] 魏学业, 俞信. 一种基于Zernike多项式的波前探测和重构方法[J]. 光学学报, 1994, 14(7): 718−723. doi: 10.3321/j.issn:0253-2239.1994.07.011

    CrossRef Google Scholar

    Wei X Y, Yu X. An optical wavefront seuing and reconstruction method based on Zernike polynomials[J]. Acta Opt Sin, 1994, 14(7): 718−723. doi: 10.3321/j.issn:0253-2239.1994.07.011

    CrossRef Google Scholar

    [44] 张强, 姜文汉, 许冰. 利用Zernike多项式对湍流波前进行波前重构[J]. 光电工程, 1998, 25(6): 15−19.

    Google Scholar

    Zhang Q, Jiang W H, Xu B. Reconstruction of turbulent optical wavefront realized by Zernike polynomial[J]. Opto-Electron Eng, 1998, 25(6): 15−19.

    Google Scholar

    [45] 罗智锋, 陈怀新, 丁磊. 利用Zernike法进行激光小尺度畸变波前的重构[J]. 激光杂志, 2006, 27(3): 35−36. doi: 10.3969/j.issn.0253-2743.2006.03.015

    CrossRef Google Scholar

    Luo Z F, Chen H X, Ding L. Wavefront measurement and reconstruction of small phase-distortion on laser beam[J]. Laser J, 2006, 27(3): 35−36. doi: 10.3969/j.issn.0253-2743.2006.03.015

    CrossRef Google Scholar

    [46] 张航, 陆建东, 刘锐, 等. 基于Zernike多项式光滑优化的均匀方斑透镜设计[J]. 激光与光电子学进展, 2018, 55(10): 102202. doi: 10.3788/LOP55.102202

    CrossRef Google Scholar

    Zhang H, Lu J D, Liu R, et al. Design of uniform square spot Lens based on smooth optimization of Zernike polynomials[J]. Laser Optoelectron Prog, 2018, 55(10): 102202. doi: 10.3788/LOP55.102202

    CrossRef Google Scholar

    [47] 杨德荃, 陶彦辉, 赵刚练, 等. 基于神经网络的大气湍流退化图像的快速仿真[J]. 航天返回与遥感, 2023, 44(6): 57−67. doi: 10.3969/j.issn.1009-8518.2023.06.006

    CrossRef Google Scholar

    Yang D Q, Tao Y H, Zhao G L, et al. Rapid simulation of atmospheric turbulence degradation images based on neural networks[J]. Spacecr Recovery Remote Sens, 2023, 44(6): 57−67. doi: 10.3969/j.issn.1009-8518.2023.06.006

    CrossRef Google Scholar

    [48] 莫卫东. 数字平面检测系统误差和精度评价方法的研究[J]. 光学学报, 2003, 23(7): 879−883. doi: 10.3321/j.issn:0253-2239.2003.07.023

    CrossRef Google Scholar

    Mo W D. Error and precision evaluation of a system for Inspecting surface of optical plane[J]. Acta Opt Sin, 2003, 23(7): 879−883. doi: 10.3321/j.issn:0253-2239.2003.07.023

    CrossRef Google Scholar

    [49] 杨佳文, 黄巧林, 韩友民. Zernike多项式在拟合光学表面面形中的应用及仿真[J]. 航天返回与遥感, 2010, 31(5): 49−55. doi: 10.3969/j.issn.1009-8518.2010.05.009

    CrossRef Google Scholar

    Yang J W, Huang Q L, Han Y M. Application and simulation in fitting optical surface with Zernike polynomial[J]. Spacecr Recovery Remote Sens, 2010, 31(5): 49−55. doi: 10.3969/j.issn.1009-8518.2010.05.009

    CrossRef Google Scholar

    [50] 庞志海, 樊学武, 马臻, 等. 自由曲面校正光学系统像差的研究[J]. 光学学报, 2016, 36(5): 0522001. doi: 10.3788/AOS201636.0522001

    CrossRef Google Scholar

    Pang Z H, Fan X W, Ma Z, et al. Free-form optical elements corrected aberrations of optical system[J]. Acta Opt Sin, 2016, 36(5): 0522001. doi: 10.3788/AOS201636.0522001

    CrossRef Google Scholar

    [51] 关姝, 王超, 佟首峰, 等. 空间激光通信离轴两镜反射望远镜自由曲面光学天线设计[J]. 红外与激光工程, 2017, 46(12): 1205002. doi: 10.3788/IRLA201746.1222003

    CrossRef Google Scholar

    Guan S, Wang C, Tong S F, et al. Optical antenna design of off-axis two-mirror reflective telescope with freeform surface for space laser communication[J]. Infrared Laser Eng, 2017, 46(12): 1205002. doi: 10.3788/IRLA201746.1222003

    CrossRef Google Scholar

    [52] Xiang B B, Wang C S, Lian P Y. Effect of surface error distribution and aberration on electromagnetic performance of a reflector antenna[J]. Int J Antennas Propagation, 2019, 2019: 5062545. doi: 10.1155/2019/5062545

    CrossRef Google Scholar

    [53] 施胤成, 闫怀德, 宫鹏, 等. 基于Zernike系数优化模型的光学反射镜支撑结构拓扑优化设计方法[J]. 光子学报, 2020, 49(6): 0622001. doi: 10.3788/gzxb20204906.0622001

    CrossRef Google Scholar

    Shi Y C, Yan H D, Gong P, et al. Topology optimization design method for supporting structures of optical reflective mirrors based on Zernike coefficient optimization model[J]. Acta Photonica Sin, 2020, 49(6): 0622001. doi: 10.3788/gzxb20204906.0622001

    CrossRef Google Scholar

    [54] 周颋, 郝群, 胡摇, 等. 用于自由曲面部分补偿干涉测量的可变形镜面形设计的优化方法[J]. 光学技术, 2021, 47(3): 257−264. doi: 10.13741/j.cnki.11-1879/o4.2021.03.001

    CrossRef Google Scholar

    Zhou T, Hao Q, Hu Y, et al. An optimization method of deformable mirror shape design for freeform surface partial compensation interferometry[J]. Opt Tech, 2021, 47(3): 257−264. doi: 10.13741/j.cnki.11-1879/o4.2021.03.001

    CrossRef Google Scholar

    [55] 闫钧华, 胡子佳, 朱德燕, 等. 基于自由曲面的紧凑型离轴三反无焦系统设计[J]. 光子学报, 2022, 51(5): 0511002. doi: 10.3788/gzxb20225105.0511002

    CrossRef Google Scholar

    Yan J H, Hu Z J, Zhu D Y, et al. Design of compact off-axis three-mirror afocal system based on freeform surface[J]. Acta Photonica Sin, 2022, 51(5): 0511002. doi: 10.3788/gzxb20225105.0511002

    CrossRef Google Scholar

    [56] 解博夫, 赵星, 陶诗诗, 等. 自由曲面补偿飞秒激光成丝系统像差的应用[J]. 光学学报, 2023, 43(8): 0822020. doi: 10.3788/AOS221720

    CrossRef Google Scholar

    Xie B F, Zhao X, Tao S S, et al. Application of freeform surface in aberration compensation of femtosecond laser filamentation system[J]. Acta Opt Sin, 2023, 43(8): 0822020. doi: 10.3788/AOS221720

    CrossRef Google Scholar

    [57] 韩继周, 赵世家, 冯安伟, 等. 基于自由曲面的紧凑型宽波段成像光谱仪设计[J]. 光学学报, 2023, 43(14): 1422002. doi: 10.3788/AOS230474

    CrossRef Google Scholar

    Han J Z, Zhao S J, Feng A W, et al. Design of compact and broadband imaging spectrometer based on free-form surface[J]. Acta Opt Sin, 2023, 43(14): 1422002. doi: 10.3788/AOS230474

    CrossRef Google Scholar

    [58] 张强, 吕百达, 姜文汉. 环形区域上Zernike模式法波前重构[J]. 强激光与粒子束, 2000, 12(3): 306−310.

    Google Scholar

    Zhang Q, Lü B D, Jiang W H. Zernike model wavefront reconstruction for annular field[J]. High Power Laser Part Beams, 2000, 12(3): 306−310.

    Google Scholar

    [59] 王奇涛, 佟首峰, 徐友会. 采用Zernike多项式对大气湍流相位屏的仿真和验证[J]. 红外与激光工程, 2013, 42(7): 1907−1911. doi: 10.3969/j.issn.1007-2276.2013.07.046

    CrossRef Google Scholar

    Wang Q T, Tong S F, Xu Y H. On simulation and verification of the atmospheric turbulent phase screen with Zernike polynomials[J]. Infrared Laser Eng, 2013, 42(7): 1907−1911. doi: 10.3969/j.issn.1007-2276.2013.07.046

    CrossRef Google Scholar

    [60] 吴加丽, 柯熙政. 无波前传感器的自适应光学校正[J]. 激光与光电子学进展, 2018, 55(3): 030103. doi: 10.3788/LOP55.030103

    CrossRef Google Scholar

    Wu J L, Ke X Z. Adaptive optics correction of wavefront sensorless[J]. Laser Optoelectron Prog, 2018, 55(3): 030103. doi: 10.3788/LOP55.030103

    CrossRef Google Scholar

    [61] 张慧敏, 李新阳. 大气湍流畸变相位屏的数值模拟方法研究[J]. 光电工程, 2006, 33(1): 14−19. doi: 10.3969/j.issn.1003-501X.2006.01.004

    CrossRef Google Scholar

    Zhang H M, Li X Y. Numerical simulation of wavefront phase screen distorted by atmospheric turbulence[J]. Opto-Electron Eng, 2006, 33(1): 14−19. doi: 10.3969/j.issn.1003-501X.2006.01.004

    CrossRef Google Scholar

  • This manuscript offers a detailed review of the advancements in the application of Zernike polynomials for surface characterization in optics. Zernike polynomials, known for their orthogonality and rotational invariance, have been extensively utilized in the characterization and optimization of optical surfaces. This paper first provides an overview of freeform surface description methods and discusses significant progress in the research of Zernike polynomials both domestically and internationally, exploring their practical applications in surface characterization. Finally, it anticipates the future prospects of Zernike polynomials in the field of surface characterization. Freeform surfaces, due to their non-rotational symmetric properties, present significant challenges for traditional optical design. Zernike polynomials offer a precise method to describe these complex surfaces, significantly improving the imaging quality and overall performance of optical systems. The paper highlights the application of Zernike polynomials in optical wavefront analysis and wavefront distortion, emphasizing their ability to decompose complex surfaces into independent components, reducing redundancy, and simplifying error analysis and characterization processes. International research has expanded the application range of Zernike polynomials beyond circular apertures, addressing limitations in traditional methods. These studies have explored applications, such as wavefront reconstruction and optical surface characterization. By developing orthogonal polynomials for elliptical, rectangular, and square apertures, researchers have significantly broadened the applicability of Zernike polynomials. Domestically, Chinese researchers have made significant contributions by generating orthogonal polynomials for non-circular apertures and studying the impact of sampling points on fitting accuracy. This research has enhanced the precision of Zernike polynomials in surface characterization, with applications including wavefront reconstruction and wavefront analysis, demonstrating the versatility and accuracy of Zernike polynomials in various optical design tasks. Compared with other characterization methods such as Q-type polynomials and XY polynomials, Zernike polynomials stand out for their high precision and flexibility, though combining these methods can further enhance the accuracy and efficiency of surface characterization. The manuscript suggests future research should focus on continued theoretical advancements, improved computational efficiency, and integration with other polynomial methods. These improvements will expand the application range and precision of Zernike polynomials in optical system design and optimization, driving progress in optical technology. Continued research and innovation in this field will further enhance the accuracy and efficiency of surface characterization, making Zernike polynomials an increasingly important tool in the advancement of optical systems.

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(3)

Tables(2)

Article Metrics

Article views() PDF downloads() Cited by()

Access History

Other Articles By Authors

Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint