[1]
|
Molebny V, Mcmanamon P F, Steinvall O, et al. Laser radar: historical prospective—from the East to the West[J]. Opt Eng, 2016, 56(3): 031220. doi: 10.1117/1.OE.56.3.031220
CrossRef Google Scholar
|
[2]
|
McManamon P F. LiDAR Technologies and Systems[M]. Bellingham: SPIE Press, 2019. https://doi.org/10.1117/3.2518254.
Google Scholar
|
[3]
|
刘博, 蒋贇, 王瑞, 等. 全天时单光子激光雷达技术进展与系统评价[J]. 红外与激光工程, 2023, 52(1): 20220748. doi: 10.3788/IRLA20220748
CrossRef Google Scholar
Liu B, Jiang Y, Wang R, et al. Technical progress and system evaluation of all-time single photon lidar[J]. Infrared Laser Eng, 2023, 52(1): 20220748. doi: 10.3788/IRLA20220748
CrossRef Google Scholar
|
[4]
|
Li ZH, Wu E, Pang C K, et al. Multi-beam single-photon-counting three-dimensional imaging lidar[J]. Opt Express, 2017, 25(9): 10189−10195. doi: 10.1364/OE.25.010189
CrossRef Google Scholar
|
[5]
|
李超林, 刘俊辰, 张福民, 等. 频率调制连续波激光雷达测量技术的非线性校正综述[J]. 光电工程, 2022, 49(7): 210438. doi: 10.12086/oee.2022.210438
CrossRef Google Scholar
Li C L, Liu J C, Zhang F M, et al. Review of nonlinearity correction of frequency modulated continuous wave LiDAR measurement technology[J]. Opto-Electron Eng, 2022, 49(7): 210438. doi: 10.12086/oee.2022.210438
CrossRef Google Scholar
|
[6]
|
李道京, 胡烜. 合成孔径激光雷达光学系统和作用距离分析[J]. 雷达学报, 2018, 7(2): 263−274. doi: 10.12000/JR18017
CrossRef Google Scholar
Li D J, Hu X. Optical system and detection range analysis of synthetic aperture ladar[J]. J Radars, 2018, 7(2): 263−274. doi: 10.12000/JR18017
CrossRef Google Scholar
|
[7]
|
朱进一, 谢永军. 采用衍射主镜的大口径激光雷达接收光学系统[J]. 红外与激光工程, 2017, 46(5): 0518001. doi: 10.3788/IRLA201746.0518001
CrossRef Google Scholar
Zhu J Y, Xie Y J. Large aperture lidar receiver optical system based on diffractive primary lens[J]. Infrared Laser Eng, 2017, 46(5): 0518001. doi: 10.3788/IRLA201746.0518001
CrossRef Google Scholar
|
[8]
|
Zuo H, He S Y. 1D LiDAR based on large aperture FPCB mirror[C]//2019 International Conference on Optical MEMS and Nanophotonics, 2019: 150–151. https://doi.org/10.1109/OMN.2019.8925013.
Google Scholar
|
[9]
|
李艳辉, 吴振森, 宫彦军, 等. 目标激光脉冲一维距离成像研究[J]. 物理学报, 2010, 59(10): 6988−6993. doi: 10.7498/aps.59.6988
CrossRef Google Scholar
Li Y H, Wu Z S, Gong Y J, et al. Laser one-dimensional range profile[J]. Acta Phys Sin, 2010, 59(10): 6988−6993. doi: 10.7498/aps.59.6988
CrossRef Google Scholar
|
[10]
|
Hess W, Kohler D, Rapp H, et al. Real-time loop closure in 2D LIDAR SLAM[C]//2016 IEEE International Conference on Robotics and Automation (ICRA), 2016: 1271–1278. https://doi.org/10.1109/ICRA.2016.7487258.
Google Scholar
|
[11]
|
刘博, 于洋, 姜朔. 激光雷达探测及三维成像研究进展[J]. 光电工程, 2019, 46(7): 190167. doi: 10.12086/oee.2019.190167
CrossRef Google Scholar
Liu B, Yu Y, Jiang S. Review of advances in LiDAR detection and 3D imaging[J]. Opto-Electron Eng, 2019, 46(7): 190167. doi: 10.12086/oee.2019.190167
CrossRef Google Scholar
|
[12]
|
黄远建, 李晓银, 叶文怡, 等. 基于共聚焦亚像素扫描的高分辨三维成像[J]. 光学学报, 2023, 43(8): 0822014. doi: 10.3788/AOS221974
CrossRef Google Scholar
Huang Y J, Li X Y, Ye W Y, et al. High resolution 3D imaging based on confocal sub-pixel scanning[J]. Acta Opt Sin, 2023, 43(8): 0822014. doi: 10.3788/AOS221974
CrossRef Google Scholar
|
[13]
|
胡以华, 张鑫源, 徐世龙, 等. 激光反射层析成像技术的研究进展[J]. 中国激光, 2021, 48(4): 0401002. doi: 10.3788/CJL202148.0401002
CrossRef Google Scholar
Hu Y H, Zhang X Y, Xu S L, et al. Research progress of laser reflective tomography techniques[J]. Chin J Lasers, 2021, 48(4): 0401002. doi: 10.3788/CJL202148.0401002
CrossRef Google Scholar
|
[14]
|
Fernald F G. Analysis of atmospheric lidar observations: some comments[J]. Appl Opt, 1984, 23(5): 652−653. doi: 10.1364/AO.23.000652
CrossRef Google Scholar
|
[15]
|
陈玉宝, 王箫鹏, 步志超, 等. 超大城市试验气溶胶激光雷达标定及结果分析[J]. 激光技术, 2022, 46(4): 435−443. doi: 10.7510/jgjs.issn.1001-3806.2022.04.001
CrossRef Google Scholar
Chen Y B, Wang X P, Bu Z C, et al. Calibration and result analysis of aerosol LiDAR in megacity experiment[J]. Laser Technol, 2022, 46(4): 435−443. doi: 10.7510/jgjs.issn.1001-3806.2022.04.001
CrossRef Google Scholar
|
[16]
|
Lefsky M A, Cohen W B, Parker G G, et al. Lidar remote sensing for ecosystem studies: lidar, an emerging remote sensing technology that directly measures the three-dimensional distribution of plant canopies, can accurately estimate vegetation structural attributes and should be of particular interest to forest, landscape, and global ecologists[J]. BioScience, 2002, 52(1): 19−30. doi: 10.1641/0006-3568(2002)052[0019:LRSFES]2.0.CO;2
CrossRef Google Scholar
|
[17]
|
唐军武, 陈戈, 陈卫标, 等. 海洋三维遥感与海洋剖面激光雷达[J]. 遥感学报, 2021, 25(1): 460−500. doi: 10.11834/jrs.20210495
CrossRef Google Scholar
Tang J W, Chen G, Chen W B, et al. Three dimensional remote sensing for oceanography and the Guanlan ocean profiling Lidar[J]. Natl Remote Sens Bull, 2021, 25(1): 460−500. doi: 10.11834/jrs.20210495
CrossRef Google Scholar
|
[18]
|
Behley J, Garbade M, Milioto A, et al. SemanticKITTI: a dataset for semantic scene understanding of LiDAR sequences[C]//2019 IEEE/CVF International Conference on Computer Vision, 2019: 9296–9306. https://doi.org/10.1109/ICCV.2019.00939.
Google Scholar
|
[19]
|
张银, 任国全, 程子阳, 等. 三维激光雷达在无人车环境感知中的应用研究[J]. 激光与光电子学进展, 2019, 56(13): 130001. doi: 10.3788/LOP56.130001
CrossRef Google Scholar
Zhang Y, Ren G Q, Cheng Z Y, et al. Application research of there-dimensional LiDAR in unmanned vehicle environment perception[J]. Laser Optoelectron Prog, 2019, 56(13): 130001. doi: 10.3788/LOP56.130001
CrossRef Google Scholar
|
[20]
|
赵浴阳, 周鹏飞, 解天鹏, 等. 单光子激光雷达技术发展现状与趋势[J]. 光电工程, 2024, 51(3): 240037. doi: 10.12086/oee.2024.240037
CrossRef Google Scholar
Zhao Y Y, Zhou P F, Xie T P, et al. Development status and trends of single-photon LiDAR technology[J]. Opto-Electron Eng, 2024, 51(3): 240037. doi: 10.12086/oee.2024.240037
CrossRef Google Scholar
|
[21]
|
徐晨, 晋凯, 魏凯. 合成孔径激光雷达成像技术研究进展[J]. 光电工程, 2024, 51(3): 240007. doi: 10.12086/oee.2024.240007
CrossRef Google Scholar
Xu C, Jin K, Wei K. Research progress of synthetic aperture ladar techniques[J]. Opto-Electron Eng, 2024, 51(3): 240007. doi: 10.12086/oee.2024.240007
CrossRef Google Scholar
|
[22]
|
郭圆新, 梁琨, 徐杨睿, 等. 基于直接散射光谱的多环境要素激光遥感方法[J]. 光电工程, 2024, 51(3): 240003. doi: 10.12086/oee.2024.240003
CrossRef Google Scholar
|
[23]
|
王玲, 刘博, 吴城, 等. 基于衍射透镜接收的激光雷达特性分析及测试[J]. 光电工程, 2024, 51(3): 240032. doi: 10.12086/oee.2024.240032
CrossRef Google Scholar
Wang L, Liu B, Wu C, et al. Characteristics analysis and test of LiDAR based on diffraction lens receiving[J]. Opto-Electron Eng, 2024, 51(3): 240032. doi: 10.12086/oee.2024.240032
CrossRef Google Scholar
|
[24]
|
胡申博, 刘俊辰, 余苏, 等. 调频连续波激光多路并行相干精密长度测量方法[J]. 光电工程, 2024, 51(3): 230285. doi: 10.12086/oee.2024.230285
CrossRef Google Scholar
Hu S B, Liu J C, Yu S, et al. Multiline parallel precision coherent length measurement of frequency modulation continuous wave lidar[J]. Opto-Electron Eng, 2024, 51(3): 230285. doi: 10.12086/oee.2024.230285
CrossRef Google Scholar
|
[25]
|
蔡怀宇, 杨朝乾, 崔子扬, 等. 图像引导和点云空间约束的公路洒落物检测定位方法[J]. 光电工程, 2024, 51(3): 230317. doi: 10.12086/oee.2024.230317
CrossRef Google Scholar
Cai H Y, Yang Z Q, Cui Z Y, et al. Image-guided and point cloud space-constrained method for detection and localization of abandoned objects on the road[J]. Opto-Electron Eng, 2024, 51(3): 230317. doi: 10.12086/oee.2024.230317
CrossRef Google Scholar
|
[26]
|
韩江涛, 谭凯, 张卫国, 等. 协同随机森林方法和无人机LiDAR空谱数据的盐沼植被“精灵圈”识别[J]. 光电工程, 2024, 51(3): 230188. doi: 10.12086/oee.2024.230188
CrossRef Google Scholar
Han J T, Tan K, Zhang W G, et al. Identification of salt marsh vegetation "fairy circles" using random forest method and spatial- spectral data of unmanned aerial vehicle LiDAR[J]. Opto-Electron Eng, 2024, 51(3): 230188. doi: 10.12086/oee.2024.230188
CrossRef Google Scholar
|
[27]
|
祁慧宇, 张伟华, 翟迪迪, 等. 高分辨率贝塞尔光束激光成像[J]. 光电工程, 2024, 51(3): 230243. doi: 10.12086/oee.2024.230243
CrossRef Google Scholar
Qi H Y, Zhang W H, Zhai D D, et al. High-resolution Bessel beam laser imaging[J]. Opto-Electron Eng, 2024, 51(3): 230243. doi: 10.12086/oee.2024.230243
CrossRef Google Scholar
|
[28]
|
李岸然, 邵光存, 靳凤宇, 等. 高精度相位式激光雷达测距系统的设计[J]. 光电工程, 2024, 51(3): 230246. doi: 10.12086/oee.2024.230246
CrossRef Google Scholar
Li A R, Shao G C, Jin F Y, et al. Design of high precision phase laser radar ranging system[J]. Opto-Electron Eng, 2024, 51(3): 230246. doi: 10.12086/oee.2024.230246
CrossRef Google Scholar
|
[29]
|
万岁岁, 庞亚军, 薛瑞祥, 等. 面向MEMS振镜激光雷达系统的近程接收机设计[J]. 光电工程, 2024, 51(3): 230287. doi: 10.12086/oee.2024.230287
CrossRef Google Scholar
Wan S S, Pang Y J, Xue R X, et al. Design of short-range LiDAR receiver based on MEMS mirror[J]. Opto-Electron Eng, 2024, 51(3): 230287. doi: 10.12086/oee.2024.230287
CrossRef Google Scholar
|