Wang X Y, Bai S J, Zhang Q, et al. Research progress of telescopes for space-based gravitational wave missions[J]. Opto-Electron Eng, 2023, 50(11): 230219. doi: 10.12086/oee.2023.230219
Citation: Wang X Y, Bai S J, Zhang Q, et al. Research progress of telescopes for space-based gravitational wave missions[J]. Opto-Electron Eng, 2023, 50(11): 230219. doi: 10.12086/oee.2023.230219

Research progress of telescopes for space-based gravitational wave missions

    Fund Project: Project supported by National Key Research and Development Program of China (2021YFC2202000)
More Information
  • The optical telescopes for space-based gravitational wave missions play an important role in the measurement, which both expand the beam going to the far spacecraft and efficiently collect the beam sent from the far spacecraft. The telescope, as part of the interferometric path, directly affects the measurement noise. Compared with the imaging system, the telescope for space gravitational wave observatory not only has high requirements on wavefront quality, but also has extremely high requirements on stray light performance and optical path stability, and the latter two are more challenging. The research progress of the telescope's optical system, optical-mechanical structure, space environment and thermal design, stray light simulation and suppression, and stability measurement is reviewed, which can provide a reference for the development of space gravitational telescope in our country.
  • 加载中
  • [1] Livas J C. Possible space-based gravitational-wave observatory mission concept[R]. Honolulu: International Astronomical Union, 2015.

    Google Scholar

    [2] Hammesfahr A. LISA mission study overview[J]. Class Quantum Grav, 2001, 18(19): 4045−4051. doi: 10.1088/0264-9381/18/19/311

    CrossRef Google Scholar

    [3] Jennrich O. LISA technology and instrumentation[J]. Class Quantum Grav, 2009, 26(15): 153001. doi: 10.1088/0264-9381/26/15/153001

    CrossRef Google Scholar

    [4] Luo J, Chen L S, Duan H Z, et al. TianQin: a space-borne gravitational wave detector[J]. Class Quantum Grav, 2016, 33(3): 035010. doi: 10.1088/0264-9381/33/3/035010

    CrossRef Google Scholar

    [5] Luo Z R, Guo Z K, Jin G, et al. A brief analysis to Taiji: science and technology[J]. Results Phys, 2020, 16: 102918. doi: 10.1016/j.rinp.2019.102918

    CrossRef Google Scholar

    [6] Luo Z R, Wang Y, Wu Y L, et al. The Taiji program: a concise overview[J]. Prog Theor Exp Phys, 2021, 2021(5): 05A108. doi: 10.1093/ptep/ptaa083

    CrossRef Google Scholar

    [7] Livas J C, Sankar S R. Optical telescope system-level design considerations for a space-based gravitational wave mission[J]. Proc SPIE, 2016, 9904: 99041K. doi: 10.1117/12.2233249

    CrossRef Google Scholar

    [8] Robertson D I, McNamara P, Ward H, et al. Optics for LISA[J]. Class Quantum Grav, 1997, 14(6): 1575−1577. doi: 10.1088/0264-9381/14/6/029

    CrossRef Google Scholar

    [9] Xiao Q, Duan H Z, Ming M, et al. The analysis of the far-field phase and the tilt-to-length error contribution in space-based laser interferometry[J]. Class Quantum Grav, 2023, 40(6): 065009. doi: 10.1088/1361-6382/acbadc

    CrossRef Google Scholar

    [10] Livas J C, Arsenovic P, Crow J A, et al. Telescopes for space-based gravitational wave missions[J]. Opt Eng, 2013, 52(9): 091811. doi: 10.1117/1.OE.52.9.091811

    CrossRef Google Scholar

    [11] Sankar S R, Livas J C. Optical telescope design for a space-based gravitational-wave mission[J]. Proc SPIE, 2014, 9143: 914314. doi: 10.1117/12.2056824

    CrossRef Google Scholar

    [12] Livas J, Sankar S. Optical telescope design study results[J]. J Phys Conf Ser, 2015, 610: 012029. doi: 10.1088/1742-6596/610/1/012029

    CrossRef Google Scholar

    [13] 范纹彤, 赵宏超, 范磊, 等. 空间引力波探测望远镜系统技术初步分析[J]. 中山大学学报(自然科学版), 2021, 60(1): 178−185. doi: 10.13471/j.cnki.acta.snus.2020.11.02.2020B111

    CrossRef Google Scholar

    Fan W T, Zhao H C, Fan L, et al. Preliminary analysis of space gravitational wave detection telescope system technology[J]. Acta Sci Nat Univ Sunyatseni, 2021, 60(1): 178−185. doi: 10.13471/j.cnki.acta.snus.2020.11.02.2020B111

    CrossRef Google Scholar

    [14] Fan Z C, Zhao L J, Cao S Y, et al. High performance telescope system design for the TianQin project[J]. Class Quantum Grav, 2022, 39(19): 195017. doi: 10.1088/1361-6382/ac8b57

    CrossRef Google Scholar

    [15] Fan Z C, Ji H R, Mo Y, et al. Pupil aberrations correction of the afocal telescope for the TianQin project[J]. Class Quantum Grav, 2023, 40(19): 195017. doi: 10.1088/1361-6382/aceb2a

    CrossRef Google Scholar

    [16] 王智, 沙巍, 陈哲, 等. 空间引力波探测望远镜初步设计与分析[J]. 中国光学, 2018, 11(1): 131−151. doi: 10.3788/CO.20181101.0131

    CrossRef Google Scholar

    Wang Z, Sha W, Chen Z, et al. Preliminary design and analysis of telescope for space gravitational wave detection[J]. Chin Opt, 2018, 11(1): 131−151. doi: 10.3788/CO.20181101.0131

    CrossRef Google Scholar

    [17] Yu M, Li J C, Lin H A, et al. Optical system design of large-aperture space gravitational wave telescope[J]. Opt Eng, 2023, 62(6): 065107. doi: 10.1117/1.OE.62.6.065107

    CrossRef Google Scholar

    [18] Isleif K S, Gerberding O, Penkert D, et al. Suppressing ghost beams: backlink options for LISA[J]. J Phys Conf Ser, 2017, 840: 012016. doi: 10.1088/1742-6596/840/1/012016

    CrossRef Google Scholar

    [19] Livas J, Sankar S, West G, et al. eLISA telescope in-field pointing and scattered light study[J]. J Phys Conf Ser, 2017, 840: 012015. doi: 10.1088/1742-6596/840/1/012015

    CrossRef Google Scholar

    [20] Spector A D. Investigation of the telescope back-reflection for space-based interferometric gravitational wave detectors[D]. Gainesville: University of Florida, 2015.

    Google Scholar

    [21] Kim D, Choi H, Brendel T, et al. Advances in optical engineering for future telescopes[J]. Opto-Electron Adv, 2021, 4(6): 210040. doi: 10.29026/oea.2021.210040

    CrossRef Google Scholar

    [22] 田思恒, 黄永梅, 徐杨杰, 等. 利用离焦光斑的离轴望远镜失调校正方法研究[J]. 光电工程, 2023, 50(7): 230040. doi: 10.12086/oee.2023.230040

    CrossRef Google Scholar

    Tian S H, Huang Y M, Xu Y J, et al. Study of off-axis telescope misalignment correction method using out-of-focus spot[J]. Opto-Electron Eng, 2023, 50(7): 230040. doi: 10.12086/oee.2023.230040

    CrossRef Google Scholar

    [23] Schuldt T, Gohlke M, Weise D, et al. Picometer and nanoradian optical heterodyne interferometry for translation and tilt metrology of the LISA gravitational reference sensor[J]. Class Quantum Grav, 2009, 26(8): 085008. doi: 10.1088/0264-9381/26/8/085008

    CrossRef Google Scholar

    [24] Sankar S R, Livas J. Optical alignment and wavefront error demonstration of a prototype LISA telescope[J]. Class Quantum Grav, 2020, 37(6): 065005. doi: 10.1088/1361-6382/ab6adf

    CrossRef Google Scholar

    [25] Escudero Sanz I, Heske A, Livas J C. A telescope for LISA–the laser interferometer space antenna[J]. Adv Opt Technol, 2018, 7(6): 395−400. doi: 10.1515/aot-2018-0044

    CrossRef Google Scholar

    [26] Lehan J P, Howard J M, Li H, et al. Pupil aberrations in the LISA transceiver design[J]. Proc SPIE, 2020, 11479: 114790D. doi: 10.1117/12.2566373

    CrossRef Google Scholar

    [27] Papa J C, Howard J M, Rolland J P. Survey of the four-mirror freeform imager solution space[J]. Opt Express, 2021, 29(25): 41534−41551. doi: 10.1364/OE.442943

    CrossRef Google Scholar

    [28] Weise D, Marenaci P, Weimer P, et al. Opto-mechanical architecture of the LISA instrument[J]. Proc SPIE, 2017, 10566: 1056611. doi: 10.1117/12.2308192

    CrossRef Google Scholar

    [29] Chen S N, Jiang H L, Wang C Y, et al. Optical system design of inter-spacecraft laser interferometry telescope[J]. Opt Photonics J, 2019, 9(8B): 26−37. doi: 10.4236/opj.2019.98B004

    CrossRef Google Scholar

    [30] 余苗, 李建聪, 林宏安, 等. 低灵敏度空间引力波望远镜光学系统设计[J]. 中国光学(中英文), 2023, 16(6): 1384−1393. doi: 10.37188/CO.2023-0006

    CrossRef Google Scholar

    Yu M, Li J C, Lin H A, et al. Design of optical system for low-sensitivity space gravitational wave telescope[J]. Chin Opt, 2023, 16(6): 1384−1393. doi: 10.37188/CO.2023-0006

    CrossRef Google Scholar

    [31] Li J C, Lin H A, Huang Y Z, et al. Evaluation method for the design results of space gravitational-wave telescopes[J]. Meas Sci Technol, 2023, 34(5): 055409. doi: 10.1088/1361-6501/acb167

    CrossRef Google Scholar

    [32] Weise D R, Marenaci P, Weimer P, et al. Alternative opto-mechanical architectures for the LISA instrument[J]. J Phys Conf Ser, 2009, 154: 012029. doi: 10.1088/1742-6596/154/1/012029

    CrossRef Google Scholar

    [33] 冷荣宽, 王上, 王智, 等. 空间引力波探测前向杂散光测量和抑制[J]. 中国光学(中英文), 2023, 16(5): 1081−1088. doi: 10.37188/CO.2022-0251

    CrossRef Google Scholar

    Leng R K, Wang S, Wang Z, et al. Measurement and suppression of forward stray light for spaceborne gravitational wave detection[J]. Chin Opt, 2023, 16(5): 1081−1088. doi: 10.37188/CO.2022-0251

    CrossRef Google Scholar

    [34] Spector A, Mueller G. Back-reflection from a Cassegrain telescope for space-based interferometric gravitational-wave detectors[J]. Class Quantum Grav, 2012, 29(20): 205005. doi: 10.1088/0264-9381/29/20/205005

    CrossRef Google Scholar

    [35] Sankar S R, Livas J C. Initial progress with numerical modelling of scattered light in a candidate eLISA telescope[J]. J Phys Conf Ser, 2015, 610: 012031. doi: 10.1088/1742-6596/610/1/012031

    CrossRef Google Scholar

    [36] Khodnevych V, Lintz M, Dinu-Jaeger N, et al. Stray light estimates due to micrometeoroid damage in space optics, application to the LISA telescope[J]. J Astron Telesc Instrum Syst, 2020, 6(4): 048005. doi: 10.1117/1.JATIS.6.4.048005

    CrossRef Google Scholar

    [37] Weise D, Braxmaier C, Gath P, et al. Optical metrology subsystem of the LISA gravitational wave detector[J]. Proc SPIE, 2017, 10567: 105670Q. doi: 10.1117/12.2308037

    CrossRef Google Scholar

    [38] Verlaan A L, Hogenhuis H, Pijnenburg J, et al. LISA telescope assembly optical stability characterization for ESA[J]. Proc SPIE, 2017, 10564: 105640K. doi: 10.1117/12.2309058

    CrossRef Google Scholar

    [39] Sanjuán J, Preston A, Korytov D, et al. Carbon fiber reinforced polymer dimensional stability investigations for use on the laser interferometer space antenna mission telescope[J]. Rev Sci Instrum, 2011, 82(12): 124501. doi: 10.1063/1.3662470

    CrossRef Google Scholar

    [40] Sanjuán J, Korytov D, Mueller G, et al. Note: silicon carbide telescope dimensional stability for space-based gravitational wave detectors[J]. Rev Sci Instrum, 2012, 83(11): 116107. doi: 10.1063/1.4767247

    CrossRef Google Scholar

    [41] Krieg J, Carré A, Döhring T, et al. The past decade of ZERODUR® glass-ceramics in space applications[J]. Proc SPIE, 2022, 12180: 121805N. doi: 10.1117/12.2628956

    CrossRef Google Scholar

    [42] Brooks T E, Eng R, Stahl H P. Optothermal stability of large ULE and Zerodur mirrors[J]. Proc SPIE, 2018, 10743: 107430A. doi: 10.1117/12.2321275

    CrossRef Google Scholar

    [43] Gath P F, Weise D, Schulte H R, et al. LISA mission and system architectures and performances[J]. J Phys Conf Ser, 2009, 154: 012013. doi: 10.1088/1742-6596/154/1/012013

    CrossRef Google Scholar

    [44] Barraclough S, Robson A, Smith K, et al. LISA PathFinder thermal design and micro-disturbance considerations[R]. SAE International, 2006. https://doi.org/10.4271/2006-01-2276.

    Google Scholar

    [45] Morgenroth L, Honnen K, Heys S, et al. Thermal study of laser interferometer space antenna (LISA)[R]. SAE International, 2001. https://doi.org/10.4271/2001-01-2259.

    Google Scholar

    [46] Peabody H, Merkowitz S. LISA thermal design[J]. Class Quantum Grav, 2005, 22(10): S403−S411. doi: 10.1088/0264-9381/22/10/036

    CrossRef Google Scholar

    [47] Peabody H, Merkowitz S M. Low frequency thermal performance of the LISA sciencecraft[J]. AIP Conf Proc, 2006, 873(1): 204−209. doi: 10.1063/1.2405044

    CrossRef Google Scholar

    [48] Fishwick N, Barraclough S, Warren C. High accuracy thermal modelling applied to LISA pathfinder thermal noise analysis[C]//40th International Conference on Environmental Systems, 2010: 6142. https://doi.org/10.2514/6.2010-6142.

    Google Scholar

    [49] 夏冰, 陈厚源, 汪一萍, 等. 空间引力波探测卫星外热流环境及其热控设计[J]. 中山大学学报(自然科学版), 2021, 60(1): 138−145. doi: 10.13471/j.cnki.acta.snus.2020.11.11.2020B131

    CrossRef Google Scholar

    Xia B, Chen H Y, Wang Y P, et al. External heat flux and thermal control design of space gravitational wave detection satellite[J]. Acta Sci Nat Univ Sunyatseni, 2021, 60(1): 138−145. doi: 10.13471/j.cnki.acta.snus.2020.11.11.2020B131

    CrossRef Google Scholar

    [50] Chen H Y, Ling C, Yao Z Y, et al. Thermal environment analysis for TianQin: II. Solar irradiance disparity across constellation[J]. Class Quantum Grav, 2022, 39(16): 165009. doi: 10.1088/1361-6382/ac8093

    CrossRef Google Scholar

    [51] Chen H Y, Ding Y W, Pan J J, et al. Thermal environment analysis for TianQin: III. Low-frequency thermal transfer inside the flat-top sun shield[J]. Class Quantum Grav, 2023, 40(8): 085001. doi: 10.1088/1361-6382/acc22e

    CrossRef Google Scholar

    [52] Chen H Y, Ling C, Zhang X F, et al. Thermal environment analysis for TianQin[J]. Class Quantum Grav, 2021, 38(15): 155015. doi: 10.1088/1361-6382/ac0a85

    CrossRef Google Scholar

    [53] Umińska A A, Kulkarni S, Sanjuan J, et al. Ground testing of the LISA telescope[J]. Proc SPIE, 2021, 11820: 118200I. doi: 10.1117/12.2594605

    CrossRef Google Scholar

    [54] Jersey K, Zhang Y Q, Harley-Trochimczyk I, et al. Design, fabrication, and testing of an optical truss interferometer for the LISA telescope[J]. Proc SPIE, 2021, 11820: 118200L. doi: 10.1117/12.2594738

    CrossRef Google Scholar

  • The optical telescopes for space-based gravitational wave missions play an important role in the measurement, which both expand the beam going to the far spacecraft and efficiently collect the beam sent from the far spacecraft. The telescope, as part of the interferometric path, directly affects the measurement noise. Compared with the imaging system, the telescope for space gravitational wave observatory not only has high requirements on wavefront quality, but also has extremely high requirements on stray light performance and optical path stability. In addition, the coupling of the wavefront aberration resulting from the telescope and pointing error can produce tilt-to-length (TTL) noise. One of the design goals is to minimize the TTL coupling in the transceivers. In terms of the optical system, the design baseline is an off-axis four-mirror optical system, which can meet the wavefront quality and stray light specification requirements. The optimization of the optical system is to further reduce the TTL noise and improve compatibility with the optical bench. The opto-mechanical structure of the telescope is the physical carrier to realize the optical, mechanical, and thermal design functions. The current design baseline tends to use Zerodur or ULE materials for all optical components and structures, which can ensure the optical path stability of the telescope. However, there are currently few studies on the vibration tolerance of telescopes during the launch stage. In terms of stray light, through optimization of the optical system and strict control of the surface quality of optical components, backscattered stray light can be reduced to 10−10 of the transmission power. Stray light caused by contamination of the optical surface is more serious than stray light caused by the roughness of the optical surface. Stringent anti-pollution measures need to be taken during development and storage. In terms of the thermal design, the main external heat flow disturbance in the 0.1 mHz - 1 Hz frequency band comes from the fluctuation of the solar constant. The thermal control of the telescope is closely related to the configuration of the spacecraft and the distribution of heat sources. Thermal design and optimization of telescopes need to be carried out integrated with the spacecraft. The research progress of the telescope's optical system, optomechanical structure, space environment and thermal design, stray light simulation and suppression, and stability measurement are reviewed, which can provide a reference for the development of space gravitational telescopes in our country.

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(21)

Tables(1)

Article Metrics

Article views() PDF downloads() Cited by()

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint