Yu J, Yang H, Wu J G, et al. Ultrafast laser fabrication of surface-enhanced Raman scattering sensors[J]. Opto-Electron Eng, 2023, 50(3): 220333. doi: 10.12086/oee.2023.220333
Citation: Yu J, Yang H, Wu J G, et al. Ultrafast laser fabrication of surface-enhanced Raman scattering sensors[J]. Opto-Electron Eng, 2023, 50(3): 220333. doi: 10.12086/oee.2023.220333

Ultrafast laser fabrication of surface-enhanced Raman scattering sensors

    Fund Project: STI 2030-Major Projects (2022ZD0208601), Shenzhen Overseas Talents Project (2020103), Fujian Key Laboratory of Modern Precision Measurement and Laser Nondestructive Testing (2018xKA001), National Natural Science Foundation of China (52105593), and Shenzhen Key Project for Technology Development (JSGG20191129105838333)
More Information
  • Surface-enhanced Raman scattering (SERS) provides important applications in diverse fields. In order to achieve high-precision SERS detection of trace molecules, current research focuses on how to increase the density of hot spots and the number of analyte molecules in the detection area. An ultrafast laser can rapidly construct large-area micro/nano-structures on material surfaces. It is important for the commercial preparation of high-performance SERS sensors. In this paper, the ultrafast laser preparation of high-performance SERS sensors is introduced from the aspect of the density of hot spots and the number of analyte molecules in the detection region. Ultrafast lasers enable both "bottom-up" and "top-down" processing. In particular, the superhydrophobic surface prepared by the ultrafast laser is one of the most effective methods to achieve the enrichment of analyte molecules. Finally, a prospect for the development of laser-prepared SERS substrates is provided.
  • 加载中
  • [1] Raman C V, Krishnan K S. A new type of secondary radiation[J]. Nature, 1928, 121(3048): 501−502. doi: 10.1038/121501c0

    CrossRef Google Scholar

    [2] Zhang X L, Dai Z G, Zhang X G, et al. Recent progress in the fabrication of SERS substrates based on the arrays of polystyrene nanospheres[J]. Sci China Phys Mech Astron, 2016, 59(12): 126801. doi: 10.1007/s11433-016-0341-y

    CrossRef Google Scholar

    [3] 陈娜. 硅基SERS芯片的构建及其在环境检测中的应用[D]. 苏州: 苏州大学, 2018.

    Google Scholar

    Chen N. Construction of silicon-based SERS chips and their use in environmental detection[D]. Suzhou: Soochow University, 2018.

    Google Scholar

    [4] 刘江涛, 洪昕. 基于微流控芯片SERS生物传感器的发展与应用[J]. 北京生物医学工程, 2018, 37(2): 201−207. doi: 10.3969/j.issn.1002-3208.2018.02.016

    CrossRef Google Scholar

    Liu J T, Hong X. Development and application of SERS biosensor based on microfluidic chip[J]. Beijing Biomed Eng, 2018, 37(2): 201−207. doi: 10.3969/j.issn.1002-3208.2018.02.016

    CrossRef Google Scholar

    [5] Wang X, Huang S C, Hu S, et al. Fundamental understanding and applications of Plasmon-enhanced Raman spectroscopy[J]. Nat Rev Phys, 2020, 2(5): 253−271. doi: 10.1038/s42254-020-0171-y

    CrossRef Google Scholar

    [6] Fleischmann M, Hendra P J, McQuillan A J. Raman spectra of pyridine adsorbed at a silver electrode[J]. Chem Phys Lett, 1974, 26(2): 163−166. doi: 10.1016/0009-2614(74)85388-1

    CrossRef Google Scholar

    [7] Jeanmaire D L, van Duyne R P. Surface Raman spectroelectrochemistry: part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode[J]. J Electroanal Chem Interfacial Electrochem, 1977, 84(1): 1−20. doi: 10.1016/S0022-0728(77)80224-6

    CrossRef Google Scholar

    [8] Chang T H P, Mankos M, Lee K Y, et al. Multiple electron-beam lithography[J]. Microelectron Eng, 2001, 57–58: 117−135. doi: 10.1016/S0167-9317(01)00528-7

    CrossRef Google Scholar

    [9] Garg V, Mote R G, Fu J. Focused ion beam direct fabrication of subwavelength nanostructures on silicon for multicolor generation[J]. Adv Mater Technol, 2018, 3(8): 1800100. doi: 10.1002/admt.201800100

    CrossRef Google Scholar

    [10] Chen W X, Tymchenko M, Gopalan P, et al. Large-area nanoimprinted colloidal Au nanocrystal-based nanoantennas for ultrathin polarizing plasmonic metasurfaces[J]. Nano Lett, 2015, 15(8): 5254−5260. doi: 10.1021/acs.nanolett.5b02647

    CrossRef Google Scholar

    [11] Vishnu J, Manivasagam V K, Gopal V, et al. Hydrothermal treatment of etched titanium: a potential surface Nano-modification technique for enhanced biocompatibility[J]. Nanomed-Nanotechnol Biol Med, 2019, 20: 102016. doi: 10.1016/j.nano.2019.102016

    CrossRef Google Scholar

    [12] Acharya G, Shin C S, McDermott M, et al. The hydrogel template method for fabrication of homogeneous Nano/microparticles[J]. J Control Release, 2010, 141(3): 314−319. doi: 10.1016/j.jconrel.2009.09.032

    CrossRef Google Scholar

    [13] Li H Z, Yang Q, Hou J, et al. Bioinspired micropatterned superhydrophilic Au-areoles for surface-enhanced Raman scattering (SERS) trace detection[J]. Adv Funct Mater, 2018, 28(21): 1800448. doi: 10.1002/adfm.201800448

    CrossRef Google Scholar

    [14] Agarwal P, Wang H, Sun M R, et al. Microfluidics enabled bottom-up engineering of 3D vascularized tumor for drug discovery[J]. ACS Nano, 2017, 11(7): 6691−6702. doi: 10.1021/acsnano.7b00824

    CrossRef Google Scholar

    [15] 廉洁, 周稳稳, 石西增, 等. 多靶标生物标志物检测的微流体磁敏生物传感器研制[J]. 分析化学, 2013, 41(9): 1302−1307. doi: 10.3724/SP.J.1096.2013.30231

    CrossRef Google Scholar

    Lian J, Zhou W W, Shi X Z, et al. Development of integrated microfluidic magnetic biosensor for multi-biomarker detection[J]. Chin J Anal Chem, 2013, 41(9): 1302−1307. doi: 10.3724/SP.J.1096.2013.30231

    CrossRef Google Scholar

    [16] Geissler M, Clime L, Hoa X D, et al. Microfluidic integration of a cloth-based hybridization array system (CHAS) for rapid, colorimetric detection of enterohemorrhagic Escherichia coli (EHEC) using an articulated, centrifugal platform[J]. Anal Chem, 2015, 87(20): 10565−10572. doi: 10.1021/acs.analchem.5b03085

    CrossRef Google Scholar

    [17] Liu X, Du D, Mourou G. Laser ablation and micromachining with ultrashort laser pulses[J]. IEEE J Quantum Electron, 1997, 33(10): 1706−1716. doi: 10.1109/3.631270

    CrossRef Google Scholar

    [18] 杨青, 成扬, 方政, 等. 仿生超滑表面的飞秒激光微纳制造及应用[J]. 光电工程, 2022, 49(1): 210326. doi: 10.12086/oee.2022.210326

    CrossRef Google Scholar

    Yang Q, Cheng Y, Fang Z, et al. The preparation and applications of bio-inspired slippery surface by femtosecond laser micro-Nano manufacturing[J]. Opto-Electron Eng, 2022, 49(1): 210326. doi: 10.12086/oee.2022.210326

    CrossRef Google Scholar

    [19] Shao Q, Que R H, Shao M W, et al. Copper nanoparticles grafted on a silicon wafer and their excellent surface-enhanced Raman scattering[J]. Adv Funct Mater, 2012, 22(10): 2067−2070. doi: 10.1002/adfm.201102943

    CrossRef Google Scholar

    [20] Liu Z, Cheng L, Zhang L, et al. Large-area fabrication of highly reproducible surface enhanced Raman substrate via a facile double sided tape-assisted transfer approach using hollow Au-Ag alloy nanourchins[J]. Nanoscale, 2014, 6(5): 2567−2572. doi: 10.1039/C3NR05840A

    CrossRef Google Scholar

    [21] Crouch C H, Carey J E, Warrender J M, et al. Comparison of structure and properties of femtosecond and nanosecond laser-structured silicon[J]. Appl Phys Lett, 2004, 84(11): 1850−1852. doi: 10.1063/1.1667004

    CrossRef Google Scholar

    [22] Xu B B, Ma Z C, Wang L, et al. Localized flexible integration of high-efficiency surface enhanced Raman scattering (SERS) monitors into microfluidic channels[J]. Lab Chip, 2011, 11(19): 3347−3351. doi: 10.1039/c1lc20397e

    CrossRef Google Scholar

    [23] Xu L M, Liu H G, Zhou H, et al. One-step fabrication of metal nanoparticles on polymer film by femtosecond LIPAA method for SERS detection[J]. Talanta, 2021, 228: 122204. doi: 10.1016/j.talanta.2021.122204

    CrossRef Google Scholar

    [24] de Angelis F, Gentile F, Mecarini F, et al. Breaking the diffusion limit with super-hydrophobic delivery of molecules to plasmonic nanofocusing SERS structures[J]. Nat Photonics, 2011, 5(11): 682−687. doi: 10.1038/nphoton.2011.222

    CrossRef Google Scholar

    [25] He A, Yang H, Xue W, et al. Tunable coffee-ring effect on a superhydrophobic surface[J]. Opt Lett, 2017, 42(19): 3936−3939. doi: 10.1364/OL.42.003936

    CrossRef Google Scholar

    [26] Song J, Cheng W F, Nie M T, et al. Partial leidenfrost evaporation-assisted ultrasensitive surface-enhanced Raman spectroscopy in a Janus water droplet on hierarchical plasmonic micro-/nanostructures[J]. ACS Nano, 2020, 14(8): 9521−9531. doi: 10.1021/acsnano.0c04239

    CrossRef Google Scholar

    [27] Yu J, Wu J G, Yang H, et al. Extremely sensitive SERS sensors based on a femtosecond laser-fabricated superhydrophobic/-philic microporous platform[J]. ACS Appl Mater Interfaces, 2022, 14(38): 43877−43885. doi: 10.1021/acsami.2c10381

    CrossRef Google Scholar

    [28] Chen S, Meng L Y, Shan H Y, et al. How to light special hot spots in Multiparticle-film configurations[J]. ACS Nano, 2016, 10(1): 581−587. doi: 10.1021/acsnano.5b05605

    CrossRef Google Scholar

    [29] Willets K A, van Duyne R P. Localized surface Plasmon resonance spectroscopy and sensing[J]. Annu Rev Phys Chem, 2007, 58: 267−297. doi: 10.1146/annurev.physchem.58.032806.104607

    CrossRef Google Scholar

    [30] Di Pietro P, Strano G, Zuccarello L, et al. Gold and silver nanoparticles for applications in theranostics[J]. Curr Top Med Chem, 2016, 16(27): 3069−3102. doi: 10.2174/1568026616666160715163346

    CrossRef Google Scholar

    [31] Ma Z C, Zhang Y L, Han B, et al. Femtosecond laser direct writing of plasmonic Ag/Pd alloy nanostructures enables flexible integration of robust SERS substrates[J]. Adv Mater Technol, 2017, 2(6): 1600270. doi: 10.1002/admt.201600270

    CrossRef Google Scholar

    [32] Yan W J, Yang L K, Chen J N, et al. In situ two-step Photoreduced SERS materials for on-chip single-molecule spectroscopy with high reproducibility[J]. Adv Mater, 2017, 29(36): 1702893. doi: 10.1002/adma.201702893

    CrossRef Google Scholar

    [33] Ran P, Jiang L, Li X, et al. Femtosecond photon-mediated plasma enhances photosynthesis of plasmonic nanostructures and their SERS applications[J]. Small, 2019, 15(11): 1804899. doi: 10.1002/smll.201804899

    CrossRef Google Scholar

    [34] Delaporte P, Alloncle A P. Laser-induced forward transfer: a high resolution additive manufacturing technology[J]. Opt Laser Technol, 2016, 78: 33−41. doi: 10.1016/j.optlastec.2015.09.022

    CrossRef Google Scholar

    [35] Ma X D, Jiang L, Li X W, et al. Hybrid Superhydrophilic-superhydrophobic micro/nanostructures fabricated by femtosecond laser-induced forward transfer for sub-femtomolar Raman detection[J]. Microsyst Nanoeng, 2019, 5: 48. doi: 10.1038/s41378-019-0090-1

    CrossRef Google Scholar

    [36] Jing Y T, Wang R J, Wang Q L, et al. An overview of surface-enhanced Raman scattering substrates by pulsed laser deposition technique: fundamentals and applications[J]. Adv Compos Hybrid Mater, 2021, 4(4): 885−905. doi: 10.1007/s42114-021-00330-0

    CrossRef Google Scholar

    [37] Khan T M, Lunney J G, O'Rourke D, et al. Various pulsed laser deposition methods for preparation of silver-sensitised glass and paper substrates for surface-enhanced Raman spectroscopy[J]. Appl Phys A, 2019, 125(9): 659. doi: 10.1007/s00339-019-2968-z

    CrossRef Google Scholar

    [38] Smyth C A, Mirza I, Lunney J G, et al. Surface-enhanced Raman spectroscopy (SERS) using Ag nanoparticle films produced by pulsed laser deposition[J]. Appl Surf Sci, 2013, 264: 31−35. doi: 10.1016/j.apsusc.2012.09.078

    CrossRef Google Scholar

    [39] 杨焕, 曹宇, 李峰平, 等. 激光制备超疏水表面研究进展[J]. 光电工程, 2017, 44(12): 1160−1168. doi: 10.3969/j.issn.1003-501X.2017.12.003

    CrossRef Google Scholar

    Yang H, Cao Y, Li F P, et al. Research progress in superhydrophobic surfaces fabricated by laser[J]. Opto-Electron Eng, 2017, 44(12): 1160−1168. doi: 10.3969/j.issn.1003-501X.2017.12.003

    CrossRef Google Scholar

    [40] 欧阳旭, 谢子健, 张孟瑞, 等. 基于激光诱导表面周期结构的微纳防伪结构色[J]. 光电工程, 2022, 49(1): 210320. doi: 10.12086/oee.2022.210320

    CrossRef Google Scholar

    Ouyang X, Xie Z J, Zhang M R, et al. Laser-induced periodic surface structure for microscale anti-counterfeiting structural colors[J]. Opto-Electron Eng, 2022, 49(1): 210320. doi: 10.12086/oee.2022.210320

    CrossRef Google Scholar

    [41] 朱小伟, 潘哲豪, 杨文锋, 等. 基于激光三维雕刻的CFRP多梯层挖补胶接接头加工技术研究[J]. 光电工程, 2022, 49(1): 210314. doi: 10.12086/oee.2022.210314

    CrossRef Google Scholar

    Zhu X W, Pan Z H, Yang W F, et al. Study on multi-layered CFRP patch bonding joint based on laser 3D engraving technology[J]. Opto-Electron Eng, 2022, 49(1): 210314. doi: 10.12086/oee.2022.210314

    CrossRef Google Scholar

    [42] Chang H W, Tsai Y C, Cheng C W, et al. Nanostructured Ag surface fabricated by femtosecond laser for surface-enhanced Raman scattering[J]. J Colloid Interface Sci, 2011, 360(1): 305−308. doi: 10.1016/j.jcis.2011.04.005

    CrossRef Google Scholar

    [43] Erol M, Han Y, Stanley S K, et al. SERS not to be taken for granted in the presence of oxygen[J]. J Am Chem Soc, 2009, 131(22): 7480−7481. doi: 10.1021/ja807458x

    CrossRef Google Scholar

    [44] Luo X, Liu W J, Chen C H, et al. Femtosecond laser micro-Nano structured Ag SERS substrates with unique sensitivity, uniformity and stability for food safety evaluation[J]. Opt Laser Technol, 2021, 139: 106969. doi: 10.1016/j.optlastec.2021.106969

    CrossRef Google Scholar

    [45] Siddhanta S, Thakur V, Narayana C, et al. Universal metal-semiconductor hybrid nanostructured SERS substrate for biosensing[J]. ACS Appl Mater Interfaces, 2012, 4(11): 5807−5812. doi: 10.1021/am302102p

    CrossRef Google Scholar

    [46] Fan M K, Andrade G F S, Brolo A G. A review on the fabrication of substrates for surface enhanced Raman spectroscopy and their applications in analytical chemistry[J]. Anal Chim Acta, 2011, 693(1–2): 7−25. doi: 10.1016/j.aca.2011.03.002

    CrossRef Google Scholar

    [47] Naqvi T K, Bajpai A, Bharati M S S, et al. Ultra-sensitive reusable SERS sensor for multiple hazardous materials detection on single platform[J]. J Hazard Mater, 2021, 407: 124353. doi: 10.1016/j.jhazmat.2020.124353

    CrossRef Google Scholar

    [48] Xu K C, Wang Z Y, Tan C F, et al. Uniaxially stretched flexible surface Plasmon resonance film for versatile surface enhanced Raman scattering diagnostics[J]. ACS Appl Mater Interfaces, 2017, 9(31): 26341−26349. doi: 10.1021/acsami.7b06669

    CrossRef Google Scholar

    [49] Dai H C, Sun Y J, Ni P J, et al. Three-dimensional TiO2 supported silver nanoparticles as sensitive and UV-cleanable substrate for surface enhanced Raman scattering[J]. Sens Actuators B Chem, 2017, 242: 260−268. doi: 10.1016/j.snb.2016.10.085

    CrossRef Google Scholar

    [50] Xu K C, Zhou R, Takei K, et al. Toward flexible surface-enhanced Raman scattering (SERS) sensors for point-of-care diagnostics[J]. Adv Sci, 2019, 6(16): 1900925. doi: 10.1002/advs.201900925

    CrossRef Google Scholar

    [51] Zhang Q, Lee Y H, Phang I Y, et al. Hierarchical 3D SERS substrates fabricated by integrating photolithographic microstructures and self-assembly of silver nanoparticles[J]. Small, 2014, 10(13): 2703−2711. doi: 10.1002/smll.201303773

    CrossRef Google Scholar

    [52] Phan-Quang G C, Han X M, Koh C S L, et al. Three-dimensional surface-enhanced Raman scattering platforms: large-scale plasmonic hotspots for new applications in sensing, microreaction, and data storage[J]. Acc Chem Res, 2019, 52(7): 1844−1854. doi: 10.1021/acs.accounts.9b00163

    CrossRef Google Scholar

    [53] Yang D, Cho H, Koo S, et al. Simple, large-scale fabrication of uniform Raman-enhancing substrate with enhancement saturation[J]. ACS Appl Mater Interfaces, 2017, 9(22): 19092−19101. doi: 10.1021/acsami.7b03239

    CrossRef Google Scholar

    [54] Li X, Lee H K, Phang I Y, et al. Superhydrophobic-oleophobic Ag nanowire platform: an analyte-concentrating and quantitative aqueous and organic toxin surface-enhanced Raman scattering sensor[J]. Anal Chem, 2014, 86(20): 10437−10444. doi: 10.1021/ac502955w

    CrossRef Google Scholar

    [55] Lee Y H, Lay C L, Shi W X, et al. Creating two self-assembly micro-environments to achieve supercrystals with dual structures using polyhedral nanoparticles[J]. Nat Commun, 2018, 9(1): 2769. doi: 10.1038/s41467-018-05102-x

    CrossRef Google Scholar

    [56] Tao A, Kim F, Hess C, et al. Langmuir-Blodgett silver nanowire monolayers for molecular sensing using surface-enhanced Raman spectroscopy[J]. Nano Lett, 2003, 3(9): 1229−1233. doi: 10.1021/nl0344209

    CrossRef Google Scholar

    [57] Khew S Y, Tan C F, Yan H P, et al. Nanosecond laser ablation for enhanced adhesion of CuO nanowires on copper substrate and its application for oil-water separation[J]. Appl Surf Sci, 2019, 465: 995−1002. doi: 10.1016/j.apsusc.2018.09.256

    CrossRef Google Scholar

    [58] Zhao Y Z, Su Y L, Hou X Y, et al. Directional sliding of water: biomimetic snake scale surfaces[J]. Opto-Electron Adv, 2021, 4(4): 210008. doi: 10.29026/oea.2021.210008

    CrossRef Google Scholar

    [59] Lin Z Y, Hong M H. Femtosecond laser precision engineering: from micron, submicron, to nanoscale[J]. Ultrafast Sci, 2021, 2021: 9783514. doi: 10.34133/2021/9783514

    CrossRef Google Scholar

    [60] Xu K C, Yan H P, Tan C F, et al. Hedgehog inspired CuO nanowires/Cu2O composites for broadband visible-light-driven recyclable surface enhanced Raman scattering[J]. Adv Opt Mater, 2018, 6(7): 1701167. doi: 10.1002/adom.201701167

    CrossRef Google Scholar

    [61] Lu J L, Yang J J, Singh S C, et al. Hierarchical micro/nanostructured TiO2/Ag substrates based on femtosecond laser structuring: a facile route for enhanced SERS performance and location predictability[J]. Appl Surf Sci, 2019, 478: 737−743. doi: 10.1016/j.apsusc.2019.01.257

    CrossRef Google Scholar

    [62] Li C, Hu J, Jiang L, et al. Shaped femtosecond laser induced photoreduction for highly controllable Au nanoparticles based on localized field enhancement and their SERS applications[J]. Nanophotonics, 2020, 9(3): 691−702. doi: 10.1515/nanoph-2019-0460

    CrossRef Google Scholar

    [63] Sheehan P E, Whitman L J. Detection limits for nanoscale biosensors[J]. Nano Lett, 2005, 5(4): 803−807. doi: 10.1021/nl050298x

    CrossRef Google Scholar

    [64] Wang W D, Yin Y G, Tan Z Q, et al. Coffee-ring effect-based simultaneous SERS substrate fabrication and analyte enrichment for trace analysis[J]. Nanoscale, 2014, 6(16): 9588−9593. doi: 10.1039/C4NR03198A

    CrossRef Google Scholar

    [65] Ji B, Zhang L J, Li M Z, et al. Suppression of coffee-ring effect via periodic oscillation of substrate for ultra-sensitive enrichment towards surface-enhanced Raman scattering[J]. Nanoscale, 2019, 11(43): 20534−20545. doi: 10.1039/C9NR06989E

    CrossRef Google Scholar

    [66] Fang Y, Seong N H, Dlott D D. Measurement of the distribution of site enhancements in surface-enhanced Raman scattering[J]. Science, 2008, 321(5887): 388−392. doi: 10.1126/science.1159499

    CrossRef Google Scholar

    [67] Gentile F, Das G, Coluccio M L, et al. Ultra low concentrated molecular detection using super hydrophobic surface based biophotonic devices[J]. Microelectron Eng, 2010, 87(5–8): 798−801. doi: 10.1016/j.mee.2009.11.083

    CrossRef Google Scholar

    [68] Yang H, Guan X Y, Pang G, et al. Femtosecond laser patterned superhydrophobic/hydrophobic SERS sensors for rapid positioning ultratrace detection[J]. Opt Express, 2021, 29(11): 16904−16913. doi: 10.1364/OE.423789

    CrossRef Google Scholar

    [69] Xu F G, Zhang Y, Sun Y J, et al. Silver nanoparticles coated zinc oxide nanorods array as superhydrophobic substrate for the amplified SERS effect[J]. J Phys Chem C, 2011, 115(20): 9977−9983. doi: 10.1021/jp201897j

    CrossRef Google Scholar

    [70] Wallace R A, Charlton J J, Kirchner T B, et al. Superhydrophobic analyte concentration utilizing colloid-pillar array SERS substrates[J]. Anal Chem, 2014, 86(23): 11819−11825. doi: 10.1021/ac5033947

    CrossRef Google Scholar

    [71] Fu P, Shi X S, Jiang F, et al. Superhydrophobic nanostructured copper substrate as sensitive SERS platform prepared by femtosecond laser pulses[J]. Appl Surf Sci, 2020, 501: 144269. doi: 10.1016/j.apsusc.2019.144269

    CrossRef Google Scholar

    [72] Wang A D, Jiang L, Li X W, et al. Low-adhesive superhydrophobic surface-enhanced Raman spectroscopy substrate fabricated by femtosecond laser ablation for ultratrace molecular detection[J]. J Mater Chem B, 2017, 5(4): 777−784. doi: 10.1039/C6TB02629J

    CrossRef Google Scholar

    [73] Huang J B, Wen Y H, Li J, et al. Superhydrophobic-superhydrophilic hybrid surface with highly ordered tip-capped nanopore arrays for surface-enhanced Raman scattering spectroscopy[J]. ACS Appl Mater Interfaces, 2020, 12(33): 37499−37505. doi: 10.1021/acsami.0c12127

    CrossRef Google Scholar

    [74] Pavliuk G, Pavlov D, Mitsai E, et al. Ultrasensitive SERS-based plasmonic sensor with analyte enrichment system produced by direct laser writing[J]. Nanomaterials, 2020, 10(1): 49. doi: 10.3390/nano10010049

    CrossRef Google Scholar

    [75] Luo X, Pan R, Cai M Y, et al. Atto-molar Raman detection on patterned superhydrophilic-superhydrophobic platform via localizable evaporation enrichment[J]. Sens Actuators B Chem, 2021, 326: 128826. doi: 10.1016/j.snb.2020.128826

    CrossRef Google Scholar

    [76] Patil N D, Bange P G, Bhardwaj R, et al. Effects of substrate heating and wettability on evaporation dynamics and deposition patterns for a sessile water droplet containing colloidal particles[J]. Langmuir, 2016, 32(45): 11958−11972. doi: 10.1021/acs.langmuir.6b02769

    CrossRef Google Scholar

    [77] Chen Y X, Xu L P, Meng J X, et al. Superwettable microchips with improved spot homogeneity toward sensitive biosensing[J]. Biosens Bioelectron, 2018, 102: 418−424. doi: 10.1016/j.bios.2017.11.036

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Tables(1)

Article Metrics

Article views(7201) PDF downloads(1885) Cited by(0)

Access History

Other Articles By Authors

Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint