Citation: | Yu J, Yang H, Wu J G, et al. Ultrafast laser fabrication of surface-enhanced Raman scattering sensors[J]. Opto-Electron Eng, 2023, 50(3): 220333. doi: 10.12086/oee.2023.220333 |
[1] | Raman C V, Krishnan K S. A new type of secondary radiation[J]. Nature, 1928, 121(3048): 501−502. doi: 10.1038/121501c0 |
[2] | Zhang X L, Dai Z G, Zhang X G, et al. Recent progress in the fabrication of SERS substrates based on the arrays of polystyrene nanospheres[J]. Sci China Phys Mech Astron, 2016, 59(12): 126801. doi: 10.1007/s11433-016-0341-y |
[3] | 陈娜. 硅基SERS芯片的构建及其在环境检测中的应用[D]. 苏州: 苏州大学, 2018. Chen N. Construction of silicon-based SERS chips and their use in environmental detection[D]. Suzhou: Soochow University, 2018. |
[4] | 刘江涛, 洪昕. 基于微流控芯片SERS生物传感器的发展与应用[J]. 北京生物医学工程, 2018, 37(2): 201−207. doi: 10.3969/j.issn.1002-3208.2018.02.016 Liu J T, Hong X. Development and application of SERS biosensor based on microfluidic chip[J]. Beijing Biomed Eng, 2018, 37(2): 201−207. doi: 10.3969/j.issn.1002-3208.2018.02.016 |
[5] | Wang X, Huang S C, Hu S, et al. Fundamental understanding and applications of Plasmon-enhanced Raman spectroscopy[J]. Nat Rev Phys, 2020, 2(5): 253−271. doi: 10.1038/s42254-020-0171-y |
[6] | Fleischmann M, Hendra P J, McQuillan A J. Raman spectra of pyridine adsorbed at a silver electrode[J]. Chem Phys Lett, 1974, 26(2): 163−166. doi: 10.1016/0009-2614(74)85388-1 |
[7] | Jeanmaire D L, van Duyne R P. Surface Raman spectroelectrochemistry: part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode[J]. J Electroanal Chem Interfacial Electrochem, 1977, 84(1): 1−20. doi: 10.1016/S0022-0728(77)80224-6 |
[8] | Chang T H P, Mankos M, Lee K Y, et al. Multiple electron-beam lithography[J]. Microelectron Eng, 2001, 57–58: 117−135. doi: 10.1016/S0167-9317(01)00528-7 |
[9] | Garg V, Mote R G, Fu J. Focused ion beam direct fabrication of subwavelength nanostructures on silicon for multicolor generation[J]. Adv Mater Technol, 2018, 3(8): 1800100. doi: 10.1002/admt.201800100 |
[10] | Chen W X, Tymchenko M, Gopalan P, et al. Large-area nanoimprinted colloidal Au nanocrystal-based nanoantennas for ultrathin polarizing plasmonic metasurfaces[J]. Nano Lett, 2015, 15(8): 5254−5260. doi: 10.1021/acs.nanolett.5b02647 |
[11] | Vishnu J, Manivasagam V K, Gopal V, et al. Hydrothermal treatment of etched titanium: a potential surface Nano-modification technique for enhanced biocompatibility[J]. Nanomed-Nanotechnol Biol Med, 2019, 20: 102016. doi: 10.1016/j.nano.2019.102016 |
[12] | Acharya G, Shin C S, McDermott M, et al. The hydrogel template method for fabrication of homogeneous Nano/microparticles[J]. J Control Release, 2010, 141(3): 314−319. doi: 10.1016/j.jconrel.2009.09.032 |
[13] | Li H Z, Yang Q, Hou J, et al. Bioinspired micropatterned superhydrophilic Au-areoles for surface-enhanced Raman scattering (SERS) trace detection[J]. Adv Funct Mater, 2018, 28(21): 1800448. doi: 10.1002/adfm.201800448 |
[14] | Agarwal P, Wang H, Sun M R, et al. Microfluidics enabled bottom-up engineering of 3D vascularized tumor for drug discovery[J]. ACS Nano, 2017, 11(7): 6691−6702. doi: 10.1021/acsnano.7b00824 |
[15] | 廉洁, 周稳稳, 石西增, 等. 多靶标生物标志物检测的微流体磁敏生物传感器研制[J]. 分析化学, 2013, 41(9): 1302−1307. doi: 10.3724/SP.J.1096.2013.30231 Lian J, Zhou W W, Shi X Z, et al. Development of integrated microfluidic magnetic biosensor for multi-biomarker detection[J]. Chin J Anal Chem, 2013, 41(9): 1302−1307. doi: 10.3724/SP.J.1096.2013.30231 |
[16] | Geissler M, Clime L, Hoa X D, et al. Microfluidic integration of a cloth-based hybridization array system (CHAS) for rapid, colorimetric detection of enterohemorrhagic Escherichia coli (EHEC) using an articulated, centrifugal platform[J]. Anal Chem, 2015, 87(20): 10565−10572. doi: 10.1021/acs.analchem.5b03085 |
[17] | Liu X, Du D, Mourou G. Laser ablation and micromachining with ultrashort laser pulses[J]. IEEE J Quantum Electron, 1997, 33(10): 1706−1716. doi: 10.1109/3.631270 |
[18] | 杨青, 成扬, 方政, 等. 仿生超滑表面的飞秒激光微纳制造及应用[J]. 光电工程, 2022, 49(1): 210326. doi: 10.12086/oee.2022.210326 Yang Q, Cheng Y, Fang Z, et al. The preparation and applications of bio-inspired slippery surface by femtosecond laser micro-Nano manufacturing[J]. Opto-Electron Eng, 2022, 49(1): 210326. doi: 10.12086/oee.2022.210326 |
[19] | Shao Q, Que R H, Shao M W, et al. Copper nanoparticles grafted on a silicon wafer and their excellent surface-enhanced Raman scattering[J]. Adv Funct Mater, 2012, 22(10): 2067−2070. doi: 10.1002/adfm.201102943 |
[20] | Liu Z, Cheng L, Zhang L, et al. Large-area fabrication of highly reproducible surface enhanced Raman substrate via a facile double sided tape-assisted transfer approach using hollow Au-Ag alloy nanourchins[J]. Nanoscale, 2014, 6(5): 2567−2572. doi: 10.1039/C3NR05840A |
[21] | Crouch C H, Carey J E, Warrender J M, et al. Comparison of structure and properties of femtosecond and nanosecond laser-structured silicon[J]. Appl Phys Lett, 2004, 84(11): 1850−1852. doi: 10.1063/1.1667004 |
[22] | Xu B B, Ma Z C, Wang L, et al. Localized flexible integration of high-efficiency surface enhanced Raman scattering (SERS) monitors into microfluidic channels[J]. Lab Chip, 2011, 11(19): 3347−3351. doi: 10.1039/c1lc20397e |
[23] | Xu L M, Liu H G, Zhou H, et al. One-step fabrication of metal nanoparticles on polymer film by femtosecond LIPAA method for SERS detection[J]. Talanta, 2021, 228: 122204. doi: 10.1016/j.talanta.2021.122204 |
[24] | de Angelis F, Gentile F, Mecarini F, et al. Breaking the diffusion limit with super-hydrophobic delivery of molecules to plasmonic nanofocusing SERS structures[J]. Nat Photonics, 2011, 5(11): 682−687. doi: 10.1038/nphoton.2011.222 |
[25] | He A, Yang H, Xue W, et al. Tunable coffee-ring effect on a superhydrophobic surface[J]. Opt Lett, 2017, 42(19): 3936−3939. doi: 10.1364/OL.42.003936 |
[26] | Song J, Cheng W F, Nie M T, et al. Partial leidenfrost evaporation-assisted ultrasensitive surface-enhanced Raman spectroscopy in a Janus water droplet on hierarchical plasmonic micro-/nanostructures[J]. ACS Nano, 2020, 14(8): 9521−9531. doi: 10.1021/acsnano.0c04239 |
[27] | Yu J, Wu J G, Yang H, et al. Extremely sensitive SERS sensors based on a femtosecond laser-fabricated superhydrophobic/-philic microporous platform[J]. ACS Appl Mater Interfaces, 2022, 14(38): 43877−43885. doi: 10.1021/acsami.2c10381 |
[28] | Chen S, Meng L Y, Shan H Y, et al. How to light special hot spots in Multiparticle-film configurations[J]. ACS Nano, 2016, 10(1): 581−587. doi: 10.1021/acsnano.5b05605 |
[29] | Willets K A, van Duyne R P. Localized surface Plasmon resonance spectroscopy and sensing[J]. Annu Rev Phys Chem, 2007, 58: 267−297. doi: 10.1146/annurev.physchem.58.032806.104607 |
[30] | Di Pietro P, Strano G, Zuccarello L, et al. Gold and silver nanoparticles for applications in theranostics[J]. Curr Top Med Chem, 2016, 16(27): 3069−3102. doi: 10.2174/1568026616666160715163346 |
[31] | Ma Z C, Zhang Y L, Han B, et al. Femtosecond laser direct writing of plasmonic Ag/Pd alloy nanostructures enables flexible integration of robust SERS substrates[J]. Adv Mater Technol, 2017, 2(6): 1600270. doi: 10.1002/admt.201600270 |
[32] | Yan W J, Yang L K, Chen J N, et al. In situ two-step Photoreduced SERS materials for on-chip single-molecule spectroscopy with high reproducibility[J]. Adv Mater, 2017, 29(36): 1702893. doi: 10.1002/adma.201702893 |
[33] | Ran P, Jiang L, Li X, et al. Femtosecond photon-mediated plasma enhances photosynthesis of plasmonic nanostructures and their SERS applications[J]. Small, 2019, 15(11): 1804899. doi: 10.1002/smll.201804899 |
[34] | Delaporte P, Alloncle A P. Laser-induced forward transfer: a high resolution additive manufacturing technology[J]. Opt Laser Technol, 2016, 78: 33−41. doi: 10.1016/j.optlastec.2015.09.022 |
[35] | Ma X D, Jiang L, Li X W, et al. Hybrid Superhydrophilic-superhydrophobic micro/nanostructures fabricated by femtosecond laser-induced forward transfer for sub-femtomolar Raman detection[J]. Microsyst Nanoeng, 2019, 5: 48. doi: 10.1038/s41378-019-0090-1 |
[36] | Jing Y T, Wang R J, Wang Q L, et al. An overview of surface-enhanced Raman scattering substrates by pulsed laser deposition technique: fundamentals and applications[J]. Adv Compos Hybrid Mater, 2021, 4(4): 885−905. doi: 10.1007/s42114-021-00330-0 |
[37] | Khan T M, Lunney J G, O'Rourke D, et al. Various pulsed laser deposition methods for preparation of silver-sensitised glass and paper substrates for surface-enhanced Raman spectroscopy[J]. Appl Phys A, 2019, 125(9): 659. doi: 10.1007/s00339-019-2968-z |
[38] | Smyth C A, Mirza I, Lunney J G, et al. Surface-enhanced Raman spectroscopy (SERS) using Ag nanoparticle films produced by pulsed laser deposition[J]. Appl Surf Sci, 2013, 264: 31−35. doi: 10.1016/j.apsusc.2012.09.078 |
[39] | 杨焕, 曹宇, 李峰平, 等. 激光制备超疏水表面研究进展[J]. 光电工程, 2017, 44(12): 1160−1168. doi: 10.3969/j.issn.1003-501X.2017.12.003 Yang H, Cao Y, Li F P, et al. Research progress in superhydrophobic surfaces fabricated by laser[J]. Opto-Electron Eng, 2017, 44(12): 1160−1168. doi: 10.3969/j.issn.1003-501X.2017.12.003 |
[40] | 欧阳旭, 谢子健, 张孟瑞, 等. 基于激光诱导表面周期结构的微纳防伪结构色[J]. 光电工程, 2022, 49(1): 210320. doi: 10.12086/oee.2022.210320 Ouyang X, Xie Z J, Zhang M R, et al. Laser-induced periodic surface structure for microscale anti-counterfeiting structural colors[J]. Opto-Electron Eng, 2022, 49(1): 210320. doi: 10.12086/oee.2022.210320 |
[41] | 朱小伟, 潘哲豪, 杨文锋, 等. 基于激光三维雕刻的CFRP多梯层挖补胶接接头加工技术研究[J]. 光电工程, 2022, 49(1): 210314. doi: 10.12086/oee.2022.210314 Zhu X W, Pan Z H, Yang W F, et al. Study on multi-layered CFRP patch bonding joint based on laser 3D engraving technology[J]. Opto-Electron Eng, 2022, 49(1): 210314. doi: 10.12086/oee.2022.210314 |
[42] | Chang H W, Tsai Y C, Cheng C W, et al. Nanostructured Ag surface fabricated by femtosecond laser for surface-enhanced Raman scattering[J]. J Colloid Interface Sci, 2011, 360(1): 305−308. doi: 10.1016/j.jcis.2011.04.005 |
[43] | Erol M, Han Y, Stanley S K, et al. SERS not to be taken for granted in the presence of oxygen[J]. J Am Chem Soc, 2009, 131(22): 7480−7481. doi: 10.1021/ja807458x |
[44] | Luo X, Liu W J, Chen C H, et al. Femtosecond laser micro-Nano structured Ag SERS substrates with unique sensitivity, uniformity and stability for food safety evaluation[J]. Opt Laser Technol, 2021, 139: 106969. doi: 10.1016/j.optlastec.2021.106969 |
[45] | Siddhanta S, Thakur V, Narayana C, et al. Universal metal-semiconductor hybrid nanostructured SERS substrate for biosensing[J]. ACS Appl Mater Interfaces, 2012, 4(11): 5807−5812. doi: 10.1021/am302102p |
[46] | Fan M K, Andrade G F S, Brolo A G. A review on the fabrication of substrates for surface enhanced Raman spectroscopy and their applications in analytical chemistry[J]. Anal Chim Acta, 2011, 693(1–2): 7−25. doi: 10.1016/j.aca.2011.03.002 |
[47] | Naqvi T K, Bajpai A, Bharati M S S, et al. Ultra-sensitive reusable SERS sensor for multiple hazardous materials detection on single platform[J]. J Hazard Mater, 2021, 407: 124353. doi: 10.1016/j.jhazmat.2020.124353 |
[48] | Xu K C, Wang Z Y, Tan C F, et al. Uniaxially stretched flexible surface Plasmon resonance film for versatile surface enhanced Raman scattering diagnostics[J]. ACS Appl Mater Interfaces, 2017, 9(31): 26341−26349. doi: 10.1021/acsami.7b06669 |
[49] | Dai H C, Sun Y J, Ni P J, et al. Three-dimensional TiO2 supported silver nanoparticles as sensitive and UV-cleanable substrate for surface enhanced Raman scattering[J]. Sens Actuators B Chem, 2017, 242: 260−268. doi: 10.1016/j.snb.2016.10.085 |
[50] | Xu K C, Zhou R, Takei K, et al. Toward flexible surface-enhanced Raman scattering (SERS) sensors for point-of-care diagnostics[J]. Adv Sci, 2019, 6(16): 1900925. doi: 10.1002/advs.201900925 |
[51] | Zhang Q, Lee Y H, Phang I Y, et al. Hierarchical 3D SERS substrates fabricated by integrating photolithographic microstructures and self-assembly of silver nanoparticles[J]. Small, 2014, 10(13): 2703−2711. doi: 10.1002/smll.201303773 |
[52] | Phan-Quang G C, Han X M, Koh C S L, et al. Three-dimensional surface-enhanced Raman scattering platforms: large-scale plasmonic hotspots for new applications in sensing, microreaction, and data storage[J]. Acc Chem Res, 2019, 52(7): 1844−1854. doi: 10.1021/acs.accounts.9b00163 |
[53] | Yang D, Cho H, Koo S, et al. Simple, large-scale fabrication of uniform Raman-enhancing substrate with enhancement saturation[J]. ACS Appl Mater Interfaces, 2017, 9(22): 19092−19101. doi: 10.1021/acsami.7b03239 |
[54] | Li X, Lee H K, Phang I Y, et al. Superhydrophobic-oleophobic Ag nanowire platform: an analyte-concentrating and quantitative aqueous and organic toxin surface-enhanced Raman scattering sensor[J]. Anal Chem, 2014, 86(20): 10437−10444. doi: 10.1021/ac502955w |
[55] | Lee Y H, Lay C L, Shi W X, et al. Creating two self-assembly micro-environments to achieve supercrystals with dual structures using polyhedral nanoparticles[J]. Nat Commun, 2018, 9(1): 2769. doi: 10.1038/s41467-018-05102-x |
[56] | Tao A, Kim F, Hess C, et al. Langmuir-Blodgett silver nanowire monolayers for molecular sensing using surface-enhanced Raman spectroscopy[J]. Nano Lett, 2003, 3(9): 1229−1233. doi: 10.1021/nl0344209 |
[57] | Khew S Y, Tan C F, Yan H P, et al. Nanosecond laser ablation for enhanced adhesion of CuO nanowires on copper substrate and its application for oil-water separation[J]. Appl Surf Sci, 2019, 465: 995−1002. doi: 10.1016/j.apsusc.2018.09.256 |
[58] | Zhao Y Z, Su Y L, Hou X Y, et al. Directional sliding of water: biomimetic snake scale surfaces[J]. Opto-Electron Adv, 2021, 4(4): 210008. doi: 10.29026/oea.2021.210008 |
[59] | Lin Z Y, Hong M H. Femtosecond laser precision engineering: from micron, submicron, to nanoscale[J]. Ultrafast Sci, 2021, 2021: 9783514. doi: 10.34133/2021/9783514 |
[60] | Xu K C, Yan H P, Tan C F, et al. Hedgehog inspired CuO nanowires/Cu2O composites for broadband visible-light-driven recyclable surface enhanced Raman scattering[J]. Adv Opt Mater, 2018, 6(7): 1701167. doi: 10.1002/adom.201701167 |
[61] | Lu J L, Yang J J, Singh S C, et al. Hierarchical micro/nanostructured TiO2/Ag substrates based on femtosecond laser structuring: a facile route for enhanced SERS performance and location predictability[J]. Appl Surf Sci, 2019, 478: 737−743. doi: 10.1016/j.apsusc.2019.01.257 |
[62] | Li C, Hu J, Jiang L, et al. Shaped femtosecond laser induced photoreduction for highly controllable Au nanoparticles based on localized field enhancement and their SERS applications[J]. Nanophotonics, 2020, 9(3): 691−702. doi: 10.1515/nanoph-2019-0460 |
[63] | Sheehan P E, Whitman L J. Detection limits for nanoscale biosensors[J]. Nano Lett, 2005, 5(4): 803−807. doi: 10.1021/nl050298x |
[64] | Wang W D, Yin Y G, Tan Z Q, et al. Coffee-ring effect-based simultaneous SERS substrate fabrication and analyte enrichment for trace analysis[J]. Nanoscale, 2014, 6(16): 9588−9593. doi: 10.1039/C4NR03198A |
[65] | Ji B, Zhang L J, Li M Z, et al. Suppression of coffee-ring effect via periodic oscillation of substrate for ultra-sensitive enrichment towards surface-enhanced Raman scattering[J]. Nanoscale, 2019, 11(43): 20534−20545. doi: 10.1039/C9NR06989E |
[66] | Fang Y, Seong N H, Dlott D D. Measurement of the distribution of site enhancements in surface-enhanced Raman scattering[J]. Science, 2008, 321(5887): 388−392. doi: 10.1126/science.1159499 |
[67] | Gentile F, Das G, Coluccio M L, et al. Ultra low concentrated molecular detection using super hydrophobic surface based biophotonic devices[J]. Microelectron Eng, 2010, 87(5–8): 798−801. doi: 10.1016/j.mee.2009.11.083 |
[68] | Yang H, Guan X Y, Pang G, et al. Femtosecond laser patterned superhydrophobic/hydrophobic SERS sensors for rapid positioning ultratrace detection[J]. Opt Express, 2021, 29(11): 16904−16913. doi: 10.1364/OE.423789 |
[69] | Xu F G, Zhang Y, Sun Y J, et al. Silver nanoparticles coated zinc oxide nanorods array as superhydrophobic substrate for the amplified SERS effect[J]. J Phys Chem C, 2011, 115(20): 9977−9983. doi: 10.1021/jp201897j |
[70] | Wallace R A, Charlton J J, Kirchner T B, et al. Superhydrophobic analyte concentration utilizing colloid-pillar array SERS substrates[J]. Anal Chem, 2014, 86(23): 11819−11825. doi: 10.1021/ac5033947 |
[71] | Fu P, Shi X S, Jiang F, et al. Superhydrophobic nanostructured copper substrate as sensitive SERS platform prepared by femtosecond laser pulses[J]. Appl Surf Sci, 2020, 501: 144269. doi: 10.1016/j.apsusc.2019.144269 |
[72] | Wang A D, Jiang L, Li X W, et al. Low-adhesive superhydrophobic surface-enhanced Raman spectroscopy substrate fabricated by femtosecond laser ablation for ultratrace molecular detection[J]. J Mater Chem B, 2017, 5(4): 777−784. doi: 10.1039/C6TB02629J |
[73] | Huang J B, Wen Y H, Li J, et al. Superhydrophobic-superhydrophilic hybrid surface with highly ordered tip-capped nanopore arrays for surface-enhanced Raman scattering spectroscopy[J]. ACS Appl Mater Interfaces, 2020, 12(33): 37499−37505. doi: 10.1021/acsami.0c12127 |
[74] | Pavliuk G, Pavlov D, Mitsai E, et al. Ultrasensitive SERS-based plasmonic sensor with analyte enrichment system produced by direct laser writing[J]. Nanomaterials, 2020, 10(1): 49. doi: 10.3390/nano10010049 |
[75] | Luo X, Pan R, Cai M Y, et al. Atto-molar Raman detection on patterned superhydrophilic-superhydrophobic platform via localizable evaporation enrichment[J]. Sens Actuators B Chem, 2021, 326: 128826. doi: 10.1016/j.snb.2020.128826 |
[76] | Patil N D, Bange P G, Bhardwaj R, et al. Effects of substrate heating and wettability on evaporation dynamics and deposition patterns for a sessile water droplet containing colloidal particles[J]. Langmuir, 2016, 32(45): 11958−11972. doi: 10.1021/acs.langmuir.6b02769 |
[77] | Chen Y X, Xu L P, Meng J X, et al. Superwettable microchips with improved spot homogeneity toward sensitive biosensing[J]. Biosens Bioelectron, 2018, 102: 418−424. doi: 10.1016/j.bios.2017.11.036 |
(a) Schematic diagram of femtosecond laser-induced reduction of silver/palladium alloy [31]; (b) Nanostructures formed by two-step femtosecond laser-induced reduction of silver ions [32]; (c) Schematic diagram of the plasma-enhanced reduction of silver ionsat the solid-liquid interface [33]; (d) Schematic diagram of SERS substrates prepared by laser-induced forward transfer [35]; (e) Metal nanostructures formed by pulsed laser deposition [37]
(a) Femtosecond laser preparation of silver-based SERS substrates in air [42]; (b) Femtosecond laser preparation of silver-based SERS substrates (S-Ag-Ar) in an argon atmosphere [44]; (c) Femtosecond laser preparation of gold-based SERS substrates [47]
(a) Schematic of Ag/CuO NWs SERS substrate fabrication [60]; (b) Ag/TiO2 composite SERS substrate [61]; (c) Schematic of the Au NP-attached SERS substrate fabrication [62]
SERS performance comparison between the hydrophilic substrate and superhydrophobic substrate [69]
Schematic of the femtosecond laser fabrication of superhydrophobic SERS [71-72]
(a) Schematic of the fabrication strategy of ultrasensitive SERS substrates [74]; (b) Schematic of the fabrication strategy of hybrid superhydrophilic/superhydrophobic substrates [75]; (c) Schematic of hybrid superhydrophilic/superhydrophobic microporous SERS substrates [27]