New website getting online, testing
    • 摘要: 表面增强拉曼散射(SERS)传感器在诸多领域拥有重要的应用潜力。为实现高精度SERS检测,增加热点密度和热点区域中分析物分子数量成为当前研究的重点。超快激光可快速在材料表面构筑大面积的微纳米结构,对于高性能SERS基底的商业化制备具有重要的意义。本文从热点密度和检测区域中分析物分子浓度两个方面,总结了近年来超快激光制造高性能SERS基底的工艺方法。超快激光既能“自下而上”,也能“自上而下”加工出具有局域场增强效应的微纳米结构。其中,超快激光制备的超疏水表面是目前实现待测分子富集的有效方法之一。最后展望了激光制备SERS基底的应用前景。

       

      Abstract: Surface-enhanced Raman scattering (SERS) provides important applications in diverse fields. In order to achieve high-precision SERS detection of trace molecules, current research focuses on how to increase the density of hot spots and the number of analyte molecules in the detection area. An ultrafast laser can rapidly construct large-area micro/nano-structures on material surfaces. It is important for the commercial preparation of high-performance SERS sensors. In this paper, the ultrafast laser preparation of high-performance SERS sensors is introduced from the aspect of the density of hot spots and the number of analyte molecules in the detection region. Ultrafast lasers enable both "bottom-up" and "top-down" processing. In particular, the superhydrophobic surface prepared by the ultrafast laser is one of the most effective methods to achieve the enrichment of analyte molecules. Finally, a prospect for the development of laser-prepared SERS substrates is provided.