Yin Z D, Ni C D, Wu S Z, et al. Femtosecond laser direct writing processing of SERS substrates and applications[J]. Opto-Electron Eng, 2023, 50(3): 220322. doi: 10.12086/oee.2023.220322
Citation: Yin Z D, Ni C D, Wu S Z, et al. Femtosecond laser direct writing processing of SERS substrates and applications[J]. Opto-Electron Eng, 2023, 50(3): 220322. doi: 10.12086/oee.2023.220322

Femtosecond laser direct writing processing of SERS substrates and applications

    Fund Project: National Natural Science Foundation of China (52175396), and the Central Universities Fundamental Research Funds (JZ2022HGPA0312)
More Information
  • Surface-enhanced Raman spectroscopy (SERS) technique plays an important role in molecular recognition fields due to its highly sensitive and high-resolution. As an emerging low-cost, high machining accuracy, and high-flexibility processing method, femtosecond laser direct writing processing has been widely used in the field of preparing SERS substrates. This work introduces four methods of preparing SERS substrates by femtosecond laser direct writing, including femtosecond two-photon reduction, femtosecond laser cutting metal, femtosecond laser cutting-sputtering, and femtosecond laser 3D printing. The article introduces the performance and application scenarios of each method in preparing SERS substrates and illustrates the advantages of femtosecond laser direct writing processing in preparing SERS substrates, aiming to provide a reference for future related research.
  • 加载中
  • [1] Zong C, Xu M X, Xu L J, et al. Surface-enhanced Raman spectroscopy for Bioanalysis: reliability and challenges[J]. Chem Rev, 2018, 118(10): 4946−4980. doi: 10.1021/acs.chemrev.7b00668

    CrossRef Google Scholar

    [2] Xu K C, Wang Z Y, Tan C F, et al. Uniaxially stretched flexible surface Plasmon resonance film for versatile surface enhanced Raman scattering diagnostics[J]. ACS Appl Mater Interfaces, 2017, 9(31): 26341−26349. doi: 10.1021/acsami.7b06669

    CrossRef Google Scholar

    [3] Xu K C, Zhou R, Takei K, Hong M H. Toward flexible surface-enhanced Raman scattering (SERS) sensors for point-of-care diagnostics[J]. Adv Sci (Weinh), 2019, 6(16): 1900925. doi: 10.1002/advs.201900925

    CrossRef Google Scholar

    [4] Niu R J, Gao F, Wang D, et al. Pattern recognition directed assembly of Plasmonic gap nanostructures for single-molecule SERS[J]. ACS Nano, 2022, 16(9): 14622−14631. doi: 10.1021/acsnano.2c05150

    CrossRef Google Scholar

    [5] Lee S, Jung I, Son J, et al. Heterogeneous component Au (Outer)-Pt (Middle)-Au (Inner) Nanorings: synthesis and vibrational characterization on middle Pt Nanorings with surface-enhanced Raman scattering[J]. ACS Nano, 2022, 16(7): 11259−11267. doi: 10.1021/acsnano.2c04633

    CrossRef Google Scholar

    [6] Qin M, Ge M H, Li P, et al. Natural <3 nm interbedded gaps to trap target molecules and provide an enhanced Raman spectroscopy method[J]. Adv Opt Mater, 2022, 10(19): 2200551. doi: 10.1002/adom.202200551

    CrossRef Google Scholar

    [7] Lao Z X, Zheng Y Y, Dai Y C, et al. Nanogap plasmonic structures fabricated by switchable capillary-force driven self-assembly for localized sensing of anticancer medicines with microfluidic SERS[J]. Adv Funct Mater, 2020, 30(15): 1909467. doi: 10.1002/adfm.201909467

    CrossRef Google Scholar

    [8] He J, Hua S Y, Zhang D X, et al. SERS/NIR‐II optical nanoprobes for multidimensional tumor imaging from living subjects, pathology, and single cells and guided NIR‐II photothermal therapy[J]. Adv Funct Mater, 2022, 32(46): 2208028. doi: 10.1002/adfm.202208028

    CrossRef Google Scholar

    [9] Sun J Y, Song Y N, Wang M Y, et al. Quantitative and noninvasive detection of SAH-related MiRNA in cerebrospinal fluids in vivo using SERS sensors based on acupuncture-based technology[J]. ACS Appl Mater Interfaces, 2022, 14(32): 37088−37100. doi: 10.1021/ACSAMI.2C03436

    CrossRef Google Scholar

    [10] Andreiuk B, Nicolson F, Clark L M, et al. Design and synthesis of gold nanostars-based SERS nanotags for bioimaging applications[J]. Nanotheranostics, 2022, 6(1): 10−30. doi: 10.7150/ntno.61244

    CrossRef Google Scholar

    [11] Van Der Hoeven J E S, Gurunarayanan H, Bransen M, et al. Silica‐coated gold nanorod supraparticles: a tunable platform for surface enhanced Raman spectroscopy[J]. Adv Funct Mater, 2022, 32(27): 2200148. doi: 10.1002/adfm.202200148

    CrossRef Google Scholar

    [12] Li C, Li S, Qu A, et al. Directing arrowhead Nanorod dimers for MicroRNA in situ Raman detection in living cells[J]. Adv Funct Mater, 2020, 30(22): 2001451. doi: 10.1002/adfm.202001451

    CrossRef Google Scholar

    [13] Meyer S M, Murphy C J. Anisotropic silica coating on gold nanorods boosts their potential as SERS sensors[J]. Nanoscale, 2022, 14(13): 5214−5226. doi: 10.1039/D1NR07918B

    CrossRef Google Scholar

    [14] Lu Y C, Tseng P C, Yang M J, et al. Fabrication of Gyroid‐structured metal/semiconductor nanoscaffolds with ultrasensitive SERS detection via block copolymer Templating[J]. Adv Opt Mater, 2023, 11(2): 2202280. doi: 10.1002/adom.202202280

    CrossRef Google Scholar

    [15] Zhang H, Duan S, Radjenovic P M, et al. Core-shell nanostructure-enhanced Raman spectroscopy for surface catalysis[J]. Acc Chem Res, 2020, 53(4): 729−739. doi: 10.1021/acs.accounts.9b00545

    CrossRef Google Scholar

    [16] Zhang Y J, Chen S, Radjenovic P, et al. Probing the location of 3D hot spots in gold nanoparticle films using surface-enhanced Raman spectroscopy[J]. Anal Chem, 2019, 91(8): 5316−5322. doi: 10.1021/acs.analchem.9b00200

    CrossRef Google Scholar

    [17] Phuong NTT, Dang VQ, Van Hieu L, et al. Functionalized silver nanoparticles for SERS amplification with enhanced reproducibility and for ultrasensitive optical fiber sensing in environmental and biochemical assays[J]. RSC Adv, 2022, 12(48): 31352−31362. doi: 10.1039/D2RA06074D

    CrossRef Google Scholar

    [18] Wang T J, Barveen N R, Liu Z Y, et al. Transparent, flexible plasmonic Ag NP/PMMA substrates using chemically patterned ferroelectric crystals for detecting pesticides on curved surfaces[J]. ACS Appl Mater Interfaces, 2021, 13(29): 34910−34922. doi: 10.1021/acsami.1c08233

    CrossRef Google Scholar

    [19] Anh N H, Doan M Q, Dinh N X, et al. Gold nanoparticle-based optical nanosensors for food and health safety monitoring: recent advances and future perspectives[J]. RSC Adv, 2022, 12(18): 10950−10988. doi: 10.1039/D1RA08311B

    CrossRef Google Scholar

    [20] Wang D, Bao L P, Li H J, et al. Polydopamine stabilizes silver nanoparticles as a SERS substrate for efficient detection of myocardial infarction[J]. Nanoscale, 2022, 14(16): 6212−6219. doi: 10.1039/D2NR00091A

    CrossRef Google Scholar

    [21] Wang X K, Park S G, Ko J, et al. Sensitive and reproducible immunoassay of multiple mycotoxins using surface-enhanced Raman scattering mapping on 3D plasmonic nanopillar arrays[J]. Small, 2018, 14(39): 1801623. doi: 10.1002/smll.201801623

    CrossRef Google Scholar

    [22] Liu Y, Guang J Y, Liu C, et al. Simple and low‐cost plasmonic fiber‐optic probe as SERS and biosensing platform[J]. Adv Opt Mater, 2019, 7(19): 1900337. doi: 10.1002/adom.201900337

    CrossRef Google Scholar

    [23] Mogera U, Guo H, Namkoong M, et al. Wearable plasmonic paper–based microfluidics for continuous sweat analysis[J]. Sci Adv, 2022, 8(12): eabn1736. doi: 10.1126/sciadv.abn1736

    CrossRef Google Scholar

    [24] Ma Z C, Zhang Y L, Han B, et al. Femtosecond-laser direct writing of metallic micro/nanostructures: from fabrication strategies to future applications[J]. Small Methods, 2018, 2(7): 1700413. doi: 10.1002/smtd.201700413

    CrossRef Google Scholar

    [25] Sugioka K, Cheng Y. Ultrafast lasers—reliable tools for advanced materials processing[J]. Light Sci Appl, 2014, 3(4): e149. doi: 10.1038/lsa.2014.30

    CrossRef Google Scholar

    [26] Wu D, Xu J, Niu L G, et al. In-channel integration of designable microoptical devices using flat scaffold-supported femtosecond-laser microfabrication for coupling-free optofluidic cell counting[J]. Light Sci Appl, 2015, 4(1): e228. doi: 10.1038/lsa.2015.1

    CrossRef Google Scholar

    [27] Kawata S, Sun H B, Tanaka T, et al. Finer features for functional microdevices[J]. Nature, 2001, 412(6848): 697−698. doi: 10.1038/35089130

    CrossRef Google Scholar

    [28] 周伟平, 白石, 谢祖武, 等. 激光直写制备金属与碳材料微纳结构与器件研究进展[J]. 光电工程, 2022, 49(1): 210330.

    Google Scholar

    Zhou W P, Bai S, Xie Z W, et al. Research progress of laser direct writing fabrication of metal and carbon micro/nano structures and devices[J]. Opto-Electron Eng, 2022, 49(1): 210330.

    Google Scholar

    [29] 廖嘉宁, 张东石, 李铸国. 飞秒激光制备柔性电子器件进展[J]. 光电工程, 2022, 49(2): 210388.

    Google Scholar

    Liao J N, Zhang D S, Li Z G. Advance in femtosecond laser fabrication of flexible electronics[J]. Opto-Electron Eng, 2022, 49(2): 210388.

    Google Scholar

    [30] Luo X, Pan R, Cai M Y, et al. Atto-Molar Raman detection on patterned superhydrophilic-superhydrophobic platform via localizable evaporation enrichment[J]. Sens Actuators B Chem, 2021, 326: 128826. doi: 10.1016/j.snb.2020.128826

    CrossRef Google Scholar

    [31] Xu L M, Liu H G, Zhou H, et al. One-step fabrication of metal nanoparticles on polymer film by femtosecond LIPAA method for SERS detection[J]. Talanta, 2021, 228: 122204. doi: 10.1016/j.talanta.2021.122204

    CrossRef Google Scholar

    [32] Xu B B, Ma Z C, Wang L, et al. Localized flexible integration of high-efficiency surface enhanced Raman scattering (SERS) monitors into microfluidic channels[J]. Lab Chip, 2011, 11(19): 3347−3351. doi: 10.1039/c1lc20397e

    CrossRef Google Scholar

    [33] Langer J, De Aberasturi D J, Aizpurua J, et al. Present and future of surface-enhanced Raman scattering[J]. ACS Nano, 2020, 14(1): 28−117. doi: 10.1021/acsnano.9b04224

    CrossRef Google Scholar

    [34] Fleischmann M, Hendra P J, McQuillan A J. Raman spectra of pyridine adsorbed at a silver electrode[J]. Chem Phys Lett, 1974, 26(2): 163−166. doi: 10.1016/0009-2614(74)85388-1

    CrossRef Google Scholar

    [35] Jeanmaire D L, Van Duyne R P. Surface Raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode[J]. J Electroanal Chem Interfac Electrochem, 1977, 84(1): 1−20. doi: 10.1016/S0022-0728(77)80224-6

    CrossRef Google Scholar

    [36] Lee H K, Lee Y H, Koh C S L, et al. Designing surface-enhanced Raman scattering (SERS) platforms beyond hotspot engineering: emerging opportunities in analyte manipulations and hybrid materials[J]. Chem Soc Rev, 2019, 48(3): 731−756. doi: 10.1039/C7CS00786H

    CrossRef Google Scholar

    [37] Stiles P L, Dieringer J A, Shah N C, et al. Surface-enhanced Raman spectroscopy[J]. Annu Rev Anal Chem, 2008, 1: 601−626. doi: 10.1146/annurev.anchem.1.031207.112814

    CrossRef Google Scholar

    [38] Ding S Y, You E M, Tian Z Q, et al. Electromagnetic theories of surface-enhanced Raman spectroscopy[J]. Chem Soc Rev, 2017, 46(13): 4042−4076. doi: 10.1039/C7CS00238F

    CrossRef Google Scholar

    [39] Phan-Quang G C, Lee H K, Phang I Y, et al. Plasmonic colloidosomes as three-dimensional SERS platforms with enhanced surface area for multiphase sub-microliter toxin sensing[J]. Angew Chem Int Ed, 2015, 54(33): 9691−9695. doi: 10.1002/anie.201504027

    CrossRef Google Scholar

    [40] Cardinal M F, Ende E V, Hackler R A, et al. Expanding applications of SERS through versatile nanomaterials engineering[J]. Chem Soc Rev, 2017, 46(13): 3886−3903. doi: 10.1039/C7CS00207F

    CrossRef Google Scholar

    [41] Im H, Bantz K C, Lee S H, et al. Self-assembled plasmonic nanoring cavity arrays for SERS and LSPR biosensing[J]. Adv Mater, 2013, 25(19): 2678−2685. doi: 10.1002/adma.201204283

    CrossRef Google Scholar

    [42] Whitney A V, Elam J W, Zou S L, et al. Localized surface Plasmon resonance Nanosensor: a high-resolution distance-dependence study using atomic layer deposition[J]. J Phys Chem B, 2005, 109(43): 20522−20528. doi: 10.1021/jp0540656

    CrossRef Google Scholar

    [43] Guselnikova O, Lim H, Kim H J, et al. New trends in nanoarchitectured SERS substrates: nanospaces, 2D materials, and organic heterostructures[J]. Small, 2022, 18(25): 2107182. doi: 10.1002/smll.202107182

    CrossRef Google Scholar

    [44] Yang X, Ileri N, Larson C C, et al. Nanopillar array on a fiber facet for highly sensitive surface-enhanced Raman scattering[J]. Opt Express, 2012, 20(22): 24819−24826. doi: 10.1364/OE.20.024819

    CrossRef Google Scholar

    [45] Lin D D, Wu Z L, Li S J, et al. Large-area au-nanoparticle-functionalized Si nanorod arrays for spatially uniform surface-enhanced Raman spectroscopy[J]. ACS Nano, 2017, 11(2): 1478−1487. doi: 10.1021/acsnano.6b06778

    CrossRef Google Scholar

    [46] Tian Y, Wang H F, Yan L Q, et al. A generalized methodology of designing 3D SERS probes with superior detection limit and uniformity by maximizing multiple coupling effects[J]. Adv Sci (Weinh), 2019, 6(11): 1900177. doi: 10.1002/advs.201900177

    CrossRef Google Scholar

    [47] Luo X J, Xing Y F, Galvan D D, et al. Plasmonic gold Nanohole array for surface-enhanced Raman scattering detection of DNA methylation[J]. ACS Sens, 2019, 4(6): 1534−1542. doi: 10.1021/acssensors.9b00008

    CrossRef Google Scholar

    [48] Köker T, Tang N, Tian C, et al. Cellular imaging by targeted assembly of hot-spot SERS and photoacoustic nanoprobes using split-fluorescent protein scaffolds[J]. Nat Commun, 2018, 9(1): 607. doi: 10.1038/s41467-018-03046-w

    CrossRef Google Scholar

    [49] Tian L, Su M K, Yu F F, et al. Liquid-state quantitative SERS analyzer on self-ordered metal liquid-like plasmonic arrays[J]. Nat Commun, 2018, 9(1): 3642. doi: 10.1038/s41467-018-05920-z

    CrossRef Google Scholar

    [50] Fan J A, Wu C, Bao K, et al. Self-assembled plasmonic nanoparticle Clusters[J]. Science, 2010, 328(5982): 1135−1138. doi: 10.1126/science.1187949

    CrossRef Google Scholar

    [51] Ma Y, Sikdar D, Fedosyuk A, et al. Electrotunable nanoplasmonics for amplified surface enhanced raman spectroscopy[J]. ACS Nano, 2020, 14(1): 328−336. doi: 10.1021/acsnano.9b05257

    CrossRef Google Scholar

    [52] Yap F L, Thoniyot P, Krishnan S, et al. Nanoparticle cluster arrays for high-performance SERS through directed self-assembly on flat substrates and on optical fibers[J]. ACS Nano, 2012, 6(3): 2056−2070. doi: 10.1021/nn203661n

    CrossRef Google Scholar

    [53] 董子豪, 刘晔, 秦琰琰, 等. 激光诱导液面自组装法制备光纤SERS探针及其农残检测应用[J]. 中国激光, 2018, 45(8): 181−187. doi: 10.3788/CJL201845.0804009

    CrossRef Google Scholar

    Dong Z H, Liu Y, Qin Y Y, et al. Fabrication of fiber SERS probes by laser-induced self-assembly method in a meniscus and its applications in trace detection of pesticide residues[J]. Chin J Lasers, 2018, 45(8): 181−187. doi: 10.3788/CJL201845.0804009

    CrossRef Google Scholar

    [54] 李春赫, 马卓晨, 胡昕宇, 等. 微流控拉曼检测芯片的制备与应用[J]. 中国激光, 2021, 48(2): 0202010. doi: 10.3788/CJL202148.0202010

    CrossRef Google Scholar

    Li C H, Ma Z C, Hu X Y, et al. Preparation and application of microfluidic Raman detection chip[J]. Chin J Lasers, 2021, 48(2): 0202010. doi: 10.3788/CJL202148.0202010

    CrossRef Google Scholar

    [55] Hu M, Ou F S, Wu W, et al. Gold nanofingers for molecule trapping and detection[J]. J Am Chem Soc, 2010, 132(37): 12820−12822. doi: 10.1021/ja105248h

    CrossRef Google Scholar

    [56] Liu F X, Song B X, Su G X, et al. Molecule sensing: sculpting extreme electromagnetic field enhancement in free space for molecule sensing[J]. Small, 2018, 14(33): 1870152. doi: 10.1002/smll.201870152

    CrossRef Google Scholar

    [57] Park S G, Mun C, Xiao X F, et al. Surface energy-controlled SERS substrates for molecular concentration at plasmonic nanogaps[J]. Adv Funct Mater, 2017, 27(41): 1703376. doi: 10.1002/adfm.201703376

    CrossRef Google Scholar

    [58] Zhu C H, Meng G W, Zheng P, et al. A hierarchically ordered array of silver-nanorod bundles for surface-enhanced Raman scattering detection of phenolic pollutants[J]. Adv Mater, 2016, 28(24): 4871−4876. doi: 10.1002/adma.201506251

    CrossRef Google Scholar

    [59] Song B X, Jiang Z H, Liu Z R, et al. Probing the mechanisms of strong fluorescence enhancement in plasmonic nanogaps with sub-nanometer precision[J]. ACS Nano, 2020, 14(11): 14769−14778. doi: 10.1021/acsnano.0c01973

    CrossRef Google Scholar

    [60] Wu K Y, Li T, Schmidt M S, et al. Gold nanoparticles sliding on recyclable nanohoodoos-engineered for surface-enhanced Raman spectroscopy[J]. Adv Funct Mater, 2018, 28(2): 1704818. doi: 10.1002/adfm.201704818

    CrossRef Google Scholar

    [61] Macias-Montero M, Peláez R J, Rico V J, et al. Laser treatment of Ag@ZnO nanorods as long-life-span SERS surfaces[J]. ACS Appl Mater Interfaces, 2015, 7(4): 2331−2339. doi: 10.1021/am506622x

    CrossRef Google Scholar

    [62] Xu K C, Yan H P, Tan C F, et al. Hedgehog inspired CuO nanowires/Cu2O composites for broadband visible-light-driven recyclable surface enhanced Raman scattering[J]. Adv Opt Mater, 2018, 6(7): 1701167. doi: 10.1002/adom.201701167

    CrossRef Google Scholar

    [63] Gurbatov S O, Modin E, Puzikov V, et al. Black Au-decorated TiO2 produced via laser ablation in liquid[J]. ACS Appl Mater Interfaces, 2021, 13(5): 6522−6531. doi: 10.1021/acsami.0c20463

    CrossRef Google Scholar

    [64] Momma C, Chichkov B N, Nolte S, et al. Short-pulse laser ablation of solid targets[J]. Opt Commun, 1996, 129(1–2): 134−142. doi: 10.1016/0030-4018(96)00250-7

    CrossRef Google Scholar

    [65] Gattass R R, Mazur E. Femtosecond laser micromachining in transparent materials[J]. Nat Photon, 2008, 2(4): 219−225. doi: 10.1038/nphoton.2008.47

    CrossRef Google Scholar

    [66] Küper S, Stuke M. Ablation of uv-transparent materials with femtosecond uv excimer laser pulses[J]. Microelectron Eng, 1989, 9(1): 475−480. doi: 10.1016/0167-9317(89)90104-4

    CrossRef Google Scholar

    [67] Küper S, Stuke M. Ablation of polytetrafluoroethylene (Teflon) with femtosecond UV excimer laser pulses[J]. Appl Phys Lett, 1989, 54(1): 4−6. doi: 10.1063/1.100831

    CrossRef Google Scholar

    [68] Lim T W, Son Y, Jeong Y J, et al. Three-dimensionally crossing manifold micro-mixer for fast mixing in a short channel length[J]. Lab Chip, 2011, 11(1): 100−103. doi: 10.1039/C005325M

    CrossRef Google Scholar

    [69] Raimondi M T, Eaton S M, Nava M M, et al. Two-photon laser polymerization: from fundamentals to biomedical application in tissue engineering and regenerative medicine[J]. J Appl Biomater Funct Mater, 2012, 10(1): 56−66. doi: 10.5301/JABFM.2012.9278

    CrossRef Google Scholar

    [70] Ran P, Jiang L, Li X, et al. Femtosecond photon-mediated plasma enhances photosynthesis of plasmonic nanostructures and their SERS applications[J]. Small, 2019, 15(11): 1804899. doi: 10.1002/smll.201804899

    CrossRef Google Scholar

    [71] Xu B B, Xia H, Niu L G, et al. Flexible nanowiring of metal on nonplanar substrates by femtosecond-laser-induced electroless plating[J]. Small, 2010, 6(16): 1762−1766. doi: 10.1002/smll.201000511

    CrossRef Google Scholar

    [72] Xu B B, Zhang R, Liu X Q, et al. On-chip fabrication of silver microflower arrays as a catalytic microreactor for allowing in situ SERS monitoring[J]. Chem Commun (Camb), 2012, 48(11): 1680−1682. doi: 10.1039/C2CC16612G

    CrossRef Google Scholar

    [73] Ma Z C, Zhang Y L, Han B, et al. Femtosecond laser direct writing of plasmonic Ag/Pd alloy nanostructures enables flexible integration of robust SERS substrates[J]. Adv Mater Technol, 2017, 2(6): 1600270. doi: 10.1002/admt.201600270

    CrossRef Google Scholar

    [74] Yan W J, Yang L K, Chen J N, et al. In situ two-step photoreduced SERS materials for on-chip single-molecule spectroscopy with high reproducibility[J]. Adv Mater, 2017, 29(36): 1702893. doi: 10.1002/adma.201702893

    CrossRef Google Scholar

    [75] Luo Z J, Zeng Z H, Liu Z Y, et al. Cluster-enabled patterning of copper nanostructures from aqueous solution using a femtosecond laser[J]. Nanotechnology, 2022, 33(50): 505301. doi: 10.1088/1361-6528/ac8c4a

    CrossRef Google Scholar

    [76] Bai S, Serien D, Hu A M, et al. 3D microfluidic surface-enhanced Raman spectroscopy (SERS) chips fabricated by all-femtosecond-laser-processing for real-time sensing of toxic substances[J]. Adv Funct Mater, 2018, 28(23): 1706262. doi: 10.1002/adfm.201706262

    CrossRef Google Scholar

    [77] MacKenzie M, Chi H N, Varma M, et al. Femtosecond laser fabrication of silver nanostructures on glass for surface enhanced Raman spectroscopy[J]. Sci Rep, 2019, 9(1): 17058. doi: 10.1038/s41598-019-53328-6

    CrossRef Google Scholar

    [78] Geng Y F, Yin Z, Tan X L, et al. Femtosecond laser ablated polymer SERS fiber probe with photoreduced deposition of silver nanoparticles[J]. IEEE Photon J, 2016, 8(5): 1−6. doi: 10.1109/JPHOT.2016.2606640

    CrossRef Google Scholar

    [79] Xu Y W, Geng Y F, Wang L N, et al. Femtosecond laser ablated pyramidal fiber taper-SERS probe with laser-induced silver nanostructures[J]. J Phys D Appl Phys, 2018, 51(28): 285104. doi: 10.1088/1361-6463/aacab2

    CrossRef Google Scholar

    [80] Vorobyev A Y, Guo C L. Direct femtosecond laser surface nano/microstructuring and its applications[J]. Laser Photon Rev, 2013, 7(3): 385−407. doi: 10.1002/lpor.201200017

    CrossRef Google Scholar

    [81] Eesley G L. Observation of nonequilibrium electron heating in copper[J]. Phys Rev Lett, 1983, 51(23): 2140−2143. doi: 10.1103/PhysRevLett.51.2140

    CrossRef Google Scholar

    [82] Fujimoto J G, Liu J M, Ippen E P, et al. Femtosecond laser interaction with metallic tungsten and nonequilibrium electron and lattice temperatures[J]. Phys Rev Lett, 1984, 53(19): 1837−1840. doi: 10.1103/PhysRevLett.53.1837

    CrossRef Google Scholar

    [83] Elsayed-Ali H E, Norris T B, Pessot M A, et al. Time-resolved observation of electron-phonon relaxation in copper[J]. Phys Rev Lett, 1987, 58(12): 1212−1215. doi: 10.1103/PhysRevLett.58.1212

    CrossRef Google Scholar

    [84] Oguri K, Okano Y, Nishikawa T, et al. Dynamics of femtosecond laser ablation studied with time-resolved x-ray absorption fine structure imaging[J]. Phys Rev B, 2009, 79(14): 144106. doi: 10.1103/PhysRevB.79.144106

    CrossRef Google Scholar

    [85] Glover T E, Ackerman G D, Lee R W, et al. Metal–insulator transitions in an expanding metallic fluid: particle formation during femtosecond laser ablation[J]. Chem Phys, 2004, 299(2–3): 171−181. doi: 10.1016/j.chemphys.2003.11.042

    CrossRef Google Scholar

    [86] Amoruso S, Bruzzese R, Vitiello M, et al. Experimental and theoretical investigations of femtosecond laser ablation of aluminum in vacuum[J]. J Appl Phys, 2005, 98(4): 044907. doi: 10.1063/1.2032616

    CrossRef Google Scholar

    [87] Oguri K, Okano Y, Nishikawa T, et al. Dynamical study of femtosecond-laser-ablated liquid-aluminum nanoparticles using spatiotemporally resolved x-ray-absorption fine-structure spectroscopy[J]. Phys Rev Lett, 2007, 99(16): 165003. doi: 10.1103/PhysRevLett.99.165003

    CrossRef Google Scholar

    [88] Amoruso S, Bruzzese R, Wang X, et al. Femtosecond laser ablation of nickel in vacuum[J]. J Phys D Appl Phys, 2007, 40(2): 331−340. doi: 10.1088/0022-3727/40/2/008

    CrossRef Google Scholar

    [89] Zavestovskaya I N, Kanavin A P, Men’kova N A. Crystallization of metals under conditions of superfast cooling when materials are processed with ultrashort laser pulses[J]. J Opt Technol, 2008, 75(6): 353−358. doi: 10.1364/JOT.75.000353

    CrossRef Google Scholar

    [90] Hisey C L, Mitxelena-Iribarren O, Martínez-Calderón M, et al. A versatile cancer cell trapping and 1D migration assay in a microfluidic device[J]. Biomicrofluidics, 2019, 13(4): 044105. doi: 10.1063/1.5103269

    CrossRef Google Scholar

    [91] Chang H W, Tsai Y C, Cheng C W, et al. Nanostructured Ag surface fabricated by femtosecond laser for surface-enhanced Raman scattering[J]. J Colloid Interface Sci, 2011, 360(1): 305−308. doi: 10.1016/j.jcis.2011.04.005

    CrossRef Google Scholar

    [92] Luo X B, Liu W J, Chen C H, et al. Femtosecond laser micro-Nano structured Ag SERS substrates with unique sensitivity, uniformity and stability for food safety evaluation[J]. Opt Laser Technol, 2021, 139: 106969. doi: 10.1016/j.optlastec.2021.106969

    CrossRef Google Scholar

    [93] Lu L B, Zhang J R, Jiao L S, et al. Large-scale fabrication of nanostructure on bio-metallic substrate for surface enhanced Raman and fluorescence scattering[J]. Nanomaterials (Basel), 2019, 9(7): 916. doi: 10.3390/nano9070916

    CrossRef Google Scholar

    [94] Zhang W D, Li C, Gao K, et al. Surface-enhanced Raman spectroscopy with Au-nanoparticle substrate fabricated by using femtosecond pulse[J]. Nanotechnology, 2018, 29(20): 205301. doi: 10.1088/1361-6528/aab294

    CrossRef Google Scholar

    [95] Long J Y, Cao Z, Lin C H, et al. Formation mechanism of hierarchical Micro- and nanostructures on copper induced by low-cost nanosecond lasers[J]. Appl Surf Sci, 2019, 464: 412−421. doi: 10.1016/j.apsusc.2018.09.055

    CrossRef Google Scholar

    [96] Harilal S S, Bindhu C V, Tillack M S, et al. Internal structure and expansion dynamics of laser ablation plumes into ambient gases[J]. J Appl Phys, 2003, 93(5): 2380−2388. doi: 10.1063/1.1544070

    CrossRef Google Scholar

    [97] Cai M Y, Pan R, Liu W J, et al. Laser-assisted doping and architecture engineering of Fe3O4 nanoparticles for highly enhanced oxygen evolution reaction[J]. ChemSusChem, 2019, 12(15): 3562−3570. doi: 10.1002/cssc.201901020

    CrossRef Google Scholar

    [98] Dileep M, Majumdar J D. Short and ultrashort laser surface processing of Alpha + Beta titanium alloy (Ti6Al4V): Present status[J]. Trans. Indian Natl Acad Eng, 2022, 7(3): 851−871. doi: 10.1007/s41403-022-00333-3

    CrossRef Google Scholar

    [99] Aggarwal R L, Farrar L W, Diebold E D, et al. Measurement of the absolute Raman scattering cross section of the 1584-cm-1 band of benzenethiol and the surface-enhanced Raman scattering cross section enhancement factor for femtosecond laser-nanostructured substrates[J]. J Raman Spectrosc, 2009, 40(9): 1331−1333. doi: 10.1002/jrs.2396

    CrossRef Google Scholar

    [100] Jiang L, Ying D W, Li X, et al. Two-step femtosecond laser pulse train fabrication of nanostructured substrates for highly surface-enhanced Raman scattering[J]. Opt Lett, 2012, 37(17): 3648−3650. doi: 10.1364/OL.37.003648

    CrossRef Google Scholar

    [101] Han Y K, Lan X W, Wei T, et al. Surface enhanced Raman scattering silica substrate fast fabrication by femtosecond laser pulses[J]. Appl Phys A, 2009, 97(3): 721−724. doi: 10.1007/s00339-009-5306-z

    CrossRef Google Scholar

    [102] Buividas R, Fahim N, Juodkazytė J, et al. Novel method to determine the actual surface area of a laser-nanotextured sensor[J]. Appl Phys A, 2014, 114(1): 169−175. doi: 10.1007/s00339-013-8129-x

    CrossRef Google Scholar

    [103] Aleknavičienė I, Pabrėža E, Talaikis M, et al. Low-cost SERS substrate featuring laser-ablated amorphous nanostructure[J]. Appl Surf Sci, 2021, 571: 151248. doi: 10.1016/j.apsusc.2021.151248

    CrossRef Google Scholar

    [104] Botta R, Eiamchai P, Horprathum M, et al. 3D structured laser engraves decorated with gold nanoparticle SERS chips for paraquat herbicide detection in environments[J]. Sens Actuat B Chem, 2020, 304: 127327. doi: 10.1016/j.snb.2019.127327

    CrossRef Google Scholar

    [105] Li Z H, Hu J, Jiang L, et al. Shaped femtosecond laser-regulated deposition sites of galvanic replacement for simple preparation of large-area controllable noble metal nanoparticles[J]. Appl Surf Sci, 2022, 579: 152123. doi: 10.1016/j.apsusc.2021.152123

    CrossRef Google Scholar

    [106] Xu L M, Liu H G, Chua T C, et al. Fabrication of SERS substrates by femtosecond LIPAA for detection of contaminants in foods[J]. Opt Laser Technol, 2022, 151: 107954. doi: 10.1016/j.optlastec.2022.107954

    CrossRef Google Scholar

    [107] Chu F J, Yan S, Zheng J G, et al. A simple laser ablation-assisted method for fabrication of superhydrophobic SERS substrate on teflon film[J]. Nanoscale Res Lett, 2018, 13(1): 244. doi: 10.1186/s11671-018-2658-3

    CrossRef Google Scholar

    [108] Yu J, Wu J G, Yang H, et al. Extremely sensitive SERS sensors based on a femtosecond laser-fabricated superhydrophobic/-philic microporous platform[J]. ACS Appl Mater Interfaces, 2022, 14(38): 43877−43885. doi: 10.1021/acsami.2c10381

    CrossRef Google Scholar

    [109] Li Y, Liu H G, Hong M H. High-quality sapphire microprocessing by dual-beam laser induced plasma assisted ablation[J]. Opt Express, 2020, 28(5): 6242−6250. doi: 10.1364/OE.381268

    CrossRef Google Scholar

    [110] Rahman T U, Rehman Z U, Ullah S, et al. Laser-induced plasma-assisted ablation (LIPAA) of glass: Effects of the laser fluence on plasma parameters and crater morphology[J]. Opt Technol, 2019, 120: 105768. doi: 10.1016/j.optlastec.2019.105768

    CrossRef Google Scholar

    [111] Saraeva I N, Kudryashov S I, Lednev V N, et al. Single- and multishot femtosecond laser ablation of silicon and silver in air and liquid environments: Plume dynamics and surface modification[J]. Appl Surf Sci, 2019, 476: 576−586. doi: 10.1016/j.apsusc.2019.01.092

    CrossRef Google Scholar

    [112] Allahyari E, Nivas J J J, Valadan M, et al. Plume shielding effects in ultrafast laser surface texturing of silicon at high repetition rate in air[J]. Appl Surf Sci, 2019, 488: 128−133. doi: 10.1016/j.apsusc.2019.05.219

    CrossRef Google Scholar

    [113] Weng Z Y, Ting C S, Lee T K. Mobile spin bags and their interaction in the spin-density-wave background[J]. Phys Rev B, 1990, 41(4): 1990−2002. doi: 10.1103/PhysRevB.41.1990

    CrossRef Google Scholar

    [114] Zhizhchenko A, Kuchmizhak A, Vitrik O, et al. On-demand concentration of an analyte on laser-printed polytetrafluoroethylene[J]. Nanoscale, 2018, 10(45): 21414−21424. doi: 10.1039/C8NR06119J

    CrossRef Google Scholar

    [115] Yan Z X, Zhang Y L, Wang W, et al. Superhydrophobic SERS substrates based on silver-coated reduced graphene oxide gratings prepared by two-beam laser interference[J]. ACS Appl Mater Interfaces, 2015, 7(49): 27059−27065. doi: 10.1021/acsami.5b09128

    CrossRef Google Scholar

    [116] Wang A D, Jiang L, Li X W, et al. Low-adhesive superhydrophobic surface-enhanced Raman spectroscopy substrate fabricated by femtosecond laser ablation for ultratrace molecular detection[J]. J Mater Chem B, 2017, 5(4): 777−784. doi: 10.1039/C6TB02629J

    CrossRef Google Scholar

    [117] Hu X Y, Pan R, Cai M Y, et al. Ultrafast laser micro-Nano structured superhydrophobic Teflon surfaces for enhanced SERS detection via evaporation concentration[J]. Adv Opt Technol, 2020, 9(1–2): 89−100. doi: 10.1515/aot-2019-0072

    CrossRef Google Scholar

    [118] Gan Z S, Cao Y Y, Evans R A, et al. Three-dimensional deep sub-diffraction optical beam lithography with 9 nm feature size[J]. Nat Commun, 2013, 4: 2061. doi: 10.1038/ncomms3061

    CrossRef Google Scholar

    [119] Cox N, Wei J X, Pattanaik H, et al. Nondegenerate two-photon absorption in GaAs/AlGaAs multiple quantum well waveguides[J]. Phys Rev Res, 2020, 2: 013376. doi: 10.1103/PhysRevResearch.2.013376

    CrossRef Google Scholar

    [120] Wang Z K, Sugioka K, Midorikawa K. Fabrication of integrated microchip for optical sensing by femtosecond laser direct writing of Foturan glass[J]. Appl Phys A, 2008, 93(1): 225−229. doi: 10.1007/s00339-008-4664-2

    CrossRef Google Scholar

    [121] Xie Z W, Feng S F, Wang P J, et al. Demonstration of a 3D Radar-Like SERS Sensor Micro- and Nanofabricated on an Optical Fiber[J]. Adv Opt Mater, 2015, 3(9): 1232−1239. doi: 10.1002/adom.201500041

    CrossRef Google Scholar

    [122] Kim J A, Wales D J, Thompson A J, et al. Fiber‐Optic SERS probes fabricated using two‐photon polymerization for rapid detection of bacteria[J]. Adv Opt Mater, 2020, 8(9): 1901934. doi: 10.1002/adom.201901934

    CrossRef Google Scholar

    [123] Kyeremateng N A, Brousse T, Pech D. Microsupercapacitors as miniaturized energy-storage components for on-chip electronics[J]. Nat Nanotechnol, 2017, 12(1): 7−15. doi: 10.1038/nnano.2016.196

    CrossRef Google Scholar

    [124] Zhu B W, Wang H, Leow W R, et al. Silk fibroin for flexible electronic devices[J]. Adv Mater, 2016, 28(22): 4250−4265. doi: 10.1002/adma.201504276

    CrossRef Google Scholar

    [125] Chandra D, Yang S, Soshinsky A A, et al. Biomimetic ultrathin whitening by capillary-force-induced random clustering of hydrogel micropillar arrays[J]. ACS Appl Mater& Interfaces, 2009, 1(8): 1698−1704. doi: 10.1021/am900253z

    CrossRef Google Scholar

    [126] Lao Z X, Pan D, Yuan H W, et al. Mechanical-tunable capillary-force-driven self-assembled hierarchical structures on soft substrate[J]. ACS Nano, 2018, 12(10): 10142−10150. doi: 10.1021/acsnano.8b05024

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(9)

Tables(1)

Article Metrics

Article views(8682) PDF downloads(1295) Cited by(0)

Access History

Other Articles By Authors

Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint