Citation: | Zhang K, Ma Z J, Zhou Y, et al. Silicon-based super-resolution metalens with weak sidelobe[J]. Opto-Electron Eng, 2022, 49(11): 220258. doi: 10.12086/oee.2022.220258 |
[1] | Abbe E. Beiträge zur theorie des mikroskops und der mikroskopischen wahrnehmung[J]. Arch für Mikrosk Anat, 1873, 9(1): 413−468. doi: 10.1007/BF02956173 |
[2] | Betzig E, Trautman J K, Harris T D, et al. Breaking the diffraction barrier: optical microscopy on a nanometric scale[J]. Science, 1991, 251(5000): 1468−1470. doi: 10.1126/science.251.5000.1468 |
[3] | Zhang X, Liu Z W. Superlenses to overcome the diffraction limit[J]. Nat Mater, 2008, 7(6): 435−441. doi: 10.1038/nmat2141 |
[4] | Fang N, Lee H, Sun C, et al. Sub-diffraction-limited optical imaging with a silver superlens[J]. Science, 2005, 308(5721): 534−537. doi: 10.1126/science.1108759 |
[5] | Liu Z W, Lee H, Xiong Y, et al. Far-field optical hyperlens magnifying sub-diffraction-limited objects[J]. Science, 2007, 315(5819): 1686. doi: 10.1126/science.1137368 |
[6] | Lu D, Liu Z W. Hyperlenses and metalenses for far-field super-resolution imaging[J]. Nat Commun, 2012, 3: 1205. doi: 10.1038/ncomms2176 |
[7] | Zhu Y C, Chen X L, Yuan W Z, et al. A waveguide metasurface based quasi-far-field transverse-electric superlens[J]. Opto-Electron Adv, 2021, 4: 210013. doi: 10.29026/oea.2021.210013 |
[8] | Hell S W, Wichmann J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy[J]. Opt Lett, 1994, 19(11): 780−782. doi: 10.1364/OL.19.000780 |
[9] | Huang B, Wang W Q, Bates M, et al. Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy[J]. Science, 2008, 319(5864): 810−813. doi: 10.1126/science.1153529 |
[10] | Gould T J, Verkhusha V V, Hess S T. Imaging biological structures with fluorescence photoactivation localization microscopy[J]. Nat Protoc, 2009, 4(3): 291−308. doi: 10.1038/nprot.2008.246 |
[11] | Schermelleh L, Carlton P M, Haase S, et al. Subdiffraction multicolor imaging of the nuclear periphery with 3D structured illumination microscopy[J]. Science, 2008, 320(5881): 1332−1336. doi: 10.1126/science.1156947 |
[12] | Liu X W, Kuang C F, Hao X, et al. Fluorescent nanowire ring illumination for wide-field far-field subdiffraction imaging[J]. Phys Rev Lett, 2017, 118(7): 076101. doi: 10.1103/PhysRevLett.118.076101 |
[13] | Yan Y Z, Li L, Feng C, et al. Microsphere-coupled scanning laser confocal nanoscope for sub-diffraction-limited imaging at 25 nm lateral resolution in the visible spectrum[J]. ACS Nano, 2014, 8(2): 1809−1816. doi: 10.1021/nn406201q |
[14] | 周锐, 吴梦雪, 沈飞, 等. 基于近场光学的微球超分辨显微效应[J]. 物理学报, 2017, 66(14): 140702. doi: 10.7498/aps.66.140702 Zhou R, Wu M X, Shen F, et al. Super-resolution microscopic effect of microsphere based on the near-field optics[J]. Acta Phys Sin, 2017, 66(14): 140702. doi: 10.7498/aps.66.140702 |
[15] | Boneberg J, Leiderer P. Optical near-field imaging and nanostructuring by means of laser ablation[J]. Opto-Electron Sci, 2022, 1(1): 210003. doi: 10.29026/oes.2022.210003 |
[16] | Huang K, Ye H P, Teng J H, et al. Optimization-free superoscillatory lens using phase and amplitude masks[J]. Laser Photon Rev, 2014, 8(1): 152−157. doi: 10.1002/lpor.201300123 |
[17] | Berry M V. Evanescent and real waves in quantum billiards and Gaussian beams[J]. J Phys A Math Gen, 1994, 27(11): L391−L398. doi: 10.1088/0305-4470/27/11/008 |
[18] | Berry M V, Popescu S. Evolution of quantum superoscillations and optical superresolution without evanescent waves[J]. J Phys A Math Gen, 2006, 39(22): 6965. doi: 10.1088/0305-4470/39/22/011 |
[19] | Qin F, Huang K, Wu J F, et al. Shaping a subwavelength needle with ultra-long focal length by focusing azimuthally polarized light[J]. Sci Rep, 2015, 5: 9977. doi: 10.1038/srep09977 |
[20] | Chen G, Li Y Y, Yu A P, et al. Super-oscillatory focusing of circularly polarized light by ultra-long focal length planar lens based on binary amplitude-phase modulation[J]. Sci Rep, 2016, 6: 29068. doi: 10.1038/srep29068 |
[21] | Chen G, Li Y Y, Wang X Y, et al. Super-oscillation far-field focusing lens based on ultra-thin width-varied metallic slit array[J]. IEEE Photon Technol Lett, 2016, 28(3): 335−338. doi: 10.1109/LPT.2015.2496148 |
[22] | Chen G, Zhang K, Yu A P, et al. Far-field sub-diffraction focusing lens based on binary amplitude-phase mask for linearly polarized light[J]. Opt Express, 2016, 24(10): 11002−11008. doi: 10.1364/OE.24.011002 |
[23] | Yuan G H, Vezzoli S, Altuzarra C, et al. Quantum super-oscillation of a single photon[J]. Light Sci Appl, 2016, 5(8): e16127. doi: 10.1038/lsa.2016.127 |
[24] | Yu A P, Chen G, Zhang Z H, et al. Creation of sub-diffraction longitudinally polarized spot by focusing radially polarized light with binary phase lens[J]. Sci Rep, 2016, 6: 38859. doi: 10.1038/srep38859 |
[25] | Chen G, Wu Z X, Yu A P, et al. Generation of a sub-diffraction hollow ring by shaping an azimuthally polarized wave[J]. Sci Rep, 2016, 6: 37776. doi: 10.1038/srep37776 |
[26] | 武志翔, 金启见, 张坤, 等. 基于二值振幅调控的角向偏振光超振荡聚焦平面透镜[J]. 光电工程, 2018, 45(4): 170660. doi: 10.12086/oee.2018.170660 Wu Z X, Jin Q J, Zhang K, et al. Binary-amplitude modulation based super-oscillatory focusing planar lens for azimuthally polarized wave[J]. Opto-Electron Eng, 2018, 45(4): 170660. doi: 10.12086/oee.2018.170660 |
[27] | Rogers E T F, Savo S, Lindberg J, et al. Super-oscillatory optical needle[J]. Appl Phys Lett, 2013, 102(3): 031108. doi: 10.1063/1.4774385 |
[28] | Yuan G H, Rogers E T F, Roy T, et al. Planar super-oscillatory lens for sub-diffraction optical needles at violet wavelengths[J]. Sci Rep, 2014, 4: 6333. doi: 10.1038/srep06333 |
[29] | Chen G, Wu Z X, Yu A P, et al. Planar binary-phase lens for super-oscillatory optical hollow needles[J]. Sci Rep, 2017, 7(1): 4697. doi: 10.1038/s41598-017-05060-2 |
[30] | Wang H T, Hao C L, Lin H, et al. Generation of super-resolved optical needle and multifocal array using graphene oxide metalenses[J]. Opto-Electron Adv, 2021, 4(2): 200031. doi: 10.29026/oea.2021.200031 |
[31] | Zhang S, Chen H, Wu Z X, et al. Synthesis of sub-diffraction quasi-non-diffracting beams by angular spectrum compression[J]. Opt Express, 2017, 25(22): 27104−27118. doi: 10.1364/OE.25.027104 |
[32] | Wu Z X, Zhang K, Zhang S, et al. Optimization-free approach for generating sub-diffraction quasi-non-diffracting beams[J]. Opt Express, 2018, 26(13): 16585−16599. doi: 10.1364/OE.26.016585 |
[33] | Hu Y W, Wang S W, Jia J H, et al. Optical superoscillatory waves without side lobes along a symmetric cut[J]. Adv Photon, 2021, 3(4): 045002. doi: 10.1117/1.AP.3.4.045002 |
[34] | Zuo R Z, Liu W W, Cheng H, et al. Breaking the diffraction limit with radially polarized light based on dielectric metalenses[J]. Adv Opt Mater, 2018, 6(21): 1800795. doi: 10.1002/adom.201800795 |
[35] | Li Y Y, Cao L Y, Wen Z Q, et al. Broadband quarter-wave birefringent meta-mirrors for generating sub-diffraction vector fields[J]. Opt Lett, 2019, 44(1): 110−113. doi: 10.1364/OL.44.000110 |
[36] | Wu Z X, Dong F L, Zhang S, et al. Broadband dielectric metalens for polarization manipulating and superoscillation focusing of visible light[J]. ACS Photonics, 2020, 7(1): 180−189. doi: 10.1021/acsphotonics.9b01356 |
[37] | Genevet P, Capasso F, Aieta F, et al. Recent advances in planar optics: from plasmonic to dielectric metasurfaces[J]. Optica, 2017, 4(1): 139−152. doi: 10.1364/optica.4.000139 |
[38] | Liu S Q, Chen S Z, Wen S C, et al. Photonic spin hall effect: fundamentals and emergent applications[J]. Opto-Electron Sci, 2022, 1(7): 220007. doi: 10.29026/oes.2022.220007 |
[39] | Yuan G H, Rogers K S, Rogers E T F, et al. Far-field superoscillatory metamaterial superlens[J]. Phys Rev Appl, 2019, 11(6): 064016. doi: 10.1103/PhysRevApplied.11.064016 |
[40] | Zhang Q, Dong F L, Li H X, et al. High-numerical-aperture dielectric metalens for super-resolution focusing of oblique incident light[J]. Adv Opt Mater, 2020, 8(9): 1901885. doi: 10.1002/adom.201901885 |
[41] | Wen Z Q, He Y H, Li Y Y, et al. Super-oscillation focusing lens based on continuous amplitude and binary phase modulation[J]. Opt Express, 2014, 22(18): 22163−22171. doi: 10.1364/OE.22.022163 |
[42] | Rogers E T F, Lindberg J, Roy T, et al. A super-oscillatory lens optical microscope for subwavelength imaging[J]. Nat Mater, 2012, 11(5): 432−435. doi: 10.1038/nmat3280 |
[43] | Qin F, Huang K, Wu J F, et al. A supercritical lens optical label-free microscopy: sub-diffraction resolution and ultra-long working distance[J]. Adv Mater, 2017, 29(8): 1602721. doi: 10.1002/adma.201602721 |
[44] | Wang Y L, Fan Q B, Xu T. Design of high efficiency achromatic metalens with large operation bandwidth using bilayer architecture[J]. Opto-Electron Adv, 2021, 4(1): 200008. doi: 10.29026/oea.2021.200008 |
[45] | 周毅, 梁高峰, 温中泉, 等. 光学超分辨平面超构透镜研究进展[J]. 光电工程, 2021, 48(12): 210399. doi: 10.12086/oee.2021.210399 Zhou Y, Liang G F, Wen Z Q, et al. Recent research progress in optical super-resolution planar meta-lenses[J]. Opto-Electron Eng, 2021, 48(12): 210399. doi: 10.12086/oee.2021.210399 |
[46] | Deng D M, Guo Q. Analytical vectorial structure of radially polarized light beams[J]. Opt Lett, 2007, 32(18): 2711−2713. doi: 10.1364/OL.32.002711 |
[47] | Jin N B, Rahmat-Samii Y. Advances in particle swarm optimization for antenna designs: real-number, binary, single-objective and multiobjective implementations[J]. IEEE Trans Antennas Propag, 2007, 55(3): 556−567. doi: 10.1109/TAP.2007.891552 |
[48] | Wang Y J, Chen Q M, Yang W H, et al. High-efficiency broadband achromatic metalens for near-IR biological imaging window[J]. Nat Commun, 2021, 12(1): 5560. doi: 10.1038/s41467-021-25797-9 |
[49] | Oscurato S L, Reda F, Salvatore M, et al. Shapeshifting diffractive optical devices[J]. Laser Photonics Rev, 2022, 16(4): 2100514. doi: 10.1002/lpor.202100514 |
Optical super-resolution lenses have shown great potential in super-resolution microscopic systems and nano-fabrication systems. With the decrease of the focusing spot of the super-resolution lens, it is inevitable that large sidelobes and sidebands will be generated, which will lead to a limited field of view and imaging artifacts. Therefore, when designing super-resolution optical devices, it is necessary to adopt a balanced strategy between focusing spot and side lobe according to the practical applications. Metasurface is a planar structure composed of nanoscale meta-atoms, which can flexibly regulate the amplitude, phase and polarization of the optical field, being beneficial to construct complex super-resolution optical fields. The PB phase meta-atom is comparatively easy to fabricate due to its simplicity. Using Finite-Difference Time-Domain (FDTD) solutions to optimize the size of the meta-atom, we can get a structure with high transmittance. By rotating the angle of the meta-atom, we can achieve linear phase control. The application of PB phase metasurface has been demonstrated in the field of super-resolution focusing devices with suppressed sidelobe. Based on the vector angular spectrum method and particle swarm optimization (PSO) algorithm, a super-resolution point focusing lens with a large numerical aperture and weak sidelobe is optimally designed with a 32-valued phase control at the wavelength of λ=632.8 nm. Based on the silicon-based PB phase metasurface, our metalens was fabricated by electron beam lithography and orthoplastic etching. The lens radius Rlens=57λ, focal length zf=20λ, corresponding to the numerical aperture of NA=0.944. The optical field distribution of the super-resolution metalens was measured experimentally by a large-numerical-aperture microscopy system. The results show that, at the focal plane, the FWHM of the focal spot is 0.45λ, which is less than the diffraction limit of 0.53λ (the diffraction limit is 0.5λ/NA), the side-lobe ratio SR is 0.07, and the depth of focus is 0.4λ. Our proposed metalens can achieve a small depth of focus, a weak sidelobe ratio, and super-resolution point focusing. Our proposed super-resolution metalens bears the potential to realize the miniaturization, lightweight, and integration of super-resolution optical devices or systems.
Silicon-based metalens. (a) Schematic diagram of silicon-based metaatoms; (b) Schematic diagram of the focusing
Flowchart of the optimization process to achieve super-resolution focusing with weak sidelobes
Theoretical results of silicon-based metalens. (a) Two-dimensional intensity distribution in the focal plane; (b) The corresponding intensity curve in the focal plane; (c) Two-dimensional intensity distribution on xz plane; (d) Intensity (red), FWHM (blue), and SR (green) parameter on the xz plane
FDTD simulation results of silicon-based metalens. (a) Two-dimensional intensity distribution in focal plane; (b) Focal plane intensity curve; (c) Two-dimensional intensity distribution on xz plane; (d) Focal spot intensity (red), FWHM (blue) and SR (green) parameter curves on the xz plane
The SEM and experimental schematic of metalens. (a) The SEM of the metalens; (b) Experimental schematic based on optical microscopy system with a large numerical-aperture objective
Experimental results of silicon-based metalens on the focal plane. (a) Two-dimensional intensity distribution on the focal plane; (b) The corresponding intensity curves along the x-axis (green) and y-axis (blue), mean intensity curves (red) and the design results (black)
Experimental (red) and design (green) results of silicon-based metalens on the xz plane. (a) Two-dimensional Intensity distribution on the xz plane; (b) The corresponding intensity; (c) FWHM; (d) Sidelobe ratio