Shang L D, Liang P, Wu Q Y, et al. Research on absolute conjugation confocal Raman spectroscopy technology[J]. Opto-Electron Eng, 2021, 48(6): 200398. doi: 10.12086/oee.2021.200398
Citation: Shang L D, Liang P, Wu Q Y, et al. Research on absolute conjugation confocal Raman spectroscopy technology[J]. Opto-Electron Eng, 2021, 48(6): 200398. doi: 10.12086/oee.2021.200398

Research on absolute conjugation confocal Raman spectroscopy technology

    Fund Project: National Key R & D Program "International Cooperation in Science and Technology Innovation Between Governments/Cooperation in Science and Technology Innovation Between Hong Kong, Macao and Taiwan" (SQ2018YFE010810)
More Information
  • To solve the problems of weak signal strength and low signal-to-noise ratio in traditional Raman spectroscopy, a new confocal Raman system is proposed in this paper. The absolute conjugation of the confocal point is realized by external photonic crystal fiber. The technical problems in the coupling process of photonic crystal fiber are summarized, and the actual samples are tested. Compared with conventional confocal Raman fibers such as Thorlabs and OZ and Witec 532 nm-alpha300R Raman system, the signal-to-noise ratio in this paper is 73.8382 at the same laser intensity and integration time, which is significantly higher than that of Thorlabs and OZ (37.1557 and 40.0342, respectively). Compared with the signal-to-noise ratio of 65.5312 for Witec 532 nm-alpha300R, it also increased by 12.68%. High-quality Raman signal makes the absolute conjugated confocal Raman system have broad market prospects and ultra-high market competitiveness.
  • 加载中
  • [1] Beyssac O, Goffé B, Chopin C, et al. Raman spectra of carbonaceous material in metasediments: a new geothermometer[J]. J Metamorp Geol, 2002, 20(9): 859-871. doi: 10.1046/j.1525-1314.2002.00408.x

    CrossRef Google Scholar

    [2] Bersani D, Lottici P P. Applications of Raman spectroscopy to gemology[J]. Anal Bioanal Chem, 2010, 397(7): 2631-2646. doi: 10.1007/s00216-010-3700-1

    CrossRef Google Scholar

    [3] Dieing T, Hollricher O, Toporski J. Confocal Raman Microscopy[M]. Berlin, Heidelberg: Springer, 2011.

    Google Scholar

    [4] Stiles P L, Dieringer J A, Shah N C, et al. Surface-enhanced Raman spectroscopy[J]. Annu Rev Anal Chem, 2008, 1: 601-626. doi: 10.1146/annurev.anchem.1.031207.112814

    CrossRef Google Scholar

    [5] Carey P. Biochemical Applications of Raman and Resonance Raman Spectroscopes[M]. Amsterdam: Elsevier, 2012.

    Google Scholar

    [6] Stöckle R M, Suh Y D, Deckert V, et al. Nanoscale chemical analysis by tip-enhanced Raman spectroscopy[J]. Chem Phys Lett, 2000, 318(1-3): 131-136. doi: 10.1016/S0009-2614(99)01451-7

    CrossRef Google Scholar

    [7] Russell P S J. Photonic band gaps[J]. Phys World, 1992, 5(8): 37-42. doi: 10.1088/2058-7058/5/8/31

    CrossRef Google Scholar

    [8] Knight J C, Birks T A, Russell P S J, et al. All-silica single-mode optical fiber with photonic crystal cladding[J]. Opt Lett, 1996, 21(19): 1547-1549. doi: 10.1364/OL.21.001547

    CrossRef Google Scholar

    [9] Cregan R F, Mangan B J, Knight J C, et al. Single-mode photonic band gap guidance of light in air[J]. Science, 1999, 285(5433): 1537-1539. doi: 10.1126/science.285.5433.1537

    CrossRef Google Scholar

    [10] 陈月娥, 侯蓝田. Yb3+掺杂双包层光子晶体光纤制备研究[J]. 光电工程, 2009, 36(2): 62-66. doi: 10.3969/j.issn.1003-501X.2009.02.012

    CrossRef Google Scholar

    Chen Y E, Hou L T. Preparation of Yb3+ doped double-clad photonic crystal fiber[J]. Opto-Electron Eng, 2009, 36(2): 62-66. doi: 10.3969/j.issn.1003-501X.2009.02.012

    CrossRef Google Scholar

    [11] 张学典, 袁曼曼, 常敏, 等. 正方形空气孔光子晶体光纤特性分析[J]. 光电工程, 2018, 45(5): 20-28. doi: 10.12086/oee.2018.170633

    CrossRef Google Scholar

    Zhang X D, Yuan M M, Chang M, et al. Characteristics in square air hole structure photonic crystal fiber[J]. Opto-Electron Eng, 2018, 45(5): 20-28. doi: 10.12086/oee.2018.170633

    CrossRef Google Scholar

    [12] 王清月, 胡明列, 柴路. 光子晶体光纤非线性光学研究新进展[J]. 中国激光, 2006, 33(1): 57-66. doi: 10.3321/j.issn:0258-7025.2006.01.014

    CrossRef Google Scholar

    Wang Q Y, Hu M L, Chai L. Progress in nonlinear optics with photonic crystal fibers[J]. Chin J Lasers, 2006, 33(1): 57-66. doi: 10.3321/j.issn:0258-7025.2006.01.014

    CrossRef Google Scholar

    [13] Folkenberg J R, Nielsen M D, Mortensen N A, et al. Polarization maintaining large mode area photonic crystal fiber[J]. Opt Express, 2004, 12(5): 956-960. doi: 10.1364/OPEX.12.000956

    CrossRef Google Scholar

    [14] Polis B, Imiela A, Polis L, et al. Raman spectroscopy for medulloblastoma[J]. Child's Nervous System, 2018, 34(12): 2425-2430. doi: 10.1007/s00381-018-3906-7

    CrossRef Google Scholar

    [15] 吕明磊. 拉曼光谱基线校正与噪声抑制技术研究[D]. 成都: 电子科技大学, 2017.

    Google Scholar

    Lv M L. Baseline correction and noise suppression of Raman spectroscopy[D]. Chengdu: University of Electronic Science and Technology of China, 2017.

    Google Scholar

    [16] 何英杰, 谢东海, 钟若飞. 基于高光谱影像的SG滤波算法的研究[J]. 首都师范大学学报(自然科学版), 2018, 39(2): 70-75. doi: 10.3969/j.issn.1004-9398.2018.02.014

    CrossRef Google Scholar

    He Y J, Xie D H, Zhong R F. Research on SG filtering algorithm based on hyperspectral image[J]. J Cap Norm Univ (Nat Sci Ed), 2018, 39(2): 70-75. doi: 10.3969/j.issn.1004-9398.2018.02.014

    CrossRef Google Scholar

    [17] 尚韬, 李锋, 刘增基. 基于光子晶体光纤的拉曼放大器特性研究[J]. 通信学报, 2008, 29(8): 63-68. doi: 10.3321/j.issn:1000-436X.2008.08.008

    CrossRef Google Scholar

    Shang T, Li F, Liu Z J. Numerical analysis of Raman amplifier based on triangular photonic crystal fiber[J]. J Commun, 2008, 29(8): 63-68. doi: 10.3321/j.issn:1000-436X.2008.08.008

    CrossRef Google Scholar

    [18] 陈金敏. 微弱拉曼光谱成像信息提取及SNR估计[J]. 数字技术与应用, 2019, 37(4): 100-103.

    Google Scholar

    Chen J M. Extraction of weak raman spectral imaging information and SNR estimation[J]. Digit Technol Appl, 2019, 37(4): 100-103.

    Google Scholar

    [19] Zhang Z M, Chen S, Liang Y Z, et al. An intelligent background-correction algorithm for highly fluorescent samples in Raman spectroscopy[J]. J Raman Spectrosc, 2010, 41(6): 659-669. doi: 10.1002/jrs.2500

    CrossRef Google Scholar

  • Overview: After the discovery of the Raman scattering effect, due to its high sensitivity and non-invasiveness to test samples, it has been more and more used in materials testing, jewelry identification and other fields. However, in the direction of biological samples, such as bacterial metabolism detection, microbial discrimination, etc., the intensity of Raman spectroscopy is relatively weak, and the signal-to-noise ratio is low. As a conventional Raman signal acquisition method, the confocal Raman system occupies an important position in many Raman systems. However, most confocal Raman systems mostly use small holes or slits, and rarely use photonic crystal fibers. Aiming at the problems of weak signal strength and low signal-to-noise ratio of traditional Raman spectroscopy, a new confocal Raman system is proposed. The system realizes the absolute conjugation of the confocal point through the external photonic crystal fiber. Secondly, the difference in imaging accuracy between photonic crystal fiber and other single-mode fibers is verified, and it is found that the imaging accuracy of photonic crystal fiber is much higher than that of ordinary single-mode fiber. Then, the actual samples were tested and verified, and Escherichia coli with high background noise was screened out. The test results were compared with the optical fibers used in Thorlabs and OZ conventional confocal Raman systems and Witec 532 nm-alpha300R confocal Raman systems. Under the conditions of the same laser intensity of 3 mW and integration time of 5 s, the signal-to-noise ratio obtained is 73.8382, which is higher than that of Thorlabs and OZ systems. Compared with the 65.5312 of the Witec 532 nm-alpha300R confocal Raman system, the Raman signal quality of the two single-mode fibers are 37.1557 and 40.0342 respectively, an increase of 12.68%. It can be seen that the quality of the Raman signal obtained in this paper is relatively high. Absolutely conjugated confocal Raman system will promote the application of photonic crystal fiber in biological cell Raman, and has a very broad application prospect.

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Tables(1)

Article Metrics

Article views() PDF downloads() Cited by()

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint