Yu ZJ, Li MX, Xing ZY et al. Genetic algorithm assisted meta-atom design for high-performance metasurface optics. Opto-Electron Sci 3, 240016 (2024). doi: 10.29026/oes.2024.240016
Citation: Yu ZJ, Li MX, Xing ZY et al. Genetic algorithm assisted meta-atom design for high-performance metasurface optics. Opto-Electron Sci 3, 240016 (2024). doi: 10.29026/oes.2024.240016

Article Open Access

Genetic algorithm assisted meta-atom design for high-performance metasurface optics

More Information
  • Metasurfaces, composed of planar arrays of intricately designed meta-atom structures, possess remarkable capabilities in controlling electromagnetic waves in various ways. A critical aspect of metasurface design involves selecting suitable meta-atoms to achieve target functionalities such as phase retardation, amplitude modulation, and polarization conversion. Conventional design processes often involve extensive parameter sweeping, a laborious and computationally intensive task heavily reliant on designer expertise and judgement. Here, we present an efficient genetic algorithm assisted meta-atom optimization method for high-performance metasurface optics, which is compatible to both single- and multi-objective device design tasks. We first employ the method for a single-objective design task and implement a high-efficiency Pancharatnam-Berry phase based metalens with an average focusing efficiency exceeding 80% in the visible spectrum. We then employ the method for a dual-objective metasurface design task and construct an efficient spin-multiplexed structural beam generator. The device is capable of generating zeroth-order and first-order Bessel beams respectively under right-handed and left-handed circular polarized illumination, with associated generation efficiencies surpassing 88%. Finally, we implement a wavelength and spin co-multiplexed four-channel metahologram capable of projecting two spin-multiplexed holographic images under each operational wavelength, with efficiencies over 50%. Our work offers a streamlined and easy-to-implement approach to meta-atom design and optimization, empowering designers to create diverse high-performance and multifunctional metasurface optics.
  • 加载中
  • [1] Kuznetsov AI, Brongersma ML, Yao J et al. Roadmap for optical metasurfaces. ACS Photonics 11, 816–865 (2024). doi: 10.1021/acsphotonics.3c00457

    CrossRef Google Scholar

    [2] Liu ZY, Wang DY, Gao H et al. Metasurface-enabled augmented reality display: a review. Adv Photonics 5, 034001 (2023).

    Google Scholar

    [3] Li LL, Zhao HT, Liu C et al. Intelligent metasurfaces: control, communication and computing. eLight 2, 7 (2022). doi: 10.1186/s43593-022-00013-3

    CrossRef Google Scholar

    [4] Ding F, Pors A, Bozhevolnyi SI. Gradient metasurfaces: a review of fundamentals and applications. Rep Prog Phys 81, 026401 (2018). doi: 10.1088/1361-6633/aa8732

    CrossRef Google Scholar

    [5] Li Y, Huang XJ, Liu SX et al. Metasurfaces for near-eye display applications. Opto-Electron Sci 2, 230025 (2023). doi: 10.29026/oes.2023.230025

    CrossRef Google Scholar

    [6] Liu ZY, Gao H, Ma TG et al. Broadband spin and angle co-multiplexed waveguide-based metasurface for six-channel crosstalk-free holographic projection. eLight 4, 7 (2024). doi: 10.1186/s43593-024-00063-9

    CrossRef Google Scholar

    [7] Luo XG. Principles of electromagnetic waves in metasurfaces. Sci China Phys Mech Astron 58, 594201 (2015). doi: 10.1007/s11433-015-5688-1

    CrossRef Google Scholar

    [8] Guo YH, Zhang SC, Pu MB et al. Spin-decoupled metasurface for simultaneous detection of spin and orbital angular momenta via momentum transformation. Light Sci Appl 10, 63 (2021). doi: 10.1038/s41377-021-00497-7

    CrossRef Google Scholar

    [9] Wang SM, Wu PC, Su VC et al. Broadband achromatic optical metasurface devices. Nat Commun 8, 187 (2017). doi: 10.1038/s41467-017-00166-7

    CrossRef Google Scholar

    [10] Liu XY, Zhang JC, Leng BR et al. Edge enhanced depth perception with binocular meta-lens. Opto-Electron Sci 3, 230033 (2024).

    Google Scholar

    [11] Zheng GX, Mühlenbernd H, Kenney M et al. Metasurface holograms reaching 80% efficiency. Nat Nanotechnol 10, 308–312 (2015). doi: 10.1038/nnano.2015.2

    CrossRef Google Scholar

    [12] So S, Kim J, Badloe T et al. Multicolor and 3D holography generated by inverse‐designed single‐cell metasurfaces. Adv Mater 35, 2208520 (2023). doi: 10.1002/adma.202208520

    CrossRef Google Scholar

    [13] Li X, Chen QM, Zhang X et al. Time-sequential color code division multiplexing holographic display with metasurface. Opto-Electron Adv 6, 220060 (2023). doi: 10.29026/oea.2023.220060

    CrossRef Google Scholar

    [14] Chen WT, Khorasaninejad M, Zhu AY et al. Generation of wavelength-independent subwavelength Bessel beams using metasurfaces. Light Sci Appl 6, e16259 (2017).

    Google Scholar

    [15] Zhang S, Huo PC, Wang YL et al. Generation of achromatic auto-focusing airy beam for visible light by an all-dielectric metasurface. J Appl Phys 131, 043104 (2022). doi: 10.1063/5.0077930

    CrossRef Google Scholar

    [16] Zhang JC, Chen MK, Fan YB et al. Miniature tunable Airy beam optical meta-device. Opto-Electron Adv 7, 230171 (2024). doi: 10.29026/oea.2024.230171

    CrossRef Google Scholar

    [17] So S, Mun J, Park J et al. Revisiting the design strategies for metasurfaces: fundamental physics, optimization, and beyond. Adv Mater 35, 2206399 (2023). doi: 10.1002/adma.202206399

    CrossRef Google Scholar

    [18] Ma W, Liu ZC, Kudyshev ZA et al. Deep learning for the design of photonic structures. Nat Photonics 15, 77–90 (2021). doi: 10.1038/s41566-020-0685-y

    CrossRef Google Scholar

    [19] Elsawy MMR, Lanteri S, Duvigneau R et al. Numerical optimization methods for metasurfaces. Laser Photonics Rev 14, 1900445 (2020). doi: 10.1002/lpor.201900445

    CrossRef Google Scholar

    [20] Wiecha PR, Muskens OL. Deep learning meets nanophotonics: a generalized accurate predictor for near fields and far fields of arbitrary 3D nanostructures. Nano Lett 20, 329–338 (2020). doi: 10.1021/acs.nanolett.9b03971

    CrossRef Google Scholar

    [21] Chen MK, Liu XY, Sun YN et al. Artificial intelligence in meta-optics. Chem Rev 122, 15356–15413 (2022). doi: 10.1021/acs.chemrev.2c00012

    CrossRef Google Scholar

    [22] Jiang JQ, Sell D, Hoyer S et al. Free-form diffractive metagrating design based on generative adversarial networks. ACS Nano 13, 8872–8878 (2019). doi: 10.1021/acsnano.9b02371

    CrossRef Google Scholar

    [23] Liu ZC, Zhu DY, Raju L et al. Tackling photonic inverse design with machine learning. Adv Sci 8, 2002923 (2021). doi: 10.1002/advs.202002923

    CrossRef Google Scholar

    [24] Wang DY, Liu ZY, Wang HZ et al. Structural color generation: from layered thin films to optical metasurfaces. Nanophotonics 12, 1019–1081 (2023). doi: 10.1515/nanoph-2022-0063

    CrossRef Google Scholar

    [25] Shi ZJ, Zhu AY, Li ZY et al. Continuous angle-tunable birefringence with freeform metasurfaces for arbitrary polarization conversion. Sci Adv 6, eaba3367 (2020). doi: 10.1126/sciadv.aba3367

    CrossRef Google Scholar

    [26] Sell D, Yang JJ, Doshay S et al. Large-angle, multifunctional metagratings based on freeform multimode geometries. Nano Lett 17, 3752–3757 (2017). doi: 10.1021/acs.nanolett.7b01082

    CrossRef Google Scholar

    [27] Yang JJ, Fan JA. Topology-optimized metasurfaces: impact of initial geometric layout. Opt Lett 42, 3161–3164 (2017). doi: 10.1364/OL.42.003161

    CrossRef Google Scholar

    [28] Whiting EB, Campbell SD, Kang L et al. Meta-atom library generation via an efficient multi-objective shape optimization method. Opt Express 28, 24229–24242 (2020). doi: 10.1364/OE.398332

    CrossRef Google Scholar

    [29] Zou XJ, Zhang YM, Lin RY et al. Pixel-level Bayer-type colour router based on metasurfaces. Nat Commun 13, 3288 (2022). doi: 10.1038/s41467-022-31019-7

    CrossRef Google Scholar

    [30] Zhu DZ, Whiting EB, Campbell SD et al. Optimal high efficiency 3D plasmonic metasurface elements revealed by lazy ants. ACS Photonics 6, 2741–2748 (2019). doi: 10.1021/acsphotonics.9b00717

    CrossRef Google Scholar

    [31] Song CT, Pan LZ, Jiao YH et al. A high-performance transmitarray antenna with thin metasurface for 5G communication based on PSO (particle swarm optimization). Sensors 20, 4460 (2020). doi: 10.3390/s20164460

    CrossRef Google Scholar

    [32] Holland JH. Genetic algorithms. Sci Am 267, 66–73 (1992). doi: 10.1038/scientificamerican0792-66

    CrossRef Google Scholar

    [33] Fan YL, Xu YK, Qiu M et al. Phase-controlled metasurface design via optimized genetic algorithm. Nanophotonics 9, 3931–3939 (2020). doi: 10.1515/nanoph-2020-0132

    CrossRef Google Scholar

    [34] Egorov V, Eitan M, Scheuer J. Genetically optimized all-dielectric metasurfaces. Opt Express 25, 2583–2593 (2017). doi: 10.1364/OE.25.002583

    CrossRef Google Scholar

    [35] Jafar-Zanjani S, Inampudi S, Mosallaei H. Adaptive genetic algorithm for optical metasurfaces design. Sci Rep 8, 11040 (2018). doi: 10.1038/s41598-018-29275-z

    CrossRef Google Scholar

    [36] Li ZG, Stan L, Czaplewski DA et al. Broadband infrared binary-pattern metasurface absorbers with micro-genetic algorithm optimization. Opt Lett 44, 114–117 (2019). doi: 10.1364/OL.44.000114

    CrossRef Google Scholar

    [37] Deb K, Pratap A, Agarwal S et al. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 6, 182–197 (2002). doi: 10.1109/4235.996017

    CrossRef Google Scholar

    [38] Blickle T, Thiele L. A mathematical analysis of tournament selection. In Proceedings of the 6th International Conference on Genetic Algorithms 9–15 (Morgan Kaufmann Publishers Inc. , 1995).

    Google Scholar

    [39] Deb K, Sindhya K, Okabe T. Self-adaptive simulated binary crossover for real-parameter optimization. In Proceedings of the 9th Annual Conference on Genetic and Evolutionary Computation 1187–1194 (ACM, 2007); http://doi.org/10.1145/1276958.1277190.

    Google Scholar

    [40] Deb K, Deb D. Analysing mutation schemes for real-parameter genetic algorithms. Int J Artif Intell Soft Comput 4, 1–28 (2014).

    Google Scholar

    [41] While L. A new analysis of the LebMeasure algorithm for calculating hypervolume. In Proceedings of the Evolutionary Multi-Criterion Optimization: Third International Conference 326–340 (Springer, 2005); http://doi.org/10.1007/978-3-540-31880-4_23.

    Google Scholar

    [42] Xie X, Pu MB, Jin JJ et al. Generalized Pancharatnam-Berry phase in rotationally symmetric meta-atoms. Phys Rev Lett 126, 183902 (2021). doi: 10.1103/PhysRevLett.126.183902

    CrossRef Google Scholar

    [43] Khorasaninejad M, Chen WT, Devlin RC et al. Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging. Science 352, 1190–1194 (2016). doi: 10.1126/science.aaf6644

    CrossRef Google Scholar

    [44] Zhang C, Divitt S, Fan Q et al. Low-loss metasurface optics down to the deep ultraviolet region. Light Sci Appl 9, 55 (2020). doi: 10.1038/s41377-020-0287-y

    CrossRef Google Scholar

    [45] Zhang C, Chen L, Lin ZL et al. Tantalum pentoxide: a new material platform for high-performance dielectric metasurface optics in the ultraviolet and visible region. Light Sci Appl 13, 23 (2024). doi: 10.1038/s41377-023-01330-z

    CrossRef Google Scholar

    [46] Zhao D, Lin ZL, Zhu WQ et al. Recent advances in ultraviolet nanophotonics: from plasmonics and metamaterials to metasurfaces. Nanophotonics 10, 2283–2308 (2021). doi: 10.1515/nanoph-2021-0083

    CrossRef Google Scholar

    [47] Colburn S, Zhan AL, Bayati E et al. Broadband transparent and CMOS-compatible flat optics with silicon nitride metasurfaces [Invited]. Opt Mater Express 8, 2330–2344 (2018). doi: 10.1364/OME.8.002330

    CrossRef Google Scholar

    [48] Tseng ML, Semmlinger M, Zhang M et al. Vacuum ultraviolet nonlinear metalens. Sci Adv 8, eabn5644 (2022). doi: 10.1126/sciadv.abn5644

    CrossRef Google Scholar

    [49] Devlin RC, Khorasaninejad M, Chen WT et al. Broadband high-efficiency dielectric metasurfaces for the visible spectrum. Proc Natl Acad Sci USA 113, 10473–10478 (2016). doi: 10.1073/pnas.1611740113

    CrossRef Google Scholar

    [50] Liu MZ, Zhu WQ, Huo PC et al. Multifunctional metasurfaces enabled by simultaneous and independent control of phase and amplitude for orthogonal polarization states. Light Sci Appl 10, 107 (2021). doi: 10.1038/s41377-021-00552-3

    CrossRef Google Scholar

    [51] Balthasar Mueller JP, Rubin NA, Devlin RC et al. Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization. Phys Rev Lett 118, 113901 (2017). doi: 10.1103/PhysRevLett.118.113901

    CrossRef Google Scholar

    [52] Fan QB, Zhu WQ, Liang YZ et al. Broadband generation of photonic spin-controlled arbitrary accelerating light beams in the visible. Nano Lett 19, 1158–1165 (2019). doi: 10.1021/acs.nanolett.8b04571

    CrossRef Google Scholar

    [53] Huo PC, Zhang C, Zhu WQ et al. Photonic spin-multiplexing metasurface for switchable spiral phase contrast imaging. Nano Lett 20, 2791–2798 (2020). doi: 10.1021/acs.nanolett.0c00471

    CrossRef Google Scholar

    [54] Zhang F, Guo YH, Pu MB et al. Meta-optics empowered vector visual cryptography for high security and rapid decryption. Nat Commun 14, 1946 (2023). doi: 10.1038/s41467-023-37510-z

    CrossRef Google Scholar

    [55] Shameli MA, Fallah A, Yousefi L. Developing an optimized metasurface for light trapping in thin-film solar cells using a deep neural network and a genetic algorithm. J Opt Soc Am B 38, 2728–2735 (2021). doi: 10.1364/JOSAB.432989

    CrossRef Google Scholar

    [56] Zhang JM, Wang GW, Wang T et al. Genetic algorithms to automate the design of metasurfaces for absorption bandwidth broadening. ACS Appl Mater Interfaces 13, 7792–7800 (2021). doi: 10.1021/acsami.0c21984

    CrossRef Google Scholar

    [57] Ma W, Xu YH, Xiong B et al. Pushing the limits of functionality‐multiplexing capability in metasurface design based on statistical machine learning. Adv Mater 34, 2110022 (2022). doi: 10.1002/adma.202110022

    CrossRef Google Scholar

    [58] Zhu DY, Liu ZC, Raju L et al. Building multifunctional metasystems via algorithmic construction. ACS Nano 15, 2318–2326 (2021). doi: 10.1021/acsnano.0c09424

    CrossRef Google Scholar

    [59] An SS, Zheng BW, Shalaginov MY et al. Deep convolutional neural networks to predict mutual coupling effects in metasurfaces. Adv Opt Mater 10, 2102113 (2022). doi: 10.1002/adom.202102113

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Tables(2)

Article Metrics

Article views(2121) PDF downloads(274) Cited by(0)

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint